GAUSSIAN INTEGERS WITH SMALL PRIME FACTORS

D.G. HAZLEWOOD
Department of Mathematics
Southwest Texas State University
San Marcos, Texas 78666
U.S.A.
(Recieved April 18, 1978)

ABSTRACT. Let $\Psi_{G}\left(x^{t}, x\right)$ denote the number of Gaussian integers with norm not exceeding $x^{2 t}$ whose Gaussian prime factors have norm not exceeding x^{2}. Previous estimates have required restrictions on the parameter t with respect to x. The purpose of this note is to present asymptotic estimates for $\psi_{G}\left(x^{t}, x\right)$ for all ranges of the parameter t with respect to x.

KEY WORDS AND PHRASES. Gaussian integers, small prime factors. AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 10-02, 10H15, 10 H 25 , TOH4O.

1. INTRODUCTION. Let α denote a Gaussian integer, ρ a Gaussian prime, $N \alpha=\alpha \cdot \bar{\alpha}$ the norm of α, and δ, ε arbitrary positive constants. Throughout the discussion the constants implied by the use of the 0 -notation will be absolute unless otherwise indicated.

For real numbers $x \geqq 1$ and $t \geqq 0$, J. H. Jordan [3] and the author [2] gave asymptotic estimates for the number of Gaussian integers with norms not exceeding $x^{2 t}$ having only Gaussian prime factors with norm not exceeding x^{2}. However, Jordan's estimate fixed the parameter t and our estimate had t bounded with respect to x. The purpose of this note is to present an asymptotic estimate for all ranges of the parameter t with respect to x.

2. MAIN RESULTS.

THEOREM. Let $\Psi_{G}\left(x^{t}, x\right)$ denote the number of Gaussian integers with norm not exceeding $x^{2 t}$ having only Gaussian prime factors with norm not exceeding x^{2}. Then:
i) If $t \leqq(\log x)^{3 / 5-\delta}$, then

$$
\begin{equation*}
\Psi_{G}\left(x^{t}, x\right)=\pi x^{2 t}\left\{Z(t)+O_{\varepsilon}\left(\frac{t Z(t)}{\log x}\right)\right\} \tag{2.1}
\end{equation*}
$$

for t outside the interval ($1,1+\varepsilon$) where $Z(t)$ (the well-known Dickman function) satisfies the equation

$$
t Z^{\prime}(t)=-Z(t-1)
$$

with initial condition $Z(t)=1$ for $0 \leqq t \leqq 1$. Further as $t \rightarrow \infty$

$$
Z(t)=\exp \left\{-t\left(\log t+\log \log t-1+\frac{\log \log t}{\log t}\right)+O\left(\frac{t}{\log t}\right)\right\}
$$

ii) If $(\log x)^{3 / 5-\delta}<t \leqq x / \log x$, then

$$
\begin{equation*}
\Psi_{G}\left(x^{t}, x\right)=x^{2 t} \exp \left\{-t(\log t+\log \log t-1)+Q\left(\frac{t \log \log t}{\log t}\right)\right\} \tag{2.2}
\end{equation*}
$$

iii) If $x / \log x<t \leqq x^{2} /(e \log x)$, then

$$
\begin{equation*}
\Psi_{G}\left(x^{t}, x\right)=x^{2 t} \exp \{-t(\log t+\log \log t+O(1))\} \tag{2.3}
\end{equation*}
$$

iv) If $t>x^{2} /(\log x)$, then

$$
\begin{equation*}
\Psi_{G}\left(x^{t}, x\right)=\exp \left\{\frac{1}{4} \pi_{G}(x) \log t-x^{2}+\frac{x^{2} \log \log x}{2 \log x}+O\left(\frac{x^{2}}{\log x}\right)\right\} \tag{2.4}
\end{equation*}
$$

where $\pi_{G}(x)$ denotes the number of Gaussian primes with norm not exceeding x^{2}.
PROOF of the Theorem. Now Case i) follows from Theorem 5 of [2] and the behavior of $Z(t)$. To derive (2.2) and (2.3) we will first write a lower estimate and then an upper estimate for $\Psi_{G}\left(x^{t}, x\right)$ that are of the same order.

For the lower estimate we follow the manner of A. S. Fainleib [1] (for rational integers) and consider the sum

$$
\begin{equation*}
\sum_{\substack{N \alpha \leqq x^{2}}} \log N \alpha \tag{2.5}
\end{equation*}
$$

We easily see that (2.5) does not exceed

$$
2 t \log x \quad \Psi_{G}\left(x^{t}, x\right)
$$

and after some routine calculation, (2.5) is at least as large as

$$
2(1-\varepsilon) x^{2 t} \log x \int_{t-1}^{t-\delta} x^{-2 u} \Psi\left(x^{u}, x\right) d u
$$

for $0<\delta<1$ (fixed) and $\varepsilon=\varepsilon(x) \ll \exp \left(-a(\log x)^{3 / 5}\right.$) for a an absolute positive constant.

Thus we have

$$
\begin{equation*}
x^{-2 t} \Psi_{G}\left(x^{t}, x\right)>\frac{(1-\varepsilon)}{t} \int_{t-1}^{t-\delta} x^{-2 u} \Psi_{G}\left(x^{u}, x\right) d u \tag{2.6}
\end{equation*}
$$

Now we let $Z_{1}(t)$ be defined by the equation

$$
t Z_{1}^{\prime}(t)=Z_{1}(t)+(1-\varepsilon) Z_{1}(t-\delta)-(1-\varepsilon) Z_{1}(t-1)
$$

with initial condition $Z_{1}(t)=t$ for $0 \leqq t \leqq \delta:$ By Lemma 1 of Fainleib [1], as $t \rightarrow \infty$

$$
Z_{1}(t)=b_{0} t+b_{1}+\exp \left\{-t(\log t+\log \log t-1)+Q\left(\frac{\log \log t}{\log t}\right)+O(t \varepsilon)\right\}
$$

where b_{0} and b_{1} are real numbers. It is easy to see that for $t \geqslant 1$

$$
Z_{1}^{\prime \prime}(t)=\frac{(1-\varepsilon)}{t} \int_{t-1}^{t-\delta} Z_{1}^{\prime \prime}(u) d u
$$

Now we let

$$
K(t, x)=x^{-2 t} \Psi_{G}\left(x^{t}, x\right)-\lambda Z_{1}^{\prime \prime}(t)
$$

where λ is a sufficiently small positive real number. Then for $0 \leqq t \leqq 1$, $K(t, x) \geqq 0$, and for $t \geqq 1$

$$
K(t, x) \geqq \frac{(1-\varepsilon)}{t} \int_{t-1}^{t-\delta} K(u, x) d u
$$

Therefore by Lemma 2 of Fainleib [1], $K(t, x) \geqq 0$ for all $t \geq 0$ so that

$$
\Psi_{G}\left(x^{t}, x\right) \geq \lambda x^{2 t} Z_{1}^{\prime \prime}(t)
$$

which in turn, implies that

$$
\Psi\left(x^{t}, x\right) \geqq x^{2 t} \exp \left\{-t(\log t+\log \log t-1)+O\left(\frac{t \log \log t}{\log t}\right)+Q(t \varepsilon)\right\}
$$

for $t \geqq 1$ which is the lower estimate that we need.
Now we follow the manner of B. V. Levin and A. S. Fainleib [4] to obtain the following general results which as a special case of Lemma 2 give the required upper estimate for $\Psi_{G}\left(x^{t}, x\right)$.

LEMMA 1. Let f be a completely multiplicative non-negative function satisfying for $\mathrm{x} \leq 0$ and $\mathrm{y} \leq 0$

$$
\sum_{N \rho \leq x^{r} 2^{\lambda^{2}}\left(N \rho^{r}\right)=\tau \log (\min (x, y))+D+h\left(\min \left(x^{2}, y^{2}\right)\right)+R\left(x^{2}, y^{2}\right)}^{N \rho \leq y^{2}}
$$

where $\lambda_{f}\left(N \rho{ }^{r}\right)=f\left(N \rho^{r}\right) \cdot \log N \rho, \quad \tau$ is a real number, D is an absolute constant, $h(u)=O((\log u))^{-1}$, and

$$
\int_{2}^{\infty}\left|R\left(u, y^{2}\right)\right| \quad\left(u^{\delta} \log u\right)^{-1} d u<\infty
$$

for all $\delta>0$. Further assume for every Gaussian prime ρ and $s>-1$ that $\sum_{r=1}^{\infty} f\left(N \rho^{r}\right) N \rho^{-r s}$ converges. Then, if $0<\delta=\delta(y) \leq 1-1 / \log y$, $\log P(\delta-1, y)=\frac{\tau}{8} \frac{y^{2(1-\delta)}}{(1-\delta) \log y}+\frac{\tau}{4} \log \left(\frac{1}{1-\delta}\right)+O\left(\frac{y^{2(1-\delta)}}{(1-\delta)^{2} \log y}\right)+$

$$
\begin{equation*}
+O\left(\int_{2}^{\infty} \mid R\left(u, y^{2}\right) \quad\left(u^{\delta} \log u\right)^{-1} d u\right) \tag{2.9}
\end{equation*}
$$

with

$$
P(s, y)=\prod_{N \rho \leq y^{2}}^{\prime}\left(1+\sum_{r=1}^{\infty} f\left(N \rho^{r}\right) N \rho^{-r s}\right)
$$

where the ' implies the index is over only those Gaussian primes ρ in the first quadrant of the complex plane or on the positive real axis.

PROOF. Let $x \geq y$. Applying Abel's summation, we find that

$$
\begin{aligned}
& \sum_{\sum_{N \rho}^{r \leq x^{2}}} \frac{\lambda_{N \rho^{\prime}\left(N \rho^{r}\right)}^{r s} \operatorname{logN\rho }{ }^{r}}{}=\frac{F\left(y^{2}\right)}{y^{2 s} \log y^{2}}-\int_{2}^{y^{2}} F(u) d\left(\frac{1}{u^{\delta} \log u}\right)+\frac{R\left(x^{2}, y^{2}\right)}{x^{2 s} \log x^{2}}+ \\
& N \rho \leq y^{2}
\end{aligned}
$$

where $F(u)=\frac{\tau}{4} \log u+D+h(u)$.

Assume $s>0$, and letting x tend to ∞, we obtain $\sum_{N \rho<y^{2}} \sum_{r=1}^{\infty} \frac{\lambda_{N \rho^{\prime}}\left(N \rho^{r}\right)}{\operatorname{logN\rho } r}=\frac{F\left(y^{2}\right)}{y^{2 s} \log y^{2}}-\int_{2}^{y^{2}} F(u) d\left(\frac{1}{u^{s} \log u}\right)+\int_{2}^{\infty} R\left(u, y^{2}\right) \frac{s \log u+1}{u^{s+1} \log ^{2} u} d u$. Now since $\sum_{r=1}^{\infty} f\left(N^{r} \rho^{r}\right) N \rho^{-r s}<1$ for all ρ such that $N \rho \leqq y^{2}$ if s is sufficiently large, we have

$$
\log P(s, y)=\sum_{N \rho \leqq y^{\prime}} \sum_{r=1}^{\infty} \frac{\lambda_{f}\left(N^{\prime} \rho^{r}\right)}{N_{N \rho}^{r s} \log N \rho^{r}}
$$

Hence by the uniqueness of analytic continuation
$\log P(\delta-1, y)=\frac{F\left(y^{2}\right)}{y^{2(\delta-1)} \log y^{2}}-\int_{2}^{y^{2}} F(u) d\left(\frac{1}{u^{\delta-1} \log u}\right)+\int_{2}^{\infty} R\left(u, y^{2}\right) \frac{(\delta-1) \log u+1}{u^{\delta} \log u} d u$, for all $\delta>0$.

Substituting $F_{1}(u)+h(u)$ for $F(u)$ where $F_{1}(u)=\frac{\tau}{4} \log u+D$, we see that the right hand side of (2.10) is equal to

$$
\begin{array}{r}
\frac{\tau}{4} \int_{2}^{y^{2}}\left(u^{\delta} \log u\right)^{-1} d u+O(1)+O\left(y^{2(1-\delta)} \log g^{-2} y\right)+O\left(\int_{2}^{y^{2}}\left(u^{\delta} \log ^{2} u\right)^{-1} d u\right)+ \\
\\
+O\left(\int_{2}^{\infty}\left|R\left(u, y^{2}\right)\right|\left(u^{\delta} \log u\right)^{-1} d u\right)
\end{array}
$$

with

$$
\int_{2}^{y^{2}}\left(u^{\delta} \log u\right)^{-1} d u=\frac{y^{2(1-\delta)}}{(1-\delta) \log y^{2}}+O\left(\frac{y^{2(1-\delta)}}{(1-\delta)^{2} \log ^{2} y}\right)
$$

Therefore substituting these results into (2.10) we get (2.9) to prove Lemma 1.

In the following lemma, we shall require that $R\left(x^{2}, y^{2}\right)$ satisfy the condition

$$
R\left(x^{2}, y^{2}\right)=O\left(\begin{array}{l}
\left.-2+\frac{2}{\left[\frac{\log x}{\log \min (x, y)}\right]+1}\right) \tag{2.11}
\end{array}\right.
$$

which is generally satisfied when

$$
f\left(N \rho^{r}\right) \log N \rho=\bigcap\left(\frac{\log N \rho}{N \rho^{r}}\right)
$$

LEMMA 2. Let f be a completely multiplicative non-negative function satisfying (2.8) where $R\left(x^{2}, y^{2}\right)$ satisfies (2.11) and let

$$
F\left(x^{t}, x\right)=\sum_{\substack{N \alpha \leq x^{2} t}} N \alpha f(N \alpha)
$$

Then for every t such that $\frac{\tau e}{8}<t<\frac{\tau}{8 e} \cdot \frac{x^{2}}{\log x}$

$$
\begin{align*}
F\left(x^{t}, x\right) \leq x^{2 t} \exp \{-t(\log t+\log \log t & \left.-\left(1+\log \frac{\tau}{8}\right)+\frac{\log \log t}{\log t}\right)+O\left(\frac{t}{\log t}\right)+ \\
& \left.+\bigcap(\log \log x)+C\left(\frac{t^{2} \log ^{2} t}{x^{2} \log x}\right)\right\} \tag{2.12}
\end{align*}
$$

PROOF. Let $0<\delta \leq 1-1 /(2 \log x)$, then

$$
F\left(x^{t}, x\right) \leq x^{2 t \delta \sum_{\substack{N \alpha \leq x^{2} \\ \rho \mid \alpha=>N \rho \leq x^{2}}}(N \alpha)^{1-\delta} f(N \alpha) \leq x^{2 t \delta} P(1-\delta, x) .}
$$

Using Lemma 1, then

$$
\begin{aligned}
F\left(x^{t}, x\right) \leq x^{2 t \delta} \exp \left\{\frac{\tau}{8} \frac{x^{2(1-\delta)}}{(1-\delta) \log x}+\frac{\tau}{4}\right. & \log \left(\frac{1}{1-\delta}\right)+0\left(\frac{x^{2(1-\delta)}}{(1-\delta)^{2} \log ^{2} x}\right)+ \\
& \left.+\square\left(\int_{2}^{\infty}\left|R\left(u, x^{2}\right)\right|\left(u^{\delta} \log u\right)^{-1} d u\right)+\log C_{f}\right\}
\end{aligned}
$$

where C_{f} is an absolute constant depending on f.

Now

$$
\int_{2}^{\infty} R\left(u, x^{2}\right) \left\lvert\,\left(u^{\delta} \log u\right)^{-1} d u=\Theta\left(\frac{x^{2(1-2 \delta)}-1}{2(1-2 \delta) \log x}+\log \log x+\int_{2}^{\infty} \exp \left(-\delta u z+\frac{u z}{[u]+1}\right) \frac{d u}{u}\right)\right.
$$

where $z=2 \log x$. Further

$$
\int_{2}^{\infty} \exp \left(-\delta u z+\frac{u z}{[u]+1}\right) \frac{d u}{u}=\bigcup\left(\frac{x^{2(1-2 \delta)}}{\log x}\right)
$$

Hence,

$$
\begin{array}{r}
F\left(x^{t}, x\right) \leq x^{2 t \delta} \exp \left\{\frac{\tau}{8} \frac{x^{2(1-\delta)}}{(1-\delta) \log x}+\frac{\tau}{4} \log \left(\frac{1}{1-\delta}\right)+\bigcirc\left(\frac{x^{2(1-\delta)}}{(1-\delta)^{2} \log _{x}^{2}}\right)+\right. \\
\left.+\left(\frac{x^{2(1-2 \delta)}}{\log x}\right)+\log C_{f}\right\} \tag{2.13}
\end{array}
$$

Now if we let

$$
\delta=1-\frac{1}{2 \log x}\left(\log t+\log \log t-\log \frac{\tau}{8}+\frac{\log \log t}{\log t}\right)
$$

in (2.13) we get (2.12) to comlpete the proof of Lemma 2.
For the special case $f(N \alpha)=N \alpha^{-1}$ we see that $\tau=8$ so that by Lemma 2 , if $e<t<\frac{1}{e} \frac{x^{2}}{\log x}$, then

$$
\begin{align*}
& \Psi_{G}\left(x^{t}, x\right) \leq x^{2 t} \exp \left\{-t\left(\log t+\log \log t-1+\frac{\log \log t}{\log t}\right)+\right. \\
& \left.\quad+O\left(\frac{t}{\log t}\right)+O(\log \log x)+O\left(\frac{t^{2} \log ^{2} t}{x^{2} \log x}\right)\right\} \tag{2.14}
\end{align*}
$$

which is the required upper estimate for $\Psi_{G}\left(x^{t}, x\right)$.

Combining (2.7) and (2.14), we derive Cases ii) and iii) of the Theorem.

Finally, for Case iv), fix $y=x^{t}$ where $t>\frac{1}{e} \frac{x^{2}}{\log x}$. We again follow the manner of Levin and Fainleib [4] by letting $F_{k}(y)$ denote the number of Gaussian integers with norm not exceeding y^{2} whose prime factors are "among" the first k Gaussian primes, i.e., we can arrange the Gaussian primes 1ying either in the first quadrant of the complex plane or on the positive real axis by the relation i< \quad if $N \rho_{i} \leqq N \rho_{j}$.

We see that

$$
F_{k}(y)=\sum_{\substack{0 \leq n \leq \frac{2 \log x}{=} \\ \log N \rho_{k}}} F_{k-1}\left(\frac{y}{N \circ_{k}^{n / 2}}\right)
$$

where ρ_{k} denotes the k-th Gaussian prime lying either in the first quadrant of the complex plane or on the positive real axis.

Now $F_{0}(y)=4$ and

$$
\mathrm{F}_{\mathrm{I}}(\mathrm{y})=4\left(1+\left[\frac{2 \log \mathrm{y}}{\log 2}\right]\right) \leqq 4 \cdot \frac{2}{1!\log 2} \cdot 2 \log y \cdot
$$

Therefore proceeding by induction on $k \geqq 1$, since $t>\frac{1}{e} \frac{x^{2}}{\log x}$, we see that

$$
\begin{equation*}
\mathrm{F}_{\mathrm{k}}(\mathrm{y}) \leqq 4 \cdot \frac{2^{k}}{\mathrm{k}!\Pi_{\mathrm{k}}} \cdot 2^{\mathrm{k}}(\log \mathrm{y})^{\mathrm{k}} \tag{2.15}
\end{equation*}
$$

Where

$$
\prod_{k}=\prod_{v=1}^{k} \log N_{\rho_{v}}
$$

Similarily,

$$
\begin{equation*}
F_{k}(y) \geqq 4 \quad \frac{1}{k!\prod_{k}} \quad 2^{k}(\log y)^{k} \tag{2.16}
\end{equation*}
$$

Now we let $k=\frac{1}{4} \pi_{G}(x)$, then
$\Psi_{G}\left(x^{t}, x\right)=F_{k}(y) \leqq \exp \left\{\frac{1}{4} \pi_{G}(x) \log 2 t-x^{2}+\frac{x^{2} \log \log x}{2 \log x}+\bigcirc\left(\frac{x^{2}}{\log x}\right)\right\}$
and
$\Psi_{G}\left(x^{t}, x\right)=F_{k}(y) \geqq \exp \left\{\frac{1}{4} \pi_{G}(x) \log 2 t-x^{2}+\frac{x^{2} \log \log x}{2 \log x}+\bigcirc\left(\frac{x^{2}}{\log x}\right)\right\}$
which implies (2.4) to conclude the proof of the Theorem.

ACKNOWLEDGMENT. Partially supported by the Southwest Texas State University Organized Research Program.

REFERENCES

1. Fainleib, A.S. An estimate from below for the number of numbers with small prime factors, Dokl. Akad. Nauk. UzSSR, No. 7 (1967), 3-5 (Russian).
2. Hazlewood, D.G. Sums over Gaussian integers, Trans. Amer. Math. Soc., 209 (1975), 295-309.
3. Jordan, J.H. The divisibility of Gaussian integers by large Gaussian primes, Duke Math J., 32 (1965),503-509.
4. Levin, B.V. and A.S. Fainleib Application of certain integral equations to questions of the theory of numbers, Uspehi Mat. Nauk, 22 (1967), No. 3 (135), 119-197 = Russ. Math. Surveys, 22 (1967), No. 3, 119-204.
