RINGS WITH A FINITE SET OF NONNILPOTENTS

MOHAN S. PUTCHA
Department of Mathematics
N.C. State University
Raleigh, N.C. 27607
and
ADIL YAQUB
Department of Mathematics
University of California
Santa Barbara, California 93106

(Received October 16, 1978)

ABSTRACT. Let R be a ring and let N denote the set of nilpotent elements of R. Let n be a nonnegative integer. The ring R is called a θ_{n}-ring if the number of elements in R which are not in N is at most n. The following theorem is proved: If R is a θ_{n}-ring, then R is nil or R is finite. Conversely, if R is a nil ring or a finite ring, then R is a θ_{n}-ring for some n. The proof of this theorem uses the structure theory of rings, beginning with the division ring case, followed by the primitive ring case, and then the semisimple ring case. Finally, the general case is considered.

KEY WORDS AND PHRASES. Nil ring, Division ring, Primitive ring, Semisimple ring, Semigroup.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 16A48, Secondary 16A22.

1. INTRODUCTION.

Let R be a ring and let N denote the set of nilpotent elements of R. Let n be a nonnegative integer. The ring R is called a θ_{n}-ring if the number of elements in R which are not in N is at most n; that is, $|R / N| \leq n$. One question which suggests itself is the following: what are necessary and sufficient conditions for a given ring R to be a θ_{n}-ring? The answer is given in the following.
2. MAIN RESULTS.

THEOREM 1. If R is a θ_{n}-ring, then R is nil or R is finite. Conversely, if R is a nil ring or a finite ring, then R is a θ_{n}-ring for some integer n.

In the proof of Theorem 1, we use the structure theory of rings, beginning with the division ring case, followed by the primitive ring case, and then the semisimple ring case. Finally, we consider the general case.

In preparation for the proof of Theorem 1, we first prove the following lemmas.

LEMMA 1. Any subring and any homomorphic image of a θ_{n}-ring is a θ_{n}-ring.
This follows at once from the definition of a θ_{n}-ring.
LEMMA 2. Let $R_{1}, R_{2}, \ldots, R_{n+1}$ be rings where each R_{i} has an identity. Then the direct sum $R_{1}+R_{2} \dot{+} \ldots+R_{n+1}$ is not a θ_{n}-ring.

PROOF. Let $u_{1}=(1,0,0, \ldots, 0), u_{2}=(0,1,0, \ldots, 0), \ldots, u_{n+1}=(0,0, \ldots, 0,1)$, where each u_{i} is an element of the direct sum $R_{1}+R_{2}+\ldots \dot{+} R_{n+1}$. Then $u_{i}{ }_{i} N$ for each $i=1,2, \ldots, n+1$, where N denotes the set of nilpotent elements of R. Hence

$$
\left|\left\{R_{1} \dot{+} R_{2} \dot{+} . \dot{+} R_{n+1}\right\} \backslash N\right|>n
$$

and thus $R_{1} \dot{+} R_{2} \dot{+} \ldots \dot{+} R_{n+1}$ is not a θ_{n}-ring.
LEMMA 3. If D is a division ring which is also a θ_{n}-ring, then D is finite.
This follows at once from the difinition of a θ_{n}-ring.

LEMMA 4. If R is a primitive ring which is also a θ_{n}-ring, then R is finite. In fact, R is isomorphic to a complete matrix ring D_{m} over a finite division ring D.

PROOF. Suppose $R \neq D_{m}$ for any division ring D and any positive integer m. (We shall show that this leads to a contradiction.) Then, by Jacobson's Density Theorem [1; p. 33], for each positive integer q, there exists a subring R_{0} of R which maps homomorphically onto D_{q}, for some division ring D. In particular, there exists a subring R_{1} of R which maps homomorphically onto D_{n+1}. Hence, by Lemma 1 ,

$$
\begin{equation*}
D_{n+1} \text { is a } \theta_{n} \text {-ring. } \tag{2.1}
\end{equation*}
$$

Now, define $A_{1}, A_{2}, \ldots, A_{n+1}$ to be the following $(n+1) \times(n+1)$ matrices in D_{n+1} :
A_{i} has zero entries in all rows except row i, but A_{i} has entries of 1 throughout row i;

$$
(i=1,2, \ldots, n+1)
$$

It is readily verified that each A_{i} is idempotent and thus each A_{i} is not nilpotent. Hence, $\left|D_{n+1} \backslash N\right|>n$, where N denotes the set of nilpotent elements of D_{n+1}. Therefore, D_{n+1} is not a θ_{n}-ring, which contradicts (2.1). This contradiction shows that $R \cong D_{m}$ for some division ring D and some positive integer m. Now, since the division ring D is a subring of the θ_{n}-ring D_{m}, D is finite, by Lemmas 1 and 3 . Thus, R is finite, and the proof is complete.

LEMMA 5. If R is a semisimple ring which is also a θ_{n}-ring, then R is finite. PROOF. By contradiction. Thus, suppose that R is a semisimple ring which is also a θ_{n}-ring, and suppose R is not finite. Since R is semisimple, there exists ideal $I_{\alpha}(\alpha \in \Omega)$ of R such that [1; p. 14]

$$
\begin{equation*}
\hat{\alpha}_{\alpha \in \Omega} I_{\alpha}=(0) ; \text { each } R / I_{\alpha} \text { is primitive. } \tag{2.2}
\end{equation*}
$$

By Lemma $1, R / I_{\alpha}$ is a θ_{n}-ring. Hence, by (2.2) and Lemma 4,

$$
\begin{equation*}
R / I_{\alpha} \cong D_{m}, R / I_{\alpha} \text { is finite, for any } \alpha \in \Omega \tag{2.3}
\end{equation*}
$$

Now, choose $\alpha_{1} \in \Omega$, and having chosen $\alpha_{1}, \ldots, \alpha_{k}$ so that

$$
\begin{equation*}
\sum_{i=1}^{k} \cdot{ }^{k} / I_{\alpha_{i}} \cong R / \bigcap_{i=1}^{k} I_{\alpha_{i}} \tag{2.4}
\end{equation*}
$$

k
choose $\alpha_{k+1} \in \Omega$ such that $\cap_{i=1} I_{\alpha_{i}} \nsubseteq I_{\alpha_{k+1}}$. That such α_{k+1} can always be so chosen is proved as follows: suppose no such α_{k+1} exists. Then (0) $=\cap_{\alpha \in \Omega} I_{\alpha}=\underset{i=1}{\cap} I_{\alpha_{i}}$, and hence (see (2.4))

$$
R \cong R / \sum_{i=1}^{k} I_{\alpha_{i}} \cong \sum_{i=1}^{k} R / I_{\alpha_{i}}
$$

Thus, using (2.3), we see that R is finite, a contradiction. This contradiction shows that there exists $\alpha_{k+1} \in \Omega$ such that $\sum_{i=1}^{k} I_{\alpha_{i}} \nsubseteq I_{\alpha_{k+1}}$. Now, as we can see from (2.3), $R / I_{\alpha_{k+1}}$ is simple. Since, moreover, $\hat{n}_{i=1}^{k} I_{\alpha_{i}} \nsubseteq I_{\alpha_{k+1}}$, we have
k $\hat{i=1}_{n} I_{\alpha_{i}}+I_{\alpha_{k+1}}=R$. Hence, by applying the second isomorphism theorem, we readily verify that

$$
R / \bigcap_{i=1}^{k+1} I_{\alpha_{i}} \cong R / \sum_{i=1}^{k} I_{\alpha_{i}} \dot{R} / I_{\alpha_{k+1}} \cong \sum_{i=1}^{k+1} R / I_{\alpha_{i}}
$$

by (2.4). In particular, we have

$$
\sum_{i=1}^{n+1} R / I_{\alpha_{i}} \cong R /{\underset{i=1}{n+1} I_{\alpha_{i}} .}^{\cong}
$$

$\mathrm{n}+1$
Hence, using Lemma $1, \sum_{i=1}^{\bullet} R / I_{\alpha_{i}}$ is a θ_{n}-ring. This, however, contradicts Lemma 2 (see (2.3)). This contradiction shows that R is finite, and the lemma is proved.

We are now in a position to prove our main result, stated at the beginning.

PROOF of Theorem 1. Let R be a θ_{n}-ring, and let J denote the Jacobson radical of R. We claim that J is nil. We prove this by contradiction. Thus, suppose J is not nil. Then, for some $a, a \in J$, $a \notin N$, where N denotes the set of nilpotent
elements of R. Let

$$
\begin{equation*}
\mathrm{S}=\left\{a, a^{2}, a^{3}, \ldots, a^{n+1}\right\},(a \in J, a \notin N) \tag{2.5}
\end{equation*}
$$

Since $a \notin N, a^{i} \notin N$ for each $i=1,2, \ldots, n+1$, and hence $S \subseteq R \backslash N$. Therefore,

$$
\begin{equation*}
|S| \leq|R \backslash N| \leq n, \tag{2.6}
\end{equation*}
$$

since R is a θ_{n}-ring. In view of (2.5) and (2.6), we see that $a^{i}=a^{j}$ for some distinct positive integers i, j, and hence some power of a is idempotent, say a^{k}. Thus, a^{k} is an idempotent element of J, and hence, as is well known, $a^{k}=0$. Therefore, $a \in N$, a contradiction. This contradiction proves that J is nil.

Now, if $J=R$, then R is nil. So suppose $J \neq R$. Then R / J is a semisimple ring with more than one element. Moreover, by Lemma $1, R / J$ is a θ_{n} ring, and hence by Lemma $5, R / J$ is finite. We have thus shown that R / J is a finite semisimple ring with more than one element, and hence, as is well known, R / J has an idenitity. Let \bar{u} be the identity element of R / J, and let

$$
\begin{equation*}
N+u=\{n+u \mid n \in N\} ; N \text { is the set of nilpotents of } R \tag{2.7}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
(\mathrm{N}+\mathrm{u}) \cap \mathrm{N}=\emptyset \tag{2.8}
\end{equation*}
$$

For, if $a \in(N+u) \cap N$, then $a \in N$ and $a=n+u$ for some $n \in N$. Hence $\overline{\mathrm{a}}=\overline{\mathrm{n}}+\overline{\mathrm{u}}=$ an invertible element of R / J. Thus, $\overline{\mathrm{a}}$ is an invertible element of R / J, which contradicts the hypothesis that $a \in N$ (and hence \bar{a} is nilpotent). This contradiction proves (2.8). In view of (2.8), we have $N+u \subseteq R \backslash N$, and hence

$$
\begin{equation*}
|N+u| \leq|R \backslash N| \leq n, \tag{2.9}
\end{equation*}
$$

since R is a θ_{n}-ring. But $|N|=|N+u|$, and hence by (2.9), N is finite. The net result, then, is that both N and $R \backslash N$ are finite, and hence R is finite. We have thus shown that, in any case, R is nil (if $J=R$) or R is finite (if $J \neq R$). The converse part of Theorem 1 is trivial.

We conclude with the following

REMARK. The analogue of Theorem 1 is not true for semigroups. To see this, let N be an infinite nil semigroup, and let $1 \notin N$ be an identity element; that is, $1 \cdot \mathbf{x}=\mathbf{x} \cdot 1=\mathbf{x}$ for all \mathbf{x} in N, and $1 \cdot 1=1$.

Let $R=N \cup\{1\}$. Then R is a semigroup. Also, $|R \backslash N|=1$. But R is neither nil nor finite.

REFERENCE

1. Jacobson, N. Structure of Rings, rev. ed., Amer. Math. Soc. Collog. Publ., Vol. 37, Providence, R.I., 1964.
