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ABSTRACT. Let L be an alternating two-component link with Alexander polynomial

A(x,y). Then the polynomials (i- x) A (x,y) and (i- y) A (x,y) are

i yjalternating. That is, (i y) A (x,y) can be written as 7 c.. x in such
i,j 13

a way that (-l)i+J c.. > O.
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i. INTRODUCTION.

This paper extends the graphical methods of Crowell [I] from the study of

the reduced Alexander polynomial A(t) to the study of the unreduced Alexander

polynomial A(x,y). This extension requires extra care in labelling the edges

of our graph and in comparing its adjacency matrix to the Alexander matrix of the

alternating link.



230 M. E. KIDWELL

Crowell also used his method to prove that for alternating links,

deg A(t) 2h, where h is the genus. In a future paper, we hope to prove

equalities relating the x- and y-degrees of A(x,y) to geometric properties

of an alternating link.

The author would like to thank James Bailey and Joan Hutchinson for their

helpful comments.

2. ALTERNATING LINK PROJECTIONS.

Let P be an alternating, regular, planar projection of a two-component

link L K
1
U K2, such as the projection of the link 6 [4, p.16] in Fig. 1.

The components of L are oriented, and P inherits this link-orientation.

The two thick arrows off the projection in Fig. I indicate link orientation.

We call K
1

the x-component and K
2

the y-component.

The crossings of a projection are either positive, as shown in Fig. 2a), or

negative, as shown in Fig. 2b), depending upon the orientations of the constitu-

ent segments. We also distinguish four types of crossings depending upon how

the x- and y-components enter in. These are:

r -crossings x-component overcrosses y-component.
x

r crossings y-component overcrosses x-component.
Y

s -crossings x-component overcrosses itself.
x

s -crossings y-component overcrosses itself.
Y

The capital letters R YR--’ Sx, and S denote the number of crossings of each
x y

type. We follow Crowell’s convention that if R R 0 for a projection P,
x y

then P is not alternating.

We shall need the following not-quite-obvious fact:

LEMMA 2.1. In an alternating link projection P, R R
x y
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PROOF. Let 0 be the union of the r and s -crossings and let U
x x x x

be the union of the r and s -crossings. Let (i) be a crossing in 0
y x x

The overcrossing x-component at (i) must terminate (go under) at an adjacent

vertex (J) e Ux, since the projection is alternating. Define f((i)) (J).

f is a one-to-one correspondence between 0 and Ux, so R + S R + S
x x x y x

and R R
x y

If a projection has d crossings labelled (1),(2),... ,(d), we stipulate

that (1) be an r -crossing, (2),...,(2Rx) be r or r -crossings, and
x x y

(2Rx+l),...,(d) be s or s -crossings.
x y

A Wirtinger presentation [2, p.86] for the link group HI(S3- L) has one

generator for each overcrossing segment in a regular projection of the link.

If the projection is alternating, we can label the segment which overcrosses

at vertex (i) "x oP "Yi"i
depending on whether it belongs to the x- or

y-component of the link. (Thus we define only one of the two symbols

"x." The relators
I Yi

of the form

ri, i 1,...,d, of the Wirtinger presentation are

-1 -1
r
i xj Yi Xk Yi

for the crossing of Fig. 2a) and of the form

-i -i
ri xi YJ xi Yk

for the crossing of Fig. Pb).

3. ASSOCIATED GRAPH THEORY.

We now regard the projection P as a graph with the crossings of P as

vertices and the segments of P Joining vertices as edges. Thus each over-

crossing segment in an alternating projection contributes two edges to the

graph. We will use the word "vertex" when we are thinking of P strictly as
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a graph, and the word "crossing" when we are thinking of P as a link projection.

We next orient and label the edges of the graph of P. This alternating

orientation differs from the link orientation. At each vertex (i) of P, we

orient the two incident edges which belong to undercrossing segments at (i)

toward (i). The edge which is on the left with respect to the overcrossing seg-

ment receives the label "i". The edge on the right receives the label "-x"

if the overcrossing segment belongs to the x-component and "-y" if the over-

crossing segment belongs to the y-component. Fig. I shows the alternating

orientation and labelling of We indicate the alternating orientation by

arrows o__n the edges of P. We differ from Crowell [I, pp.260-61] only in using

"-x" and "-y" where he uses simply "-t".

The adjacency matrix B (bij) of an oriented and labelled graph is the

d d matrix having for (i,J) entry, i # J, the sum of the labels on the

edges which start at J and end at i. (If there are no such edges, then

bij 0.) We also define b..11 J$i b
iJ" Thus each row-sum of B is zero.

THEOREM 3.I (Matrix-tree theorem). Let B’ be the matrix obtained from an

adjacency matrix B by crossing out the first row and column. Then

det B’ . H(T), where the summation is over all maximal rooted trees T with
T

origin (I) in the graph [i, footnote 2, p. 262] and H(T) denotes the product

of the labels on the edges of T.

PROOF. See [3, p.?]. Our matrix B is the transpose of Crowell’s (dis-

regarding the difference in labelling). Crowell makes his column-sums zero

while Moon [3] makes his row-sums zero. This discrepancy arises because Crowell

is counting trees oriented away from the origin (as we are) while Moon is counting

trees oriented toward the origin.
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COMPARISON WITH THE ALEXANDER MATRIX.

Our next task is to prove that the polynomial det B’ given in the last

theorem is a link-type invariant.

The Alexander matrix A [2, p.100] of L with respect to the projection P

and its Wirtinger presentation is the dd matrix (aij) T\-V. (The

map Fd/El(S3-L) displays the link group as a homomorphic image of a free

group, and the Abelianizing map ( sends all x.1 /x and all yi/y.) The rows

and columns of A correspond naturally to the vertices (1),...,(d) of P since

the relators and generators of the Wirtinger presentation so correspond. Define

A to be the matrix obtained from A by multiplying any row which corresponds

to a negative crossing by -1. From now on, we will call A the Alexander

matrix.

LEMMA 4.1. Let A’ be the matrix obtained from A by deleting the first

row and column. Then there is a polynomial A(x,y) such that, up to units

-1 -1 ,+-X+p y-+q in [x, x y,y ], det (1-x)A(x,y)

PROOF. This is a special case of a theorem of Torres [5, p.61].

A(x,y) is defined to be the Alexander polynomial of the link. It is a

link-type invariant [2, p.120]. If we had deleted a column of A corresponding

to a segment from the y-component, we would have gotten det ’ (1-y)A(x,y).

THEOREM .2. For a given alternating link projection, the adjacency matrix B

and the Alexander matrix A are identical, except for the diagonal entries in

rows corresponding to r or r -crossings. If (i) is an r (resp. ry-)x y x

crossing, then b.. x-1 (resp. y-l) while aii y-1 (resp. x-l).

PROOF. This is a routine application of the free differential calculus, and

exactly follows [i (2 10) p.261] Notice that b is defined to be minus the
ii

sum of the labels on all edges coming i__n to vertex (i). This sum must be either

x-I or y-l. D
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We give below the matrices A and B for the alternating projection of the

link 6B
shown in Fig. 1.

(i),

(3)

(6)

(z,) ()(3),()()(6)
x-i -x 0 0 1 0

1 y-i 0 -y 0 0

-y 0 y-I 1 0 0

0 0 -x x-I 0 1

0 i 0 0 y-i -y

0 0 1 0 -y y-1

y-1 -x 0 0 1 0

1 x-1 0 -y 0 0

-y 0 x-1 1 0 0

0 0 -x y-1 0 1

0 1 0 0 y-1 -y

o o o -y y- /

A

d
Recall that det B’ oelT" (-l)i=2H bio(i) where Z is the group of

d
permutations of {2,3,...,d}. Let b

O
H bio(i ). Any permutation a can be
i=2

written as a product of (algebraic) cycles (i,a(i), o((i)),...)(J,o(J),

O(O(J)),...) A (geometric) cycle in a graph is a collection of oriented

edges which forms a closed curve.

LEMMA 2.3. Let b be a non-zero entry in det B’. Then for every non-

trivial cycle (i,(i), ...) in c, there is a cycle of edges in P Joining

vertex (i) to vertex c(i), etc.

PROOF. This is clear from the definition of the adjacency matrix.

In Fig. l, hashmrks indicate the (geometric) cycles corresponding to

(3 h)(5 6). For this example, b (y l) (1) (-x) (-y) (-’y)

LEMMA h.h. Suppose there is an edge of the graph of P Joining vertex (i)

to vertex o(i)- Then if (i) is an r -crossing, o(i) is an r or s
x y x

crossing. If (I) is an r -crossing, then o(i) is an r or s -crossing.
y x y

PROOF. The edge in question is part of an overcrossing segment at (i)

which belongs to the x- (resp. y-) component. At o(1), this overcrossing

segment must terminate. Thus a(i) is an r or s (resp. r or s -)
y x x y

crossing.
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COR0Y 4.5. If be 0, the number of off-diagonal factors bie coming

from r -rows equals the number of off-diagonal elements coming from r -rows.x Y [D

COROLLARY 4.6. If be 0, then there is a positive integer Pl and non-

negative integers P2’P3’pI’p5 such that

be (x l)Pl-l(y I)
pl P&(-x)P2(-y)P3(x -I) (y-l)p5

The corresponding term of det A’ is

Pl PI-I( P2 P
ae (x-l) (y-l) -x) (-y)PB(x-I)P&(y-I) 5

PROOF. In B’, there are R -i r-rows and R r -rows. Since the off-x x x y

diagonal factors of be must be paired between r and r -rows, there must bex y

an imbalance of 1 in the diagonal elements. In ao, this imbalance is

reversed.

-1 -1THEOREM h.7. det B’ (l-y)A(x,y), up to units in 2[x,x ,y,y ].

PROOF. By Lemma h.1, det A’ . (-1) ao (1-A (x,y), up to units.

Let a
O (x-l)ao’. By Corollary 4.6, be (y-l)ae’. Thus det B’

(-l)eb
O

(l-y)A(x,y), up to units.

THEOREM 4.8. The polynomials (l-y)A(x,y) and (l-x)A(x,y) are alter-

nating. That is, (l-y)A(x,y) can be written as . c
i,J

that (-1) i+J 0.cij

jxiyj
i

in such a way

PROOF. The argument is identical to [i, (2.13), p.262]. By Theorem 3.I,

we can compute det B’ (1-y)A(x,y) by summing the products of the labels on

maximal rooted trees in the graph of P. One of these products is positive if

and only if it has an even number of edges labelled "-x" or "-y". All the

results we have developed for (l-y)A(x,y) can be duplicated for (l-x)A(x,y)

by making vertex (i) an r-crossing.
Y
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It would be interesting to know whether the polynomial A (x,y) must be

alternating for alternating links. This does not follow by elementary algebra

from our results. For example, the polynomial

3- 2x + 2x
2

-2y- xy- 2x2y
+2y2 2xy2 + 3x2y2

becomes alternating upon multiplication by (i-x) or (i-y). According to

the Torres conditions [5, P.57], ths polynomial could be the Alexander polynomial

of a linking-number-one link each of whose components has Alexander polynomial

3- 5t + 3t.
REFERENCES

i. Crowell, R. H. Cnus of alternating link types, Annals of Math. 69 (1959)
258-275.

2. Crowell, E. H. and R. H. Fox. Introduction to Knot Theory, Ginn & Company,
New York, 1963.

3. Moon, J. W. Count.ing Labelled Trees, Canadian Mathematical Monographs No. l,
William Clowes and Sons, London, 1970.

h. Rolfsen, D. Knots and Links, Mathematical Lecture Series No. 7, Publish or
Perish, Berkeley, 1976.

5. Torres, G. On the Alexander polynomial, Annals of Math. 57 (1953) 57-89.



POLYNOMIALS OF ALTERNATING LINKS
KI

K
2

(5 6)

(2) (t)

FIGURE 1

a) + crossing b) crossing

FIGURE 2


