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ABSTRACT. Let G(xt,x) denote the number of Gausslan integers with norm not

2t 2
exceeding x whose Gausslan prime factors have norm not exceeding x Previous

estimates have required restrictions on the parameter t with respect to x. The

purpose of this note is to present asymptotic estimates for (xt x) for all
G

ranges of the parameter t with respect to x.
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i. INTRODUCTION. Let = denote a Gaussian integer, p a Gaussian prime, N .
the norm of u, and 6, e arbitrary positive constants. Throughout the discussion

the constants implied by the use of the0-notatlon will be absolute unless other-

wise indicated.

For real numbers x => 1 and t _>_ 0, J. H. Jordan [3] and the author [2] gave

asymptotic estimates for the number of Gausslan integers with norms not exceeding

2t 2
x having only Gausslan prime factors with norm not exceeding x However,

Jordan’s estimate fixed the parameter t and our estimate had t bounded with

respect to x. The purpose of this note is to present an asymptotic estimate for

all ranges of the parameter t with respect to x.

2. MAIN RESULTS.

THEOREM. Let TG(Xt,X) denote the number of Gausslan integers with norm not

2
exceeding x

2t
having only Gausslan prime factors with norm not exceeding x

Then:

i) If t =< (log x)3/5-, then

G(xt,x) ux2t(z(t) + )e "iogttZ(t)x" (2.1)

for t outside the interval (I, I+) where Z(t) (the well-known Dickman function)

satisfies the equation

t z’ (t) =-z(t-1)

with initial condition Z(t) 1 for 0 < t < I. Further as t /

t ))Z(t) exp{-t(log t + log log t 1 + log log t) (log tlog t

ll) If (log x)3/5-6 < t __< x/log x, then

G(xt 2t
x) x exp{-t(log t + log log t I) + (t log log t)} (2 2)

log t
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iii) If x/log x < t < x2/(elog x), then

2tTG(xt,x) x exp{-t (log t + log log t +0(i))} (2.3)

iv) If t > x2/(elog x), then

2 2

Tc(Xt,x) exp{C(X) log t x
2 + x 21gloglgx x +0(l.og x) (2.4)

2
where G(X) denotes the number of Gaussian primes with norm not exceeding x

PROOF of the Theorem. Now Case i) follows from Theorem 5 of [2] and the

behavior of Z(t) To derive (2.2) and (2.3) we will first write a lower

estimate and then an upper estimate for G(xt,x) that are of the same order.

For the lower estimate we follow the manner of A. S. Fainleib [I] (for

rational integers) and consider the sum

log Na
2tNu< x

2p[c => Np < x

(2.5)

We easily see that (2.5) does not exceed

2t log x Tc(Xt’X)’
and after some routine calculation, (2.5) is at least as large as

t- -2u u,(I ) x
2t

log x x x)2 du

t-I

for 0 < < I (fixed) and e e(x) << exp(-a(log x) 315) for a an absolute positive

constant,

Thus we have

O-) x-2PG(xt’x) >
t G(xu, x)du

t-I

(2.6)
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Now we let Zl(t) be defined by the equation

t Zl(t) Zl(t) + (I-) Zl(t-) (I-) Zl(t-1)

with initial condition Zl(t) t for 0 _< t __< : By Lemma 1 of Fainleib [I],

ast/(R)

Zl(t) b0t + b I + exp{-t(log t + log log t -i) +t log log t)
log t

where b
0

and b I are real numbers. It is easy to see that for t >= 1

Z(t) (l-e) It-’t Z
1 (u)du

t-i

Now we let

-2t
G(xtK(t,x) x ,x) XZ(t)

where X is a sufficiently small positive real number. Then for 0 < t _< I,

K(t,x) => 0, and for t > 1

K(t,x) => (1-e)t jt-
t-1

K(u,x)du.

Therefore by Lemma 2 of Fainleib [I], K(t,x) > 0 for all t > 0 so that

G(xt,x) > X x
2t

Z(t)

which in turn, implies that

xt,x)- > x2texp{-t(log t + log log t I) + (t log log t) +te)}, (2 7)
log t

for t > i which is the lower estimate that we need.

Now we follow the manner of B. V. Levin and A. S. Fainleib 4] to obtain the

following general results which as a special case of Lemma 2 give the required

upper estimate for G(xt,x).
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LEMMA I. Let f be a completely multiplicative non-negative function

satisfying for x < 0 and y < 0

r2f(N0r) T log(min(x,y)) + D + h(min(x2,y2)) + R(x2,y2)
N0 < x

2
N0 < y

where %f(N0 r) f(N0r)-log NO, T is a real number, D is an absolute constant,

h(u) =O((iog u ))-i, and

lR(u,y2)[ (u log u) -I du <

for all 6 > 0. Further assume for every Gaussian prime 0 and s > -i that. f(Nor)NO-rs converges. Then, if 0 < -- (y) -< 1- 1/log y,

2 1-
(7!$) y2 l-

log P(-l,y) ! Y + log + 0(
28 (’I-) log y 7 (I-) log y

with

+

2
u
6 -1+0( R(u,y log u) du) (2.9)

I I rs)P(s,y) 2 (I + f(N0 r)
N0<y

where the implies the index is over only those Gaussian primes 0 in the first

quadrant of the complex plane or on the positive real axis.

%f(N0 r)
rs

r 2 NO log NONO <-x
2

NO -< y

PROOF. Let x > y. Applying Abel’s summation, we find that

F(y2) y2
F(u)d( 1 R(x2,y

r 2s 2- + 2s 2
y log y 2 u61og u x log x

2
x

y2 s io8 u+l+ R(u, s+l 2
du

2 u log u

where F(u) log u + D + h(u).
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Assume s > 0, and letting x tend to we obtain

2s 2
N0<_y

2
r=l N0

rs
logN0

r
y log y

2

) + R(uF(u)d (- s
u log u

s ios u+l
s+l 2

u log u

Now since f(N0 r) N0
-rs < 1 for all 0 such that N0 < y2 if s is

r=l

sufficiently large, we have

" Af(N0r)
log P(s,y)

rs r
NO <=y2 r=l 51o log NO

du.

Hence by the uniqueness of analytic continuation

log P(-l,y)

for all 6 > O.

2
YF(Y2) 12 F(u)d 6-12(6-1) 2

y log y u log u
+ ]R(u,y2) (6-I) lg u+l

6 2 du,
u log u

(2.10

TSubstituting Fl(u) + h(u) for F(u) where Fl(u) log u + D, we see that the

right hand side of (2.10) is equal to

2 2

z__ (u61g u)-ldu +0(1) +O(y2(1-6)log-2y) +C)( (u61og2u) -ldu) +4
2 2

+0( [R(u,y2) (u61g u)-Idu)
2

with

2
2(I-6) 2(1-6)

(u61g u)-ldu Y + O( Y’
2(1-6) log y (i-6) 21og2y

Therefore substituting these results into (2.10) we get (2.9) to prove
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In the following lemma, we shall require that R(x2,y2) satisfy the condition

)2 og min (x,yR(x2,y (2.11)

which is generally satisfied when

f(N0
r

log NO =0(IOErNO)
Np’

LEMMA 2. Let f be a completely multipllcatlve non-negative function

satisfying (2.8) where R(x2,y2) satisfies (2.11) and let

Na f(Na)F(xt’x)
t

Na < x
P a = Np_<x

2

Then for every t such that .e < t <
2

8e log x

F(x
t

x) < x
2texp{-t(log t + log log t -(i + io8) + Is log t) +0(iot +

log t g t

+0(log log x) +O(x2t21g2tlogx (2.12)

PROOF. Let 0 < 6 < 1- I/(21og x), then

F(x
t x) < x2t6

2 (Na)
Na< x 2

p ]a =>Np-<x

f(Na) x
2t6

P(I-6, x)

Using Lemma I, then

F(xt x) < x
2t6 2(-)

exp{ x
(1-6) log x

+ T Zog O( x
2 (1-6)

1-6 21og2x
+

+0 [R(u’x2)[ (uzg u)-’du) + Zog Cf}

where Cf is an absolute constant depending on f.

Now
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(u,x2) (u61og u) Idu 2(I-2) log x
du)+ log log x + exp(-6uz +-[u]+’l u

where z 21og x. Further

exp (-6uz + uz du (.x
2 1-2

[u]+i)-- log x

Hence,

2t6 T x
2(I-6)

F(xt,x) -< x exp{ (1-6) log x

2(1-6)
-/f) 0 x+ og( +

(I-6) 21og2x
") +

x2 (i-26)
+C(’ i{ + log Cf} (2.13)

Now if we let

21og x
T log log t(log t + log log t log +

log t

in (2.13) we get (2.12) to comlpete the proof of Lemma 2.

-IFor the special case f(Ne) Ne we see that T 8 so that by Lemma 2, if

e<t <
2

1 x
e log x

then

2t
G(X

t x) <- x exp{-t(log t + log log t-I + t) +log log
log t

+0 t 0(log g (x21og x)(l---{gt + io x) +0 t21g2t
(2.14)
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which is the required upper estimate for (xt x)
G

Combining (2.7) and (2.14), we derive Cases il) and ili) of the Theorem.

t
Finally, for Case iv), fix y x where t >

2
1 x
e log x

We again follow the

manner of Levln and Falnleib [4] by letting Fk(Y) denote the number of Gausslan

integers with norm not exceeding y2 whose prime factors are "aong" the first k

Gaussian primes, i.e., we can arrange the Gaussian primes lying either in the

first quadrant of the complex plane or on the positive real axis by the relation

i < j if N0
i =< N0j.

We see that

F
k (Y) Fk- ()

_21ogx

=logN0k

where Ok denotes the k-th Gaussian prime lying either in the first quadrant of

the complex plane or on the positive real axis.

Now F0 (y) 4 and

that

2 log y]Fy) 4(I +
log 2 -< 4 I log 2

Therefore proceeding by induction on k >_ I, since t >

2 log y

21 x
e log x

we see

Where
k

2k 2k(log y)kFk(Y) __< 4
k’. k

k i

log NOv

(2.15)
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Similarily,

1 2k(log y)k (2.16)Fk(Y > 4
k k

I (x), thenNow we let k G

G(xt,x) Fk(y) =< exp{G(X) log 2t x
2 + x log log x+ (lo-g’x2 log x

and

G(xt,x) Fk(Y) => exp{G(X) log 2t x
2 +

2 2
x log log x + )}

2 log x

which implies (2.4) to conclude the proof of the Theorem.
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