Internat. J. Math. & Math. Sci. 81
Vot 2 (1979) §1-90

GAUSSIAN INTEGERS WITH SMALL PRIME FACTORS

D.G. HAZLEWOOD
Department of Mathematics
Southwest Texas State University
San Marcos, Texas 78666
U.S.A.

(Recieved April 18, 1978)

ABSTRACT. Let ‘l’G(xt,x) denote the number of Gaussian integers with norm not
exceeding x2t whose Gaussian prime factors have norm not exceeding xz. Previous
estimates have required restrictions on the parameter t with respect to x. The
purpose of this note is to present asymptotic estimates for ‘PG(xt,x) for all

ranges of the parameter t with respect to x.
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1. INTRODUCTION. Let o denote a Gaussian integer, p a Gaussian prime, Na = aso
the norm of a, and &, € arbitrary positive constants. Throughout the discussion
the constants implied by the use of the()-notation will be absolute unless other-
wise indicated.

For real numbers x > 1 and t > 0, J. H. Jordan [3] and the author [2] gave
asymptotic estimates for the number of Gaussian integers with norms not exceeding
x2t having only Gaussian prime factors with norm not exceeding xz. However,
Jordan's estimate fixed the parameter t and our estimate had t bounded with
respect to x. The purpose of this note is to present an asymptotic estimate for

all ranges of the parameter t with respect to x.

2. MAIN RESULTS.

THEOREM. Let Wc(xt,x) denote the number of Gaussian integers with norm not

exceeding xzt having only Gaussian prime factors with norm not exceeding x .

Then:
1) 1If t < (log x)3/5-6, then
¥, G0 = mtz() +Oe(%é£}{)} @.1)

for t outside the interval (1, l+¢) where Z(t) (the well-known Dickman function)

satisfies the equation
t 2' (t) = -Z(t-1)

with initial condition Z(t) = 1 for 0 < t < 1. Further as t + =

= - _ log log t t
Z(t) = exp{-t(log t + log log t - 1 + Tog t ) +()(1°8 t)}

3/5-8

ii) If (log x) <t g x/log x, then

t _ L2t _ _ t log log t
¥, (x,x) = x* exp{-t(log t + log log t ~ 1) +Q(—i¥—5—108 25 2.2
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1ii) If x/log x < t £ xz/(elog x), then

WG(xt,x) = x2t exp{-t (log t + log log t +-(}(1))} (2.3)
iv) 1ft > xz/(elog x), then ~
t 2 x2 log log x x2
¥o(xT,x) = expliam(x) log t - x” + F592"0 +O(log 0} (2.4)

where nG(x) denotes the number of Gaussian primes with norm not exceeding x2 .

PROOF of the Theorem. Now Case i) follows from Theorem 5 of [2] and the
behavior of Z(t) . To derive (2.2) and (2.3) we will first write a lower
estimate and then an upper estimate for WG(xt,x) that are of the same order.

For the lower estimate we follow the manner of A. S. Fainleib [1] (for

rational integers) and consider the sum

:E:j log Na

No < x°C (2.5)

p|a => Np < x2

We easily see that (2.5) does not exceed
t
2t log x WG(x »X)
and after some routine calculation, (2.5) is at least as large as

2t =3 -2u u
2(1 - €) x°~ log x J x Vék ,X) du
t-1
for 0 < § < 1 (fixed) and € = e(x) << exp(-a(log x)3/5) for a an absolute positive
constant.

Thus we have

x 2t ¥, G5x) > (-e J 2%y (%, 0du (2.6)
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Now we let Zl(t) be defined by the equation
t zi(t) = zl(t) + (l-¢) zl(t-6) - (1-¢) zl(t-l)

with initial condition Zl(t) =t for 0 <t <8 By Lemma 1 of Fainleib [1],

as t » »
- _ _ t log log t
Zl(t) bot + b1 + exp{-t(log t + log log t -1) 1-CX Tog t ) +-CXte)}

where b0 and b1 are real numbers. It is easy to see that for t 2 1

=6
Z)(e) = 31551 J 2 (w)du -

t-1
Now we let

K(t,x) = x 2t ¥, 65,0 = Azl

<1,

where A is a sufficiently small positive real number. Then for 0 < t

K(t,x) > 0, and for t >1

t-§
K(t,x) > (1;6) I K(u,x)du.

t-1
Therefore by Lemma 2 of Fainleib [1], K(t,x) > O for all t > 0 so that

t 2t _n
WG(x ,X) = A X Zl(t)

which in turn, implies that

Wéxt,x) > x2texp{—t(log t +loglogt-1)+ (J(E—lgﬁglgs—sé +-CXte)L 2.7

for t > 1 which is the lower estimate that we need.
Now we follow the manner of B. V. Levin and A. S. Fainleib [4] to obtain the
following general results which as a special case of Lemma 2 give the required

upper estimate for WG(xt,x).
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LEMMA 1. Let f be a completely multiplicative non-negative function

satisfying for x <0 and y <0

Z A, (MNo¥) = T log(min(x,y)) + D + h(min(xz,yz)) + R(xz,yz)
Npr < x2 f

2
No <y

where Af(Npr) = f(Npr)°1og Np, T is a real number, D is an absolute constant,

h(w) =0(og u )7L, and

©

JIR(u,yZ)I (u6 log u)-1 du < @
2
for all § > 0. Further assume for every Gaussian prime p and s > -1 that

Zq -
ZE , f(Npr)Np rs converges. Then, if 0 < 8§ =68 (y) <1~ 1l/logy,
r=1

L 20178 2(1-6)
log P(6-1,y) =~ L " 4 log( ) + QXr— &
8 (1-8) log y (1-6)2 log v

+0« J|R<u,y2> ’10g w7 aw) , 2.9
2
with

Q0.

/
Py = [ 1, A+ Z fmoh) w7
No =y

where the ’ implies the index is over only those Gaussian primes p in the first

quadrant of the complex plane or on the positive real axis.

PROOF. Let x 2 y. Applying Abel's summation, we find that

/ r
A_(N 2 2 2 2
R LR |¢'s N [y Fd(—) + —Z ¥ )y
rs r 2s 2 § 2s 2
Nprg x2 N~ log Np y logy 2 ulog u x log x
2 2
Np <y X 2
s log utl
+I R(u,y )37 2 v
2 u log u

where F(u) = %-log u+ D+ h(u).
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Assume s > 0, and letting x tend to ® , we obtain

2
z Z A (07) 2 4 - .
= ZsF(y ) 7 - J F(u)d ( ) + J R(u,yz) 8§ -0g u?t _]:; L ; du.
Np<y r=1 Np 1ong y logy 2 u log u 2 log u

Now since g f(Npr) Np-rs < 1 for all p such that Np < y2 if s is

sufficiently large, we have

@ A (NP )
log P(s,y) = Z Z .

Np <y =1 Np™° log Np

Hence by the uniqueness of analytic continuation

2
2 y

log P(5-1,y) = —7e- S SR J R(u,y?) LoD log whl 4
2

— - F(u)d (——
y2(‘5 1) log y2 L §-1

u ‘logu u logu

(2.10)
for all § > 0.

Substituting F (u) + h(u) for F(u) where F (u) = — log u + D, we see that the

right hand side of (2.10) is equal to

2 2

Yy y
%J (uslog u)-ldu +O(1) +0(y2(1—6)log-2y) +O(J (uélogzu)—ldu) +
2 2
+(( [ IRGu,y%) | (w®10g w) dw)
2
with
y2
2(1-6) 2(1-6)
J (u‘slog u)-ldu =X 3 + A 2 ) .
) (1-6) log y (1- 6) log'y

Therefore substituting these results into (2.10) we get (2.9) to prove

Lemma 1.
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In the following lemma, we shall require that R(xz,yz) satisfy the condition

2
-2 + log x
Tor ety
rG,yh =) x [ sty ) (2.11)

which is generally satisfied when

f(Npr) log Np =O(£>_g}li_p) .
Np

LEMMA 2. Let f be a completely multiplicative non-negative function

satisfying (2.8) where R(x2,y2) satisfies (2.11) and let

F(xt,x) = Z No £ (Not)

No < x°T

pla =2 Np<x
2
T X

te
Then for every t such that —g= <t < oo log x

t 2t T log log t t
< - - +
F(x ,x) < x exp{-t(logt + log log t -(1 + log—8) + log t ) +0(1°8 t)

2. 2
+O(log log x) +O(%Lt)} , (2.12)
x log x

PROOF. Let 0 < § < 1 - 1/(2log x), then
- §
Fx®,x) < "mch ) fma) < 20 B(1-6, x) .
No < x
p]a =>Np<x

Using Lemma 1, then

x2(1—8) 2(1-9%)

T T 1 X
exPlg T1=6) Tog x T 4 1°8 GT=5) +o<(1—6)21032x

F(xt,x) < x2t6 ) +

+)« LIR(u,xZ)[(u‘Slog w™ldu) + log ¢}

where Cf is an absolute constant depending on f.

Now
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2(1-26) uz

® d
[’R(u X )t (’10g w7 lau = O(m + log log x + Lexp(-éuz + D) <

where z = 2log x. Further

o 2(1-268)
uz du X
[fxp(-éuz + [u]+1) R (J( log x ) -

Hence,

2(1-6) 2(1-68)
t 2t$ T X
P00 s e (E 2y * £ ey +() —E5—) +
8 (1-68) log x 1-6 (1-8) log2x
(} 2(1 28)
+( (e Tog ¥ ) + log Cf} (2.13)
Now if we let
=1 - 1 - T 4loglogt
§ =1 7iog % (log t + log log t - log 8 + Tog t )

in (2.13) we get (2.12) to comlpete the proof of Lemma 2.

For the special case f(Na) = Na-l we see that T = 8 so that by Lemma 2, if

1 x2
estxs E'log X

, then

WG(xt,x) < x2t exp{-t(log t + log log t-1 +--—jL225——) +
log t
t10g’e 2.14
+o(log t) +O(log log x) +O( )} ( )

X log X
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which is the required upper estimate for WG(xt,x).
Combining (2.7) and (2.14), we derive Cases ii) and iii) of the Theorem.

2

.ot 1l x
Finally, for Case iv), fix y = x where t > e Tog x

. We again follow the
manner of Levin and Fainleib [4] by letting Fk(y) denote the number of Gaussian
integers with norm not exceeding y2 whose prime factors are "among" the first k
Gaussian primes, i.e.,we can arrange the Gaussian primes lying either in the
first quadrant of the complex plane or on the positive real axis by the relation
i< jif Np1 < ij.

We see that

.y
Feo1 (N‘okn/Z )

where Py denotes the k-th Gaussian prime lying either in the first quadrant of
the complex plane or on the positive real axis.

Now Fo(y) = 4 and

_ 2 log y . 2 .
FfY) 40+ [ log 2 )4 1! log 2 2 logy .
1 2
Therefore proceeding by induction on k > 1, since t > Py Tog % ° we see
that
2k K K
F@G) b 72 Qogy) , (2.15)
k = k. r]k

k ,
Where rF]k = r’] log va .
v=1
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WG(xt,x) = Fk(}')

and

¥ G5 = BO)
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Similarily,

E () 2 4 2108 »* , (2.16)

k

&=

Now we let k = *nG(x), then

2 2
1 _ 2 X log log x X
exp{zm (x) log 2t - x* + = Tog x +O(l°8 2}

A

1 2 xz log log x xz
exp{z'nc(x) log 2t - x" + 2 log x +Olog x)}

v

which implies (2.4) to conclude the proof of the Theorem.

ACKNOWLEDGMENT. Partially supported by the Southwest Texas State University

Organized Research Program.

REFERENCES

Fainleib, A.S. An estimate from below for the number of numbers with
small prime factors, Dokl. Akad. Nauk. UzSSR, No. 7 (1967), 3-5 (Russian).

Hazlewood, D.G. Sums over Gaussian integers, Trans. Amer. Math. Soc.,
209 (1975), 295-309.

Jordan, J.H. The divisibility of Gaussian integers by large Gaussian
primes, Duke Math J., 32 (1965),503-509.

Levin, B.V. and A.S. Fainleib Application of certain integral equations
to questions of the theory of numbers, Uspehi Mat. Nauk, 22 (1967), No. 3
(135), 119-197 = Russ. Math. Surveys, 22 (1967),No. 3, 119-204.




