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i. INTRODUCTION.

The subject of convergence space compactifications is now about ten years old,

although some related concepts, such as Novak’s sequential envelope [13], are of



346 D.C. KENT and G. D. RICHARDSON

earlier vintage. Our goal is to summarize the results in this area which have been

obtained to date, and to give further development to the subject. In the latter

endeavor, we follow a path initiated by C. J. M. Rao, making use of ideas introduced

by Ellen Reed and inspired by the completion theory of H. Kowalsky.

Convergence spaces were originally defined in terms of sequences by M. Frechet

[5] in 1906. A compactlflcatlon theory for convergence spaces had to await the

development of convergence spaces defined by means of filters. The foundational

papers for filter convergence spaces were written by G. Choquet [i] in 1948,

H. Kowalsky [12] in 1954, and H. Fischer [4] in 1959.

In 1970, G. D. Richardson [21] and J. F. Ramaley and O. Wyler [15] published

different versions of a "Stone-ech compactlflcatlon" for convergence spaces. In

the former paper, each T2 convergence space is embeded in a compact T
2

conver-

gence space with the property that each map into a compact T
3

space can be lifted

to the compactlflcatlon space. Similar results are obtained in the latter paper,

but with the following significant differences: the "compactlflcatlon" space is

T3, but the injection map into this space is not an embedding. Thus the Ramaley-

Wyler "compactlficatlon" is not a compactlflcation in the sense that we use the term

The universal property for Richardson’s compactlflcation is not entirely

satisfactory because the compactiflcation space is usually not T3. Indeed,

R. Gazlk [6] showed that this compactiflcation is T3 iff each non-convergent

ultrafilter coincides with its own closure. Gazlk’s condition is also necessary

and sufficient in order for Richardson’s compactlflcatlon of a completely regular

topological space to be equivalent to the topological Stone-ech compactlflcatlon.

In 1972, the authors showed that a convergence space X can be embedded in

a compact T3 convergence space iff X has the same ultrafilter convergence as

a completely regular topological space. Such convergence spaces are said to be

completely regular. Each completely regular convergence space has a T
3

compac-

tlflcatlon with the same universal property which characterizes the topological
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Stone-ech compactification. Other formulations and proofs of essentially the same

results were given independently in 1973 by C. H. Cook [3] and A. Cochran and

R. Trail [2].

C. J. M. Rao [16], [17], and Vinod Kumar [24] investigated the conditions

under which a space X has a largest T2 and smallest T2 and T3 compactifica-

tion. The summary of their results, along with some additions by the present

authors, is the subject of Section 3.

In 1971, Ellen Reed [19] made a detailed study of Cauchy space completions.

Motivated by Kowalsky’s completion theory [12], she defined "relatively diagonal"

and "relatively round" completions; in a later paper on proximity convergence

spaces [20], she introduced a relatively round compactification called the

"Y.-compactification". Compactifications satisfying these two conditions receive

further attention in Sections 4 and 5 of this paper.

There are a number of directions from which the subject of compactifications

can be approached. A recent paper by R. A. Herrman [7] gives a non-standard

development of convergence space compactifications. Another possibility is to

consider embeddings into spaces which are, in some sense, approximately compact;

this technique is used in [8], [ii], and [18].

Our approach, like that of Rao, is to study the conditions under which a

space will have a largest and smallest compactification subject to certain conditions

(including the aforementioned properties introduced by Reed) imposed on the

compactification. Some of our main results are summarized at the end of the paper.

2 PRELIMINARIES

Let F(X) denote the set of all filters on a set X. The term "ultrafilter"

will be abbreviated "u.f."; the fixed u.f. generated by x is denoted

A convergence space (X, /) is a set X and a relation / between F(X) and

X subject to the following conditions:
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(CI) For each x e X, + x.

(C2) If F / x and G > F, then G / x.

(C3) If / x and G / x, then F D G / x.

Ordinarily, a convergence space (X, /) will be denoted only by the X; the

term "space" will always mean "convergence space".

A space is T2 if each filter converges to at most one point; the assumption

is made throughout this paper that all spaces are T2 unless otherwise indicated.

A space X is T3 if clxF / x whenever F / x, where elX denotes the

closure operator for X. A subset A of a space X is compact if each u.f.

containing A converges to a point in A; if every convergent u.f. contains a

compact set, then X is said to be locally compact.

Let Ux(X) denote the X-neighborhood filter at a point x e X; Ux(X) is

the intersection of all filters which converge to x. If Ux(X) / x for all

x e X, then X is called a pretopological spac.e. For any space X, the finest

pretopological (topological) space coarser than X is denoted wX(IX). A

continuous function will be called a map.

A compactification K (Y,k) of a space X consists of a compact space Y

and an embedding map k: X / Y such that ckX Y.

Since the term "compactiflcation" is used so frequently in this paper

we shall use the abbreviation "compr.".

If i (Yl’kl) and K2 (Y2’k2) are compns, of a space X, and there is

a map f which makes the diagram X YI commute, then i is said to be

2
larger than 2 (written 2 <- i)" If 2 < i and I < 2’ then the two

compns, are said to be equivalent.

In this section, we shall construct two compactifications which will play

a key role in the remainder of the paper; they are the one-point compatification
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and Richardson’s compactlflcatlon *.

Let X be a space, and let X [2 {a}, where a # X. Let [ be the

identity function from X into , assign to the finest convergence structure

subject to the following conditions: (i) If x X, then F / x in iff

the restriction of F to X converges to x in X; (2) F + a in iff

the restriction of to X has no adherent point in X. Then (,[)

is called the one-polnt compactlflcatlon of X. Although other non-equlvalent

"one-polnt compactlflcatlons" for X are possible, is the only one that we

shall consider in this paper.

Let N
X

denote the set of all non-convergent u.f. ’s on a space X. If

A___ X, let A* A {F e Nx:A e F}, and for each G e F(X), let G* be

the filter on X* generated by {G*:G e G}. The convergence structure for

X* is defined as follows: (i) If x e X, then H + x in X* Iff there is F / x in

X such that H > F*; (2) If y NX, then H / y in X* Iff H >_ # *. Let i*

be the identity map of X into X*. The following proposition is proved in [21].

PROPOSITION 2.1. If X is a space, then * (X*,i*) is a compn, of X.

If f:X / Y is a map, and Y is a compact T
3 space, then there is a map f

such that the diagram X X*
commutes.

We now introduce some less familiar convergence space properties which turn out

to be important in the study of compns. A subset A of a space X is bounded

if every u.f. containing A converges to some point in X; a space in which

every convergent filter contains a bounded set is said to be locally bounded.

The term "bounded" was suggested by Kasahara [9] a further study of these

concepts is given by C. Riecke [23]. The notion of "boundedness" has been

studied by other authors under other names; for instance, H. Poppe [14] refers

to the same concept as "weakly relatively compact".
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A space X is said to be essentially bounded if, for each F e NX,
F v(/ {G e NX:G F}) #. (In general, the statement "FI v 2 ’’ will

mean that the filters FI and F
2

contain disjoint sets.) X is said to be

essentially compact if N
X

is a finite set; this terminology is due to

Vinod-Kumar [24 ].

PROPOSITION 2.2. A space X is essentially compact iff it is essentially

bounded and locally bounded.

PROOF. An essentially compact space obviously has both properties. On the

other hand, if Nx is an infinite set, then there is a free u.f. F on X

such that F >_ / {G e NX:G # F}. If F E NX, then X fails to be essentially

bounded; if F NX, then X fails to be locally bounded.

Some additional characterizations of local boundedness and essential bound-

edness are given below.

PROPOSITION 2.3. The following statements about a space X are equivalent.

(i) X is locally bounded.

(2) If F is convergent in X, then

(3) If F is convergent in X, then F v(/Nx) %,

(4) X is open in X*.

(5) < *.

PROOF. (I) => (2). If F / x, then there is F F such that each u.f.

containing F converges to a point in X. Consequently, F* F, and so

F F => X F*.

(2) => (3). If F v(f]NX) , then for each F F, there is GF e Nx
such that F v GF. But then, for each F , GF F*, contrary to the

assertion X e F*.

(3) => (4). If H is an u.f. containing X* X and converging in X*

to a point x in X, then H > F* for some filter F / x in X. It follows
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that Fv(ONx) .
(4) --> (5). The canonical map from X* into , which carries X* X

onto a E , is clearly continuous if X* X is a closed set.

(5) => (1). If X is not locally bounded, then there is F / x in X

such that F* /(X*- X) # $ for all F E F. Thus there is an u.f. containing

X* X which converges to x in X*, and the canonical map from X* into

fails to be continuous. Therefore, E*.

PROPOSITION 2.4. The following statements about a space X are equivalent.

(i) X is essentially bounded.

(2) If F NX, then X U {F} *.

(3) X* X is discrete.

PROOF. (I) => (2). If F NX
and X is essentially bounded, then there

is F F such that F is the only member of N
X containing F. Thus

F* F {} F, which implies X J{F} F*.

(2) => (3). Since F NX implies F* F / , is the only filter

containing X* X which can converge in X* to F e X* X.

(3) ffi> (I). If F e NX is such that F v(D{G e NX:G # F)) , then

one can construct a free u.f. containing X* X which converges to F in X*.

If E
1 (Yl,kl) is a compn, of a space X such that E

1 >_ E*, then it
kI

is easy to see that in the commutative diagram X )Y the map e is

one-to-one and onto X*. Furthermore, if G is an u.f. on YI’ then G / y

in YI iff e(G) / 8(y) in X*. Thus, there is no loss of generality in

assuming that YI and X* have the same underlying set, an assumption which

we shall use whenever convenient.

Finally, if E (Y,k) is a compn, of X such that E* > E, then we

shall consistently denote by the function :X* / Y defined by #(a) y
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if there is P / a in X* such that X P and k(i*) -I P / y in Y. $ is

always well-defined but not necessarily continuous; in later sections we shall

refer to as the canonical function from X* to Y.

3. 2 AND T3 COMPACTIFICATIONS.

In this section we eek to clarify, simplify, and extend results initially

obtained in [16], [17], [22], and [24]. It should be noted that, for all of the

results of this section, the convergence space axiom (C3) can be replaced by

the weaker axiom:

(C) F / x implies F / x.

LEMMA 3.1. If f:X / Y is a map between spaces, A a dense subset of X

(meaning c1 X), and the restrlctlon of f to A is a homeomorphlsm,

then f(X A) CY f(A).

THEOREM 3.2. The following statements about a space X are equivalent.

(I) X has a smallest compn.

(2) X is open in each of its compns.

(3) X is essentially compact.

(4) X has a largest compn.

PROOF. The equivalence o5 (i) &d (2) was established by Rao in [16].

(2) ffi> (3). Assume that N
X

is an infinite set. Let Y X t N
X

be

equipped with a convergence structure which agrees with X* on filters containing

X, and with the property that every fee u.f. which contains Nx converges in

Y to some fixed point x0 in X. Then (Y,i*) is a compn, of X, and

i*(X) X is clearly not open in Y.

(3) => (4). It is easy Co verify that (X*,J) is the largest compn, of an

essentially compact space.

(4) => (2). Let - (Y,k) be the largest T2 compn, of X. Using

Leu 3.1 and the fact that : < :, it follows that k(X) ts an open subset
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of Y. Let (Z,g) be any T2 compn, of X; then there is a map f which

makes the following diagram commute.

x- Y

Since * <_ g, it is easy to verify that f must map Y onto Z. Making use

of Lemma 3.1 and the fact that Y k(X) is closed and, consequently, compact,

f(Y kX) Z g(X) is also compact, and therefore g(X) is open in Z.

Vinod-Kumar [24] questioned Rao’s proof in [17] of the equivalence of

statements (3) and (4) of Theorem 3.2; neither noticed the equivalence of

Btatements (2) and (3). For an essentially compact space X, <* is the

largest and is the smallest compn.

A space is defined to be completely regular if it is T
3

and has the same

ultrafilter convergence as a completely regular topological space. The next

theorem is proved in [22].

THEOREM 3.3. A space X has a largest T3 compn, iff X is completely

regular.

The largest T3 compn, is constructed by making relatively minor modifi-

cattOnB in the convergence of filters relative to the topological Stone-Cech

compn. details can be found in [22].

In the final theorem of this section, we add two alternate characterizations

that given by Rao for spaces having a smallest T3 compn.

THEOREM 3.4. The following statements about a completely regular convergence

space are equivalent.

(I) X has a smallest T3 compn.

(2) X is a locally compact topological space.

(3) X is a locally compact convergence space.

(4) X is open in each of its regular compns.
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PROOF. The equivalence of (I) and (2) was proved by Rao in [16].

(2) ffi> (3). Since X and X have the same u.f. convergence, they have

the same compact sets, and so every X-convergent filter contains a compact set.

(3) ffi> (4). If (Z,k) is any regular compn, of X, and G is any

u.f. on Z containing Z kX, then there is an u.f. F on X such that

G > clzk F. Since X is locally compact, G cannot converge to a point in

k(X), and therefore k(X) is open in Z.

(4) ffi> (2). Since X is completely regular, (4) implies that X is

open in each of its compactifications; since X is a topology, X is locally

compact.

If X is a space satisfying any of the equivalent conditions of Theorem 3.4,

then is the smallest T3 compn.

4. RELATIVELY DIAGONAL AND RELATIVELY T
3

COMPACTIFICATIONS.

In the preceding section, we studied compns, subject to convergence space

properties T2 and T3. In this section and the next, we deal with properties

of the compns, themselves; these properties are not meaningful when applied to

the underlying space. The concept of a strict compn, was introduced in [i0],

where it was shown that the strict T3 compns, of a completely regular space

X correspond in a one-to-one manner with a certain class of Cauchy structures

compatible with X. Relatively diagonal and relative round compns, were

introduced by Reed [19] as Cauchy space completion properties, and relatively

T
3

is a new compn, property which is being introduced here for the first time.

Before formally defining these terms, some additional notation is needed.

Let (Y,k) denote a compn, of a space X. A selection function

u is a function c: Y / FC/) such that u(Y) / Y in Y,. _> c(y), and

(y) - if y k(X). Let [] denote the set of all selectlon functions,

If [], A C Y, and F F(Y), then let:
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A {y Y:A (y))

F {A C Y:A

It is easy to see that AOC A and

Under the assumptions of the preceding paragraph, let A,B be subsets of

Y, u [K], and define A < B to mean AC B and, for all y Y, B o(y)

or else Y A o(y). If F e F(Y) and u [KI define r F

such that F < A).

Again, let K (Y,k) be a compn, of X. If A C Y and F e F(Y), define

F be the filter on Y generated by sets ofpA A tl(cA kX) and let p
the form pF for F F. (We denote these concepts by pA and

respectively, if there is no possibility of confusion regarding the intended

eompn. )

For the purpose of formulatlng the following four definitions, we continue

assuming that (Y,k) is a compn, of X.

DEFINITION 4.1. is a strlet compn, of X if, whenever F y in Y,

there is G / y in Y such that k(X) G and F >__ c G.

DEFINITION 4.2. K is a relatlvely d.i..agonal compn, of X if, for each

[], F / y in Y implies / y in Y.

DEFINITION 4.3. is a relatively round compn, of X if, for each

[K] r F / y in Y whenever / y in Y.

DEFINITION 4.4 is a relatively T3 compn, of X if is strict and

p F / y in Y whenever / y in Y.

PROPOSITION 4.5 Each relatively diagonal compn, is strict.

PROOF. Let K (Y,k) be a relatively dlagonal compn, of X, and let

F / Y0 in Y. Let v:Y / F(X) be a function which associates, with each

y e Y, a filter (y) e F(X) such that @ > (y), k((y)) + y in Y and

V(Y) if y k(x) for x e X. Given A X, define A {y e Y:A e V(y)),
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and let G {A C X:A e F}. Finally, let e [<] be defined by

(y) k(B(y)) #, for all y Y. By straightforward arguments one can

show that F >_ ck G, and kG > F. Since K is a relatively diagonal compn.,

Fu / YO in Y. Therefore k G- YO in Y, and is a strict compn.

LEMMA 4.6. If < (Y,k) Is a compn, of a space X, F E F(Y), and

E [<], then (pF) < r F < F < .
PROOF. The assertion F < F is obvious. Let A r F. Then there is

F e F such that F < A. f y F then Y F u(y), and so A u(y)

which mplles F A Consequently A F and r < F is establlshed

F11y let A (pF)u. Then Au pF and thus there is F F such hat

F (cF- )C A C A. If g- F (y) for y e g- k(X), then there

is an u.f. K on Y such that F e K and K + y In Y. is would imply

y e (cF-k(X)) A and thus A e (y) us F < A, mplyng A r ,
and the proof is complete.

THEOREM 4.7. (I) A relatively round compactlflcatlon is relatively diagonal.

(2) A relatively T3, relatively diagonal compn, is relatively round. 3) .A

T3 compn, is relatively T3.

PROOF. The first two assertions follow immediately from Lemma 4.6; the

third is obvious.

THEOREM 4.8. (i) For any space X, the compn. * is relatively round

and relatively T3.

(2) For any space X, the compn. is relatively round.

(3) The compn. K of a space X is relatively T3 iff X is locally

bounded.

PROOF. (I) (me can routinely vertify that A* p(A*) (A*) u for any

set A X. From this result it follows that * is relatively diagonal (which

implies strict) and also relatively T3. It then follows by Theorem 4.7 that
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K* is also relatively round.

(2) For each u e [], one can routinely verify that r F F for each

filter F which converges in .
(3) If F e F(X), an u.f., and F / x in X, then A > p(F) iff

F > ’ Nx. if G / a in , then p(G) G / A. Thus the assertion follows

by Proposition 2.3.

THEOREM 4.9. A space X has a largest strict, relatively diagonal, or

relatively round compn, iff X is essentially compact. In each case the

largest compn., if it exists is equivalent to K*.

PROOF. If X is essentially compact, then <* is known to be the largest

compn, of X, and the desired conclusion follows by theorem 4.8.

Conversely, assume that K (Y,k) is the largest strict compn, of X.

Since * is strict, * < , and in accordance with our remarks at the end

of Section 2, we shall assume that K* and K have the same underlying set

and the same convergence relative to u.f.’s. From the fact that k is strict

(indeed, relatively round), and Proposition 2.3, it follows that X must be

locally bounded.

Next, assume that X is not essentially bounded. Then there is e Nx
such that F v ({{G e NX:G # F}) # . Let Z X {a,b}; let J be the

identity map from X into Z, and assign to Z a convergence structure

which makes ’ (Z,j) a compn, of X subject to the conditions:

J(F) / a in Z and j(G) / b in Z for G e Nx and G F. One can show

that <’ is a relatively round compn, on X, and one can show that the

canonical function from into Z is not continuous. This argument

shows that the existence of a largest strict compn, also requires that X

be essentially bounded. Since we showed earlier X has to be locally bounded,

it follows by Proposition 2.2 that X must be essentially compact. This,
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along with K* < , implies that < is equivalent to K*.

Had we begun by assuming that < is the largest relatively round or

relatively diagonal compn., precisely the same argument can be used to con-

clude that X is essentially compact and equivalent to K*.

THEOREM 4.10. The following statements about a space X are equivalent:

(I) X is locally bounded.

(2) X has a smallest strict compn.

(3) X has a smallest relatively diagonal compn.

(4) X has a smallest relatively round oomph.

(5) X has a smallest relatively regular compn.

If X is locally bounded, then the smallest compn, subject to each of the

specified conditions is .
PROOF. (I) => (2). Since is a strict compn, of X, it is necessary

only to show that the natural map :Y + is continuous for any strict compn.

(Y,k) of X. It is clear that will be continuous if there is no

u.f. F e F(Y), where Y- k(X) e F and F / y in Y for some y k(X).

If such a filter F existed, then by the assumption of strictness there would

be a filter G e F(Y) such that G- y in Y, k(X) e G, and F > cG. But

the assuption that X is locally bounded guarantees that k(X) e clyG, and

so F >_ cG is impossible. Thus 0:Y / X is continuous, and (,i)

is the smallest strict compn, of X.

The same argument is valid if "strict" is replaced by "relatively round",

"relatively regular", or "relatively diagonal". Thus condition (I) also

implies conditions (3), (4), and (5).

(2) => (i). It is easy to show that the smallest strict compn, of X must

be equivalent to . By Proposition 2.3, the canonical map of X* on

is continuous iff X is locally bounded. Since K* is also a strict compn.
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of X, X must be locally bounded. This argument is also valid if "strict"

is replaced by "relatively diagonal" or "relatively round". Thus conditions

(3) and (4) also imply condition (i).

(5) => (i). Assume that X is not locally bounded, and let K- (Y,k)

denote a relatively regular compn, of X such that ! *- Then Y k(X)

must be an infinite set (otherwise, continuity of the canonical map from X*

onto Y would be violated). Let YI’ Y2 be arbitrary points in Y k(X),

and let Z be the quotient space derived from Y by identifying the points

Yl and Y2" Then ’ (Z,k) is also a relatively regular compn, of X and

it is clear that ’. Thus X can have no smallest relatively regular

compn, when X is not locally compact.

We next consider some lifting properties of certain types of maps relative

to relatively T3, relatively diagonal, and relatively round compns. However

we first need some additional terminology.

Let (Y,k) be a compn, of a space X, and let C denote the set

of all filters F e F(X) such that k(F) converges in Y. C is called

the <-Cauch7 structure for X, and its members are called -Cauchy filters.

If XI and X2 are spaces with compns., KI (Yl’kl) and K2 (Y2’k2)’
respectively, then a map f:XI

/ X2
is said to be a Kl2-Cauchy map if

f(F) e C<2 for each F CI.
THEOREM 4.11. If f:X

1
/ X

2
is a Kl2-Cauchy map, where <1 and K2

are relatlvely T3 compns, of X1 and X2, respectlvely, then there is a

unique map f which makes the following diagram commute.

f

1 X2
k
I k

2

YI Y2
f
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PROOF. For each Y YI’ choose G CI such that kI
G / y in YI’

and define (y) z, where k2f() / z in Y2" The assumption that f is

a l2-Cauchy map, along with convergence space axiom C3, are sufficient to

show that is a well-deflned function. It remains to show that f is

contInuous.

Let F / y in YI" Write F in the form F FI F2, where klXI FI
and gl klXl F2" Let (y) z. It is immediate that (FI) k

2 f kl-I
in Y2" Using the fact that KI is strict, there is G e F(YI) such that

klXI G, F2 >_ cIG, and G / y in gl" Note that F2 >_ p<lG, since

gl kl X F2. Since (O) / z and 2 is a relatively T
3

compn, of X2,

it remains only to show that (plG) >_ pK2(G). But this is easily established,

and it follows that (F2) / z in Y2" Thus (F) / z in Y2’ and the proof

is complete.

(FI) z

If X is a space, any compn, of X, and i the identity map on X,

then i:X / X is a K*K Cauchy map. Thus we obtain

COROLLARY 4.12. For any space X, * is the largest relatively T
3

compn.

of X.

Theorem 4.11 would not, in general, be a correct statement if "relatively T3"
were replaced by "relatively round", "relatively diagonal", or "strict"; otherwise,

there would always be a largest compn, of any space X subject to these pro-

perties, contrary to Theorem 4.9. However the lifting theorem that follows

applies to relatively diagonal and relatively round compns, as well as relatively

T3 compns; it generalizes the lifting property of the compn. *.

THEOREM 4.13. Let X have a compn. (Y,k) which is relatively diagonal,

relatively round, or relatively T3. Let Z be a compact T3 space, and

f:X / Z a map with the property that f(F) is convergent in Z for each

F C Then there is a unique map which makes the following diagram commute.
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PROOF. If is relatively dlagonal, then (Y,k) is equivalent (in the

sense defined in [19]) to some member of the family of Cauchy space completions

of (x,Ck) defined in [19]. Thus, for relatively diagonal and relatively

round compns., the assertion follows from Theorem 4 of [19].

If is relatively T3, then we can regard Z as a T
3

(and hence

relatively T3) compn. ’ of itself, where C, is the set of all Z-convergent

filters. Then the assumptions of the theorem imply that f is a K’ Cauchy

map, and the conclusion follows as a corollary to Theorem 4.11.

We conclude this section by showing that relatively round compns, need not

be relatively T3, and vice versa. Indeed, it follows by Theorem 4.8 that

for any space X which is not locally bounded, is relatively round but not

relatively T3. In the example that follows, we construct a strict T3 compn.

of a space X which is not relatively diagonal.

EXAMPLE 4.14. Let I be the unit interval [0,i] of the real llne with its

usual topology. Let (a
n

be a sequence in [0,I] which converges to 0 in I;

let H be the filter on I generated by the sequence (an). Let Y be the

space consisting of the set [0,I] with convergence defined as follows:

(i) For y # 0, F / y in Y iff F / y in I; (2) F / 0 in Y iff there

is a finite set of u.f.’s GI,...,G converging to 0 in I such that
n

F >_ CllG / H. If X is the subspace of Y determined by the subset

[0,1] {a :n-- 1, 2,...}, and i the identity embedding of X Into Y, then

it follows that (Y,i) is a strict T
3 compn, of X.

Let s e [] be the selection function defined as follows:

(i) s(x) R for x e X; (2) S(an) Uy(an) for n 1,2, If

A e Hs then As e H, and therefore As contains all but finitely many of
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the a ’s.
n

It follows that H is not finer than any of the filters which

converge to 0 in Y, and therefore H 0 in Y. But H / 0 in Y, and

so is not relatively diagonal.

5. SIMPLE COMPACTIFICATIONS.

A compn. < (Y,k) of a space X is said to be simple if < is strict

and, for each y e Y X, the neighborhood filter Uy(y) / y in Y. A strict

compn. < (Y,k) will be called pretopologlcal if Y is a pretopologlcal

space. Note that only pretopologlcal spaces can have pretopologlcal compns.

We omit the straightforward proof of the first proposition.

PROPOSITION 5.1. The following statements hold for any (pretopologlcal)

space X.

(i) * is simple (pretopologlcal).

(2) < is simple (pretopologlcal) Iff X is locally bounded.

PROPOSITION 5.2. A simple, relatively round compn, is relatively T3.

PROOF. Let < (Y,k) be a simple, relatively round compn, of a space X,

let H e F(Y), and let e [<]. Since < is simple, we can assume without

loss of generality that (y) Uy(y) for y e Y k(X). We shall show that

r H < p H. Let A e r H; then there is H e H such that H < A. If

y e cl k(X), then there is an u.f. F e F(Y) such that H e F, and

(y) Uy(y) < F Thus Y- H (y) and since H < A, it follows that

A e (y). Consequently, H (cH- k(X)) A, and the proof Is complete.

COROLY 5.3. For any space X, K* Is the largest sple, relatively

round compn, of X.

PROOF. This is an immediate consequence of Corollary 4.12 and Propositions

5.1 and 5.2.

For simple compns., the converse of Proposition 5.2 does not hold. The

compn. < constructed in Example 4.14 is simple and T3, but not relatively

round.
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A pretopological compn. K (Y,k) of X is said to be relatively

topological if, for each y Y k(X), there is a base of sets for Uy(y)
consisting of sets V such that z V f (Y k(X)) implies V Uy(Z).
Sets V of this type will be called K basic sets for y.

PROPOSITION 5.4. Let K (Y,k) be a pretopological compn, of a space X.

Then K is relatively topological iff K is relatively diagonal.

PROOF. Let K be relatively topological. To show that is relatively

for each y e Ydiagonal it is sufficient to show that Uy(y) (Uy(y))o,
and [K]. If y e k(X), this assertion is obvious. If y e Y k(X),

then it is easy to check that V V or any set V which is K-basic for

y, and the desired equality is established.

Conversely, assume that K is relatively diagonal, and define

by o(y) Uy(y) for all y e Y k(X) and o(y) # for y e k(X). Then

Uy(y) (Uy(y)) for all y e Y, and sets of the form {V:V Uy(y)} are

K-basic for all points y e Y k(X). Thus is relatively topological.

THEOREM 5.5. For any pretopological space X, K* is the largest relatively

topological compn, of X.

PROOF. The fact that K* is relatively topological is an immediate

consequence of Theorems 4.7 and 4.8, along with Proposition 5.1 and 5.4.

Let K (Y,k) be a relatively topological compn, of X, and let :X* / Y

be the canonical function. Let 8 be an u.f. on X* such that 8 * a in X*.

Then there is an u.f. F on X such that F* / a in X* and e > F*. Assume

k(F) / y in Y; then y (a) by definition of $, and the proof will be

completed by showing (F*) - y in Y.

If X F*, then (F*) Vy(y) clearly follows. Suppose that X

then for each F F, choose a
F F*- X, and let H be the filter on

X* generated by the net (YF)F F" Let K be an u.f. finer than H, and

let z be the point in Y to which (K) converges. If V is a K-basic
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neighborhood of z, then one can show that k(F) / V for all F F.

Since k(F) is an u.f. and Y is pretopologlcal, k(F) / z in Y, and

hence y z. Therefore, (K) / y in Y and, consequently, (H) / y in Y.

It follows that the image under of any u.f. finer than F* converges to

y in Y, and therefore (F*) / y in Y.

PROPOSITION 5.6. If (Y,k) is a relatively T
3

compn, of X and Z

the subspace Y X of Y, then Z is a topological space. If is,

in addition, a simple compn., then Z is a regular topological space.

PROOF. Let A C Z and let y E cIA. Then there is an u.f. H / y in

Y such that ClzA . Let K be an u.f. containing A such that cl
Z ! H.

Assume that / t in Y. Since Z e and K is relatively T3, it follows

that ClzK / t in Y. Thus t y, K / y, and y clzA. Since the closure

operator for Z is idempotent, Z is a topological space. If < is also

simple, then Z is a pretopological, and hence topological, space; the regularity

of Z is an easy consequence of the assumption that is relatively T3.

THEOREM 5.7. A (pretopological) space X has a smallest simple (pretopolo-

gical) compn, iff X is locally bounded. The smallest simple (pretopological)

compn., when it exists, is equivalent to .
PROOF. The argument used to establish the equivalence of Conditions (I)

and (5) in the proof of Theorem 4.10 can be applied to establish this result.

We next turn to the problem of characterizing those spaces having a largest

simple or pretopological compn. For the former property, the problem has not

yet been solved in its full generality. A property slightly weaker than essential

compactness is needed for the solution of the problem; this property is defined

and discussed in the next paragraph.

A space X is defined to be almost essentially compact if there is at

most one point in X* to which a free filter containing X* X converges

in X*. This property can a,lso be characterized internally, albeit more clumsily,
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as follows: X is almost essentially compact iff, either X is locally

bounded and at most one member F of N
X

has the property that

F v (/9{G e NX:G F}) , or else X is essentially bounded, and there

is at most one point x e X such that, for some F / x, F v(/]NX) .
THEOREM 5.8. If X is almost essentially compact, the * is the largest

simple compn, of X.

PROOF. Let (Y,k) be a simple compn, of X, and :X* / Y the

canonical function. If X is essentially compact, the conclusion follows

by Theorem 3.2, so assume that there is exactly one point b e X* such that

there is an u.f. G + b in X* such that X* X e G. Let #(b) z; to

establish continuity of #, it is sufficient to show that (G) / z in Y.

If (G) is a free u.f., then Y* k(X) e (G) by construction of ;

it is clear from the conditions imposed on X that z is the only point in

Y to which a free u.f. containing Y k(X) can converge.

Suppose, on the other hand, that () for some y e Y k(X). Now

b in X* implies there is F e F(X) such that k(F) / b in X* and

> F*. Choose G e G such that (G) {y}; by Lemma 3.1, y e Y k(X). For

each F e F, choose HF e N
X

such that HF e F*) G. Then (HF) y, which

implies k(HF) + y for all F e F. Since < is simple,

{k(HF):F e F} k({HF:F e F}) + y. But F >/{HF:F e F} implies kF / y,

and so y z.

THEOREM 5.9. Let X be a space which is locally bounded (pretopological).

If X has a largest simple (pretoplogical) compn., then X is almost essentially

compact.

PROOF. If X is not almost essentially compact, then there are at least

two distinct points a, b in X* such that free fiters containing X* X

converges to a and b. If X is locally bounded, then necessarily a and b

are in X* X. Thus, since * is simple, the assumption that X is either



366 D.C. KENT and G. D. RICHARDSON

pretopological or locally bounded leads to the conclusion that Ux,(a) + a

and Vx,(b) / b. Choose A e Ux,(a) and B e Ux,(b) such that A B .
Note that AI A- (X U {a}) and BI B (X ] {b}) are both infinite sets;

with no loss of generality, assume that the cardinality of AI does not exceed

that of BI.

Now AI and BI both consist of free u.f.’s on X. Let the members of AI

be indexed as follows: AI {F : I}; then under our cardinality assumption,

we can index a subset B2 {G : e I} of BI with the same index set I.

Finally, we define a totally bounded Cauchy structure C on X consisting of:

(i) all convergent filters on X; (2) all members of N
X

not included in

AI or B2; (3) all filters finer then filters of the form F G for I.

Let Y be the set of C equivalent classes. Let :Y / F(X) be the

function defined as follows: (i) ([]) ; (2) u([F]) F if

F e NX (AIt B2) (3) ([Fu / Ga]) Ga, all e I. (Here, [F] denotes

the Cauchy equivalence class determined by F e C.) Let j :X / Y be the natural

injection function given by j(x) []. If Y is equipped with the complete

Cauchy structure denoted by C
F in [19], where F {0}, then one can verify

straightforwardly that (Y,J) is a simple (pretopological) compn, of X,

and $:X* / Y is not continuous. Since * is the only possible candidate for

a largest simple (pretopological) compn, of X, it follows that X has no largest

simple (pretopological) compn.

COROLLARY 5.10. A pretopological space X has a largest pretopological

compn, iff X is almost essentially compact.

COROLLARY 5.11. A locally bounded space X has a largest simple compn.

iff X is almost essentially compact.

6. SUMMARY.

A space X has a largest compn, iff X is essentially compact. The same

condition is also necessary and sufficient for the existence of a largest strict,
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relatively diagonal, or relatively round compn. If X is pretopological

(locally bounded), then X has a largest pretopological (simple) compn, iff

X is almost essentially compact. Every space X has a largest relatively T
3

compn, and a largest simple relatively round compn. Every pretopological space

has a largest relatively topological compn. In every case cited, the largest

compn., when it exists, is equivalent to K*.

A space X has a smallest compn, iff X is essentially compact A weaker

condition, local boundedness, is necessary and sufficient for the existence of

a smallest compn, subject to each of the following properties: strict, relatively

diagonal, relatively round, relatively T3, and simple. Local boundedness is

also necessary and sufficient in order for a pretopological space to have a

smallest pretopological compn. In each case cited, the smallest compn., when

it exists, is equivalent to .
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