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ABSTRACT. This study is concerned with the theory of parametric coupling of

waves in a hot inhomogeneous magnetized plasma in which the temperature gradient

has been taken into account. The general dispersion relation and the polarization

of the ordinary and the extra-ordinary wave modes are discussed. The eigen-mode

solutions of the coupled differential equations for the wave amplitudes are obtained

in the terms of the so called three wave interaction matrix elements. The theory

of nonlinear wave-wave interactions, which has been extended to the case of an

inhomogeneous magnetized plasma, is used to determine the threshold value of the

electric field and the frequency shift. The results of this paper are also compared
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with the other known results. It is shown that the findings of this study are in

excellent agreement with the results of earlier investigators.
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i. INTRODUCTION.

In recent years there has been considerable interest in the theory of

parametric instability in an inhomogeneous plasma [1-8] because of its fundamental

role in the study of weak plasma turbulence, and of many important physical

applications. In their recent research-expository and survey article on parametric

henomena in a plasma, Galeev and Sagdeev [9] reviewed the theory of parametric

instabilities in an inhomogeneous plasma using the generalized Mathleu equation as

a model equation. They have also presented the latest advances of the nonlinear

theories of parametric instabilities based on the ideas of weakly turbulent plasma.

Perkins and Flick [I0] have made an interesting study of parametric instabilities

in an inhomogeneous plasmas, and then calculated the threshold electric field. It

is shown that the value of the threshold electric field increases in an inhomogeneous

plasma because energy propagates away from the unstable region by electron plasma

waves. Thus an additional energy loss occurs and is solely responsible for the

increase of the threshold electric field not observed in a homogeneous plasma.

Eubank [ii] experimentally confirmed the theoretical prediction of Perkins and

Flick. In a recent paper, Kroll, Ron and Rostoker [12] have suggested that the

nonlinear resonance of two transverse lectromagnetic waves whose frequencies differ

slightly by the electron plasma frequency can be applied to excite longitudinal

electron plasma oscillations. Montgomery [13] observed certain mathematical

inaccuracy and physical limitations of the work of Kroll, Ron and Rostoker, and then

analyzed the problem of nonlinear wave interactions in plasma with laser beams.
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Using the perturbation method of Krylov-Bogliubov-Mitropolskii, Montgomery obtained

the amplitude-dependent frequency shift and wave number shift with physical

significance. It was shown that the resonant excitation of longitudinal plasma

oscillations is possible by the transverse electromagnetic waves. Etievant, Ossakow,

Ozizmir and Su [14] have investigated the nonlinear wave-wave interactions of

electromagnetic waves in an infinite homogeneous plasma. It is interesting and

important to take into account the effects of density and temperature gradients on

the above problem.

The present study deals with the theory of parametric coupling of waves in a

hot inhomogeneous magnetized plasma in which the temperature gradient has been

taken into consideration. The general dispersion relation and the polarization of

two different wave modes are investigated. The eigen-mode solutions of the coupled

equations for the wave amplitudes are obtained in terms of the three wave inter-

action matrix elements. The theory of nonlinear wave-wave interactions is used

to determine the threshold electric field and the frequency shift. The results

of this analysis are found to be in excellent agreement with those of earlier

workers.

2. BASIC EQUATIONS FOR TWO PLASMA MODEL.

In two plasma model, the equations of motion and the continuity equation for

each kind of component are in the usual notations given by

Dv_n Ze V (-Tap)
E Z v v

Dt m m O - -- -n
(2.1)

DO
Dt + 0 V --v- 0 (2.2)

eB
where is the cyclotron frequency, v is the collision frequency of each

cm a
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component and B B z is the external magnetic field The subscript u stands for
O

e or i corresponding to electrons and ions respectively, Z e is the charge of an

electron or ion and is the Boltzmann Constant.

The Maxwell equations are

curl _E c t dlv_E 4e(n-no) (2.3ab)

1 E 4rcurl B nev dlv B 0 (2.4ab)c t c

We consider a plasma model whose density dlstrlbution varies as 0a pao(1-x)
with the density gradient

i
(d__) and neglect the time dependence of Pao

UO

due to any external electric field. The zeroeth order solution of (2.1) gives

T< Vo (t)e e e (2 5)
x me e2-)e2)

t)e KT fl Ze___e e
Voy m e2_e2 (2.6)

with =x=
0 0

(2.7)

3. THE FIRST ORDER EQUATIONS.

In the first order approximation, equations (2.1) (2.2) can be written as,

dropping the subscript

---- + v VvI + Vv Z__e E Zfi x
--o --Vl o m--o -o v--i

_
V’(Tp)

_Zl x v V_l (3.1)
m --o

.VTg).VTg) represents the first order terms in (--where (’---- i
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Assuming the density gradient is small, we take the space and time dependent

of the first order quantities as exp[i(k r- tot). The equation (3.1) can

then readily be solved to obtain

vii =_ _E1 (3.2)

where

_
Is the mobility tensor given by

Ze [( _k V_o)-Pc 1 I +--
to

(3.3/

when I is the unit dyadic and _c is

c ( _k -oV1(+ yy) Gyy .+(_ k v’+ iZao o

with

G KT
m(’- k v

-(k + 2i(l-()k #,
A (to- k v )2 (to- k v

2
--K --0 0

(3.6)

and is the ratio of the two specific heats.

Using equations (3.2) and taking the Maxwell equations (2.3ab) (2.4ab),

it turns out that

(3,7)

with

D =(k2 to2) toct2
v k- I i 0--- (+

to c
c c

where
2 4epa

to
o m

(3.9)

In the case of wave propagation along with x-direction (k k), we obtain
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the dispersion relation

Det D(k, m) o,

There are two independent solutions of equation (3.10) in the form

(3.10)

D 0 (3.11)
ZZ

which corresponds to the ordinary wave, and

D D -D D =0
xx yy xy yx

(3.12)

which corresponds to the extra-ordinary wave, where Dxx, Dyy,
are the elements of the matrix D.

The first order fields for the different modes (ordinary and extra-ordinary)

are obtained as

g a A e.xp[i(k r- t)]
--O 0 0 0 0

(3.13)

with

and

E a A exp[i(k r- m t)]-- e e --e e

I

a a (i b x + )/(1 + b2) 2
o e

E i D
__x__ yy_

b=-ig D
y yx

(3.14)

(3.15ab)

(3.16)

where
2

YY c c

iz kv
o oy (3.17)

Dyx 7 o
z (3.8)

4. THE SECOND ORDER EQUATIONS.

In the second order approximation, we obtain from equations (2.1) (2.2)
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8v
2 Ze---+--oV Vv

2
+ vI VvI + v

2 VVo --E--2m -vv2-

with

Z x ZR
1

x
--o v2 Vl

Z
2 v + vp)

-o m 0/2

(4.1)

2
o

(4.2)

(k V_l + (k- i ) _v2 / (to- k vPO --0
(4.3)

Using the space and time dependence of all second order quantities in the

form exp[i(_k r mt)] we find

Z_e (i k v ) k v
-o I+-- -o

v2 m c o m

with H =-vI VvI I Vl i Q

HE_2 + c

Q KTm Ipl(-k V__l)(y_kpo(m-k’--i (Y_oV)- 2)i 2

+ {yk- i(y- 2)i} 2
P o

+iypI ]

(4.4)

(4.5)

(4.6)

Using the Maxwell equations and eliminating the second order magnetic field B2, it

follows that

I @ 2E2 4v x (v xE) =- 2 @tc 3t c
(4.)

whence J2 P o --v2 + P2 o + Pl --Vl (4.8)

Substituting the values of v2 in equation (4.4), we obtain

32E2 -/ p v k e 3E
2V x (V x E2) + 1 "’----.L + so--o-+ Po - k Jc @t

2
c o

4im I + H + 1 Pal
2 o m c

c o
(4.9)
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5. EQUATION FOR THE INTERACTING MODES.

We assume a plane wave solution with an amplitude varying in the direction

of propagation and write

_E2 a A (x,t) exp[i(k r mt)] (5.1)

where A is a slowly varying function of x and t because the nonlinearity is

assumed to be weak.

We next drop the second derivatives of A in comparison to k2A and m2A, and

then use the linear dispersion relation D E
2

0 to obtain the final result

(Ul x + )AI A3 A2 V123 (mllm21m3) exp{i(x A k t A m)} (5.2)

(u2 x +)A2 AI A3 V213 (-m21-mllm3) exp{i(-x A k + t A m)},

(u
3 - + )A3

AI A
2 V321 (-m31m21-ml) exp{i(-x A k + t A m)}

(5.3)

(5.4)

where Ak k
3 (k_2 + kl) and Am m3- (ml + m2) (5.5ab)

We write the matrix elements for aI a
3

a

and a are defined in (3.15ab).
e

and a
2 ae where

* 3 2 Ze
VI23 2Ti (" PO {-i(al c a3)(3 ( a2) m( 0

3

* 3
2

2 (al "(’a3) (k--2-i) "c a2
(a I a3)(k3 a2) .+c

(2 k2 o
Ze m

2
(k

2
i6) 11 b212 I ms(m3a k3 Vox)(m2 k2. Vox)A2 I + k2Vx)m

2
(2 k2Vox)

(m2 -k2 V_ox) k
2
V

+ Z + or) 1
o

m2

(5.6)
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V321

V231

is obtained by interchanging mI and m3 in V123 and

,
2i [ PZe , a

2
V k

2(a2 + -o
m m2

2{k3( kl 3c 33 e "al) + l(al’e "a3)}]
2 (--2_k2V_ox) b2+Zfl k3 kl=__.i A2 mZe -(

i+b22
o)

3(i --klVox)
+
l(3-k3Vox)-

(5.7)

We consider , k, Ak real and A
3

is the pump of fixed amplitude. The small

amplitudes are described by equations (5.2) (5.4). We take A’s to be space

independent so that
t

A
1

[ep{i A dt}]

o

(5.8)

and then we find

[2 + i A m t + (A4m)2] 2@
t

2 e
(5.9)

where 2 2
9 V

2
A
3

(5.10)
e (V123 13

Neglecting i A m -- it follows that the solution of (59) by W.K B methodt

assumes the form

I[A
I exp{i I g(t)dt} + B

2
exp{-i g(t)dt}]

o o

(5.11)

with i

g IV123 V213 A32 (A24i (5.12)

When the wave packet drifts along x the time-increment dt can be written

as dt (dx) ) to obtain xt

AI [exp g(x) dx] ) (5.13)

o

where the integration is limited to the instability zone. It is interesting to

note that the threshold value of the wave can be calculated when g < 0
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Am (5.14)A3=
2/V123V213

Thus the value of the frequency shift can be obtained from (5.14) as

i

Am 2A
3 IV123V213 mA2

-{(m2- k2Vox)b2- o } +

2 m2 (m2-k2Vox) b2-o

(m3-k3Vox) (m2-k2Vox)
k3 + kl I]m

3 (ml-klVox) mI (m3-k3Vox)
(5.15)

2 2
where the assumption m / >> m

je
/m /

is invoked.

With the following numerical values

1015 -i
2.7 x sec

m
2

w
e

i011 -i
=5 6x sec

-i
k
3

k
2

kI 19 cm

106
al a3- 3

e.s. U/cm
it turns out that

-iAm 108 sec which is in good agreement with that

of Montgomery 13]

Similarly, considering the space dependence only, one can calculate the

wave number shift from equations (5.2) (5.4).

6 DISCUSSION.

The general features of density gradient and magnetic field in the nonlinear

interactions of plasma oscillations have been investigated. This is important

in connection with its use as an optical density probe suggested by Kroll, Ron and
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Rostoker [13] or as a controlled source of plasma oscillations conceived by

Montgomery [13] the frequency shift will deviate with the increased value of

the density gradient. However, strong magnetic field will have only influence

on the frequency shift.
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