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ABSTRACT. Let R be a ring and let N denote the set of nilpotent elements of R.

Let n be a nonnegative integer. The ring R is called a @ -ring if the number
n

of elements in R which are not in N is at most n. The following theorem is

proved: If R is a @ -ring, then R is nil or R is finite. Conversely, if R
n

is a nil ring or a finite ring, then R is a 8 -ring for some n. The proof of
n

this theorem uses the structure theory of rings, beginning with the division ring

case, followed by the primitive ring case, and then the semisimple ring case.

Finally, the general case is considered.
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AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Prary 16A48, Secondary 16A22.

i. INTRODUCTION.

Let R be a ring and let N denote the set of nilpotent elements of R. Let n be

a nonnegative integer. The ring R is called a 0 -ring if the number of elements
n

in R which are not in N is at most n; that is, IR/NI < n. One question which

suggests itself is the following: what are necessary and sufficient conditions for

a given ring R to be a 0 -ring? The answer is given in the following.
n

2. MAIN RESULTS.

THEOREM I. If R is a -ring, then R is nil or R is finite. Conversely, if
n

R is a nil ring or a finite ring, then R is a -ring for some integer n.
n

In the proof of Theorem I, we use the structure theory of rings, beginning with

the division ring case, followed by the primitive ring case, and then the semisimple

ring case. Finally, we consider the general case.

In preparation for the proof of Theorem I, we first prove the following lemmas.

LEMMA I. Any subring and any homomorphic image of a 8 -ring is a -ring.
n n

This follows at once from the definition of a 0 -ring.
n

LEMMA 2. Let RI,R2,...,Rn+1
be rings where each R

i
has an identity. Then the

direct sum R
1

R
2 Rn+1

is not a -ring.
n

PROOF. Let u I (I,0,0,...,0), u
2 (0,I,0,...,0), Un+I (0,0, 0,I),

where each u.. is an element of the direct sum R
1 - R

2
+ Rn+1. Then u

i ’N for

each i 1,2,...,n + I, where N denotes the set of nilpotent elements of R. Hence

I{R1 R
2 Rn+I}\N > n

and thus RI
$ R

2 Rn+1
is not a 8-ring.

n

LEMMA 3. If D is a division ring which is also a 8 -ring, then D is finite.
n

This follows at once from the difinition of a 8-ring.n
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LEMMA 4. If R is a primitive ring which is also a 8 -ring, then R is finite.
n

In fact, R is isomorphic to a complete matrix ring D over a finite division ring D.
m

PROOF. Suppose R D for any division ring D and any positive integer m.
m

(We shall show that this leads to a contradiction.) Then, by Jacobson’s Density

Theorem [I; p. 33], for each positive integer q, there exists a subrlng R
0

of R

which maps homomorphlcally onto D for some division ring D. In particular, there
q

exists a subring RI of R which maps homomorphically onto Dn+I. Hence, by Lemma I,

Dn+l is a 0 -ring. (2.1)
n

Now, define AI,A2,...,An+I to be the following (n + I) (n + I) matrices in Dn+l:

A. has zero entries in all rows except row i,

but A. has entries of I throughout row i

(i 1,2,...,n + I).

It is readily verified that each A. is idempotent and thus each A
i

is not nilpotent.
l

Hence, IDn+I\NI > n, where N denotes the set of nilpotent elements of Dn+I. There-

fore, Dn+1
is not a 8n-ring, which contradicts (2.1). This contradiction shows that

R D for some division ring D and some positive integer m. Now, since the division
m

ring D is a subring of the 8n-ring Dm, D is finite, by Lemmas 1 and 3. Thus, R is

finite, and the proof is complete.

LEMMA 5. If R is a semisimple ring which is also a 8 -ring, then R is finite.
n

PROOF. By contradiction. Thus, suppose that R is a semisimple ring which is

also a 8 -ring, and suppose R is not finite. Since R is semisimple, there exists
n

ideal I (eel) of R such that [I; p. 14]

e I-- (0)’, each R/Ie is primitive (2.2)

By Lemma I, R/I is a 8 -ring. Hence, by (2.2) and Lemma 4,
( n

R/I a Dm R/I is finite, for any e (2.3)
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Now, choose s I
, and having chosen s1,...,sk so that

k k

’RII -= RI n I (2.)
i=l s. s.

i i=l i

k
choose Sk+1

e such that n I I That such Sk+1
can always be so chosen

i= I s.
i Sk+I k

is proved as follows: suppose no such Sk+I exists. Then (0) n I n I
s s

i=l si
and hence (see (2.4))

k k
R R/ 0 I ---_’R/I

i 1 si i= 1 si

Thus, using (2.3), we see that R is finite, a contradiction. This contradiction
k

shows that there exists Sk+I such that I I Now, as we can see from
i=l

s.
i Sk+I

k(2.3), R/I is simple. Since, moreover, I
S

I we have
Sk+I i= I i Sk+1

k
IS + IS R. Hence, by applying the second isomorphism theorem, we readily

i=l i k+l

verify that

k+l k k+l
RI n I - R/ 0 I R/l -= Z’R/I

i=l s. s
i i=l s1 Sk+l i=l i

by (2.4). In particular, we have

n+l n+l
’R/l R/ n I

si i=l si

n+l
Hence, using Lemma I, E" R/I is a 8 -ring. This, however, contradicts Lemma 2

n
i=l s

1

(see (2.3)). This contradiction shows that R is finite, and the lemma is proved.

We are now in a position to prove our main result, stated at the beginning.

PROOF of Theorem I. Let R be a 8n-ring, and let J denote the Jacobson radical

of R. We claim that J is nil. We prove this by contradiction. Thus, suppose J is

not nil. Then, for some a, a e J, a N, where N denotes the set of nilpotent
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elements of R. Let

2 3 n+l
S {a,a ,a ,...,a }, (aJ, aN)

Since a N, a
i N for each i 1,2 ,n + I, and hence S = R\N. Therefore,

ISI < IR\NI < n (2.6)

i ajsince R is a 8 -ring. In view of (2.5) and (2.6), we see that a for some
n

k
distinct positive integers i, j, and hence some power of a is idempotent, say a

k k
Thus, a is an idempotent element of J, and hence, as is well known, a 0.

Therefore, a e N, a contradiction. This contradiction proves that J is nil.

Now, if J R, then R is nil. So suppose J # R. Then R/J is a semisimple

ring with more than one element. Moreover, by Lemma i, R/J is a 8 -ring, and hence
n

by Lemma 5, R/J is finite. We have thus shown that R/J is a finite semisimple ring

with more than one element, and hence, as is well known, R/J has an idenitity. Let

u be the identity element of R/J, and let

N + u {n + u neN}; N is the set of nilpotents of R. (2.7)

We claim that

(N + u) n N (2.8)

For, if a e (N + u) n N, then a N and a n + u for some n N. Hence

a n + u an invertible element of R/J. Thus, a is an invertible element of R/J,

which contradicts the hypothesis that a e N (and hence a is nilpotent). This

contradiction proves (2.8). In view of (2.8), we have N + u c_q R\N, and hence

IN + u < IR\NI <_ n (2.9)

since R is a 8n-ring. But INI IN + ul and hence by (2.9) N is finite. The

net result, then, is that both N and R\N are finite, and hence R is finite. We

have thus shown that, in any case, R is nil (if J R) or R is finite (if J # R).

The converse part of Theorem 1 is trivial.
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We conclude with the following

REMARK. The analogue of Theorem 1 is not true for semigroups. To see this,

let N be an infinite nil semigroup, and let 1 { N be an identity element; that is,

1 x x 1 x for all x in N, and 1 1 1

Let R N u {i}. Then R is a semigroup. Also, IR\NI i. But R is neither nil

nor finite.
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