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ABSTRACT. We study an initial-boundary value problem for the nonlinear

Schrbdinger equation, a simple mathematical model for the interaction between

electromagnetic waves and a plasma layer. We prove a global existence and

uniqueness theorem and establish a Galerkin method for solving numerically

the problem.
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1. INTRODUCTION.

This paper is concerned mainly with the initial-boundary value problem
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i ut + Uxx + klu2u O, u(O,x) Uo(X) (1.1)

Ux(t,O).o(2ao-U(t,O)) Ux(t,1)=il(u(t,1)-2a ) (1.2)

where i2=-1 the subscripts t and x denote partial differen-

tiating with respect to the time coordinate te[O,T] T> 0

and the spatial coordinate xe[0,1], respectively, k and o(j
j=0,1, are real constants, the aj’s are (in general) complex

constants.

(1.1) is the standard form of the nonlinear SchrGdinger

equation. Only technical modifications are necessary to extend

our results to somewhat more general equations like

iUUxx+k u 2u+a(x)u=f(t,x).
The boundary conditions (1.2) can be written in the more sug-

gestive form

(aoexp(ioX) + Uoexp(-iox) u)Ix=O = 0 l=O,

(alexp(-i (x-l)) + U1exp(ig (x-l)) u)Ix=1 O.

The problem (1.1), (I .2) may be considered as a simple mathe-

matical model for the interaction of stationary electromagnetic

waves aoexp(iox) for x< 0 and alexp(-i1(x-I)) for x

with a plasm layer localized in the interval [0, I] The functions

Uj j=0,1, defined by Uj(t)=u(t,j)-aj represent the reflection

and transmission properties of the plasma layer [I.

Recently, the initial value problem (I. I) has been studied

extensively for solutions which vanish at x = [2,10] or which

are periodic in x [3 The nonlinear Schrdinger equation con-

nected with these boundary conditions has such distinguished pro-
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perties as an associated inverse scattering problem and an infini-

te set of conserved functionals Fn Unfortunately, the boundary

conditions (1.2) do not imply such properties. Especially, the

functionals n are not conserved. Nevertheless, we shall use the

functionals F1 and F5 (cf. [10]) to prove important a priori

estimates.

The paper consists of five sections. In the second section we

introduce notations and state some results concerning a linear or-

dinary differential operator. This operator turns out to be self-

adjoint with respect to the homogeneous boundary conditions corres-

ponding to (1.2) (i. e., ao=a1=O). In the third section we prove

an existence and uniqueness result for a regularized problem ori-

ginating from (I. I), (I .2) by addition of a regularization teln

which may be interpreted physically as damping 7. The fourth

section contains our main result, a global existence and unique-

ness theorem for problem (1.1), (1.2). Our proof bases on the

approximation of (I. I), (1.2) by the regularized problems mentioned

above. In the last section we establish Galerkin’s method as a

procedure to solve (I .I), (I .2) numerically. The eigenfunctions

of the self-adjoint operator studied in Section 2 serve us as

appropriate base functions.

2. PRELIMINARIES

Throughout this paper c denotes various constants. or a

complex number z we denote by z Re z and Im z conjugate

complex number, modulus, real and imaginary part, respectively.

C1 H1 Lqand are the usual spaces of complex-valued functions

defined on the interval (0, I) provided with the norms
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1 1

llVl’I = x.[o,1]max dxjdjv(x)l l,V.,HI (C / jv2 dx )
j=o j=oo x
I

Ilvllq ( ivl q )l/q lq Ilvll= ass su v(x)l

We write

c c, II vii c II vii c 1=I=Ho,,,L2 II v II = II v II 2 (v, w) , v W d.x:o

The space HI is continuously embedded into C and it holds (cf.

Ilvl 2 ,vll ( II vii + 2 IlVx.II ) v e H1. (2.1)
C

In what follows the operator A defined by

A v = -Vxx + 2ipvx + (ip’+p2)v p’

D(A) ={ v H2 Vx(O)=-ioV(O) Vx(1)=iIv(1 ) }
(2.2)

plays an important role. Here p=p(x) is a real function such that

pert3 p(0) -, p(1) =,1.O
(2.3)

REMARK 2.1 The function p=(o+1)x-o may serve as an

example for p .
LEMMA 2.1 The operator A (D(A)-*H) is self-adJoint and

nozmegatlve. Its energetic space is HI . A has a pure point

n21[ 2 n--O 1 2 ... Each eigen-spectrum. Its eigemvalues are n
value is single. The corresponding orthonormal eigenfunctions are

_
if n=O,hn--rneiP(x)cosnrx, P(x)= ip(s)ds rn if n=1,2,.. (2 4)0

PROOF. The operator A is closely related to the Laplacian

with Neumann’s conditions. Indeed, it is easy to check hhat v is

solution of the problem
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A v f fe H vD(A)

if and only if w e-iPv e H2 is solution of Neumann’s problem

-wxx e-iez wx(O) :Wx() o
From this fact and from the well-known properties of Neumann’s pro-

blem (cf. [9 ] the lemma follows.

Provided with the scalar product

((v,w)) (v+Av,w+Aw)

and the corresponding norm
2

D(A) becomes a Hilbert space V We denote by < .,.7 the pairing

between V and its dual space V’ Because of Riesz’ representa-

tion theorem the mapping E (H-- V’ ) defined by

<E f v>-- (f,v+Av) VvV

is one-to-one and isometric. Thus we can identify V’ and H

LEPTA 2.2 The V-norm and the H2-norm are equivalent on V .
PROOP. Evidently we have I vV

it holds for vV - c(p)lVllH2 On the other hand

and

m)v,v)(Av,v) (-Vxx+2ipVx+ (ip ’+p

Hence we get

2IlvilH2 +tlvxil +llVxxll c(IvlI2+2(Av,v)+IIAvll

2)ax

(2.5)
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and the lemma is proved.
n

(g,hl)hI Then gn--gLEPTA 2.3 For geH let gn=
i=0

(strongly) in H oreover, if g e V, then gn-- g in H2

PROOF. The first statement follows from Lemma 2. I (cf. 9],
Satz 21.1). Let now gV On account of Lemma 2.1 we have the re-

presentation A g
1=0" l(g’hl)hl’ that is gn-* g in V Because

of Lemma 2.2 this implies gn--,g in H2

In view of Section 4 we still note that for arbitrarily small

0 the following estimate is valid

II vx2= -2 Re(v,vxx) 2vVxx g-Ivxx2+ llv 2 v V (2.6)

In what follows S [0,T] denotes a bounded time interval. For

a Banach space B we denote by

C(S;B) the Banach space of continuous (B-valued) functions pro-

= ilu(t)llBvided with the norm lluUc(s;) ts
Cw(S;B) the space of weakly continuous functions,

L2(S;B) the Banach space of Bochner-integrable functions pro-
2 Yu(t)ll dsvided with the norm I1 u II L2 (S ;B) S

HI(S;B) the Banach space of functions u L2(S;B) having a de-

rivative u’ L2(S;B) taken in the sense of distributions on

(O,T) with values in B

RE 2.3 Clearly, the relation L2(S;H)=L2((O,T)x(0,1))
holds. Accordingly, we shall occasionally consider "abstract" func-

tions as "ordinary" ones and vice-versa.

In this section we consider the problem

i ut+klUxx+(k2+k3u2)u 0 u(O,x)=uo(x), uHI(S;H2)

Ux(t,O) igo(2ao-U(t,O)) ux(t,1)-- i1(u(t,1)-2aI)

(3.1)
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with real constants o’ I and (in general) complex constants ao,
aI, kI, k2 and k3 satisfying the assumptions

Re = o, e 0 Zmo, m3 - o
REARK 3.1 Under the assumptions (3.3) the term Im klUxx +

Im k3 u may be interpreted physically as damping (cf. ).
RENARK 3.2 It requires only technical modifications to treat

(3.1), (3.2) if a right hand side or functions aj=aj(t) are ad-

mitted.

In order to get homogeneou boundary conditions we make the an-

satz
u = v + ua u

O = vo + ua C3.4)

with a fumction ua H3 satisfying (3.2).

3.3 Por instance we can choose

ua = -i(oae(1-x)2exp(iP) + lalx2exp(1(P-P(1)))),
where P=P(x) is the function from (2.4).

Now we can rewrite (3.1), (3.2) as follows

i vt + k1(V+Ua)xx + B v = 0 v(O) = vo v HI(S;V), (3.5)

where B v = (k2 + k3v + Ua2)(v + ua)
THEORE 3.1 Suppose (2.3) and vo uo-Ua VH3 Then the pro-

blem (3.1), (3.2) has a unique solution.

PROOF. For real parameters r 0 we define by

operators Pr(C-->C). It is easy to check that for v, Vl, v2@V
llPrVlc r IIPrVI PrV211C llvI v211C

Thus the operator Br (HI--+ HI ) defined by

Br v = (k2 + k31Pr (v+ua)2)Pr(v+ua) (3.7)

vjH
I

wj Ua+Vjsatisfies for -- j=1 2 the estimate
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2) (PrW1_PrW2)+k3(i PrWl 2_i PrW2 2)PrW211
-I1( lk21 +lk31 r2) v-v21+Ik31 :rW-:erW21 [PrW1+PrW21 r II- (tk21 + 31k31 r2)llv-v211 c(r)llv-v211.

Moreover, for v HI we have with w=v+ua

BrVll II (k2+k31Prwl 2)Prwll -- Ik211w+lk31 llwll 6

= k21 llwil+Ik31 wU2(llw+2Wxll ) = c(llvil) (S+llVxll)
(3.9)

For the time being we replace (3.5) by the problem

i vt+ks(V+Ua)xx + BrV 0 v(O) vo vHI(S;V) (3.10)

which we can write also as a standard evolution equation

vt + CrV 0, v(O) = Vo, veilI(S;V)
where the operator Cre (V--V’) ist given by

CrV -i(k (v+ua)xx + BrV )

In order to apply results on evolution equations we now verify some

properties of Cr. Using (3.8) we obtain for Vl, v2V with V=Vl-V2
llCrV1-CrV2 V’ II CrV1-CrV2 I klVxx+BrV1-BrV21 (3.12)

Ikll Vxx + c(r)lvll - c(r)vV

that is the Lipschitz-continuity of Cr Next we note that Cr
possesses the following momotonicity property

2Re CrvI -CRY2 vI -v2" 2In(k I (vxx+Av+v"(v+Av) ) +BrVI "BrV2 v+Av )
z -In k c(r)llv 2 (3.13)

Finally, vo V H3 implies 0rVo H1 H
Using these facts we can

conclude the existence of a unique solution vr of (3.11) from

Satz 3.1 and Bemerkung 5 in

Now we want to show that for sufficiently large chosen r the

function Ur=Vr+Ua is the (unique) solution of (3.1), (3.2). Clearly,

it suffices to find a r-independent a priori estimate for ur in

C(S;HI) We proceed in two steps. Setting v=vr, u=ur
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Uj(t)-Ur(t,j)-aj j=0,1 we get from (3.10)

where the constant c is independent of r Hence by Gronwall’s

lemma we conclude

II urll 2 II uz, 2
c(s;} m k T,2(S; )

2+Re kI II Urjll L2 (S) - c. (3.14)

In the second step we multiply (3.10) by Av=-Vxx+21pVx+(ip’+p2)v
and obtain, using the symmetry of A

0 = 2Im(ivt+klUxx+BrV,Av)
= (v,Av) t 2Im(k (AV-Uaxx-2ipvx-(ip’+p2)v)-BrV,Av)
= (v,Av) t 2In k111Av 2 211k1(uax+2ipvx+(ip’+p2)v-Brvll llAvll

Taking into account (2.5), (3.9) and (3.14), we get by Gronwall*s

lemma the desired a priori estimate

llurll c ( 5)c(s; )

which ends the proof.

THEOREM 3.1 has been stated mainly in view of its application

in the next section. For the sake of completeness we still formulate

an existence and uniqueness result for the damped problem holding

for arbitrary initial values UoH For this purpose we start from

the following weak formulation of (3. I ), (3.2)
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I
( (iut+ (k2+k3 u 2)Ush)+k (ijj (u(t J )-2aj )(t J )- (Ux’ hx) ) dt=0(3.16)

2(S;HI) uL2(S;H1)t HI(S;(HI)’)u(O) uo heL

Then, using Theorem 3.1, (3.14) and the fact that VH3 lies den-

sely in H (cf. Lemma 2.3), the following result is easily to prove.

PROPOSITION 3.1. Suppose (3.3) and uo6 H Then the problem

(3.16) has a unique solution.

4. THE. NO.NLINE.AR, S.CHROD.INGER E.qUATION

We return now to the problem

i ut + uxx + ku2u = 0 u(O,x) Uo(X) (4.1)

Ux(t,O) = io(2ao-U(t,O)), Ux(t, I) = i1(u(t, I)-2aI) (4.2)

Our main result is

_a 0 J=O I Vo=Uo-UaE V Then theTHEOREM 4.1. Suppose j
problem (4.1), (4.2) has a m’que solution u C(S;H2) lth

ut C(S;H) Moreover, it holds Uj=u(.,j)-ajHI(s) J=0,1.

PRO0. (Uniqueness) Let u1, u2 be appropriate solutions of (4.1)

(4.2). Setting u=u1-u2 and Uj=u(.,j) we obtain from (4.1)

0 = 2Im(iut+Uxx+k(| uI 2u1-u2 2u2),u)
(llull2)

t
+ 2klm(lUll2U+(lUll2-|u22)u2,u) + 2

a (ull2)t 31k(llu1112 2 2
c(s;c) + II u2 c(s;c))llull

Integration with respect to t yields
t z

u(t)ll 2 - C(Ul,U2)oll u(s)llas

Applying Gronwall’s lemma, we conclude from this u=O, that is Ul=U2.
(Existence) We approximate (4.1) by equations of the form (3. I).

To this end let > 0 be a regularization parameter and (Vo) a

corresponding set of functions such that VoVnH3 and voc--vo in



NONLINEAR SCHRODINGER EQUATION 513

V as -- 0. (The existence of such a set is guaranteed by Lemma

2.3J We consider now the problem

i ut + (1-i)Uxx+ku2u = 0, uHI(s;H2), u(0)=Uo=Vo+Ua (4.3)

under the boundary conditions (4.2). By Theorem 3.1 for each v0

there exists a unique solution u of (4.2), (4.3). In order to be

able to pass to the limit -,0 we need two a priori estimates.

The first one is

c (4.4)

which can be proved ectly as (3.14). The crucial pt of this

proof is the second a priori estimate which we are going to prove

now. For the time being we drop the subscript E setting u--uc
Uj=ue(.,j)-aj, j=0,1. rom (4.3) it follows

t
P_Re (iut+( 1-i)uxx+k lu 2u, (1-i)Uxxt ku 2ut)ds

t I
2Re 0{ [i (1+i)ut-i( 1+i)II uxt I 2+ ( I+2) (ux,uxt)+

+k(l+i)(|u|2u,Uxxt) killu utl2 k(1-i)(uxxlu2,ut)+
+ k2(|u|4u,ut) ds

and thus

(2 Iuj 12 2 2 2 6
0 j t + 2llUxt )ds + (I+ )lUxx(t)ll u(t)ll 6

(,+e2)lUxx(O)2+ u(O)l166-k Re(2(lu|2U’Uxxt)+3(|u12
t

+ k ((2(1 u,t)-3Clul2,))an
= (1+2)11(0)112 + gllu(0)ll + k 11 ds + Ek 12 ds.

Let us now refo the integrands 11 d 12 We have

11 = -Re (2( ul 2u,t)+3(l ul 2

ut) )ds+

(4.5)

,ut))= 2Re{((|U)xU+lul2Ux,Uxt )
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3(|ut 2,(ll=xt12)t ) + 1/2(I](lul2)xll
1

where

Re(2( lu2)xUx+lUl 2Uxx,Ut) = Ira(2( lul2)xUx+ ul aux., (1-it)Uxx+klu! 2u)

f, (ZRe( (lul 2)xUx, uxx)+llUUxxll 2)+Im[t{|ul PlxUx, Uxx)+
+((|ul2)xUx+ 1/2ul2Uxx k|ul2u)

0

and

2Im((|ul2)zz,uz) = 2Im(uluzt 2 + u,uzz)
-((=+, ) ( utl2,)) + [II

= 6(ul 2,) + 2[I l2 10
= 6(ul 2, (1_i)+kl ui 2u)_6ZRe(ut 2,)+2 2-u

= 3((lul2lt,ll 2) 6tRe(ul12,) + 2[1I2 110
Hence we obta

11 3(llull2)t + ( (lul2)x2)t+C2ReCClul2)x’3u 2

0
Nex have

12 (2(lul 2u,t) -3(lul 2,ut) ) =

2- 1
{2[I ul ut 2( (lul 2U)x,t)-3(l ul 2,i( ( 1-1t)+kl ul 2u) )}

0ombi these eressio we get

(I1+ 2)a = ["112 + l(tul2)=tl 2 + 2[ [1=12 t a. +o

,u=)@ui)



Now we want to estimate this expression term by term. Pirstly, it

follows from VOW-, vo in V that

llu(0)[H2 = ut(0)ll = IlUal[H2 + cll volV
Hence we have

I

’ @j IUj+a 4) (0)k(311UUxll 2 + 1/211(lula)xll 2
j=O j c (4.7)

Since, because of (1.6) and (3.4),
Iluxlllux-uaxll+ Iluaxll+ tlUaxll=glluxx-Uaxxll + lu-uall + {luaxll ollUxxll+C, (4.8)

(4.9)

Next, applying (4.4) and (4.8), we obtain for sufficiently small
t

k te((lul)xUx-3U(|uxl -klul4),ux) as

t
lkl ull (0 llll ( Ill +al11 )+31 kl Ilull 2 (lull+a i111 )2)1

0(1+ 11112C(S;)) o + I112

(4.10)
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and t

t

t"

c(1+,,2 ’C(C;H)) + 2t lltll2ds c + l
2
CCS;H)+2 t2as

It rei to estate the boldly tes. To this end dedmce

from (2.1), (4.4) d (4.8) that for arbitrily sl 0

(4.11)

|I Uj c
4
(s) - u-ajll

2CCS;H)(IIu-aj C(S;H) + 2lUxIC(S;H) )2

= c(1 + II 2

and

’ 2 "UjIIC4(S) -a c(1 +"uxx’. ujl 6ds - jN ujll,2Cs)
Thus we find

=/j IUj (t)+aj 4-c( I+ Iuj(t)l 4).0 + IlUxxlIc(s;H) (4.12)

and

j=0 1

lu-l 2(I ujl -I|
I t

) j=o
Now from (4.5)-(4.7) and (4.9)-(4.13) we obtain

as+lluxx( t)ll 2
C(S ;H) + c.

Hence the desired second a priori estimate

|ul12 +ull6 +
,

jlIU I12
CCS ;H2) C(S ;L6) j=0 jt L2(S) (4.14)

follows. Via (4.3) we still get

IutIIc(s;H) - c (4.15)
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AccordLug to a well known compactness lemma (cf. [6], Chap. I, Th.

1.5) (4.14) and (4.15) imply the precompactness of the set (ua) in

L2(S;HI) Consequently, there exist a sequence (n) tending to

zero as n--* and a function uL2(S;H2) with utL2(S;H) and

Uj = u(.,j)-ajHI(S) j=0,1, such that the sequence (un) = (n)
satisfies

un-- u (strongly) in L2(S;HI),

Un-- u (weakly) in L2(S;H2)

Unt -- ut in L2(SIH) j--Uj in L2(S).
(4.16)

Now we want to show that u i solution of (4.1), (4.2). Prom the

first relation in (4.16) it follows that |um|2um-->lu2u in L2(S ;H).

Thus we can pass to the limit n-- 0 in (4.3) and obtain (@.I).

Further, u @L2(S;H2) and ut m L2(S;H) imply uC(S;HI). There-

fore by (4.14) we see (cf.[8]) that u belongs to Cw(S;H2) s.ud

satisfies the boundary conditions (4.2). Then the inclusion

utCw(S;H) is a consequence of (4.1).

In order to show that even u@C(S;H2) and utC(S;H) we adapt

an idea of the paper [8. We extend u by setting u(t)=u(O)--uo
for t 0 Let r=r =r (t) be an appropriate even smoothing kernel

(cf. 8,9) and

(r u)(t)=Irz(t-s)u(s)ds’ S--

_
Further let h h h(s) be [I for sE,t-] 0 for s#[O,t
and linear in the intervals [ O, .] and l[t_, %1 I"
We set q:qlr : and v:r(h(qu)t)=r(h(qu)):r*(h(qut))
Prom the evident relations

0 : iS(v,v)t aS : 21mSi(vt,v) ds

0
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we &educe
1

) ds--21mf{(r ’ (h(q@ (iut+Ux)) )-

Letti 0 d usi ut,Cw(S;g), UjtL2(S) we find

0=2f{ (r (h(iut+))-(h’), r.(h))-i jr(hUjt)
2[((’ (ut+))+((ut+)t)-’) (ut) )

i jlr(hUjt)12} = 2hfl(ir(h2ut) (h(ktut2u)t )

1

t)) i 0= Jlr"(hjt)2}ds

Next we let [ 0 Since lul2uHSCS;H) it follows (cf.

O=2[(ut,rrEW(hoUt))]
0

2fi (rW(ho(klut2u)t), r (hoUt))+
+ 0=j r(hUst)l

ily, letti 0 we see tt (cf.

ut(t)l[2 = Ilut(O)2-2 {(k(tul2u)t ut) + IUjtl
Because of ut E Cw(S;H) ts eqtion plies utEC(S;H) . Now

the re imclion EC(S;H) is a coequence of (4.1).

Theorem 4.1 is proved.

5. GALERKIN S ETHOD

In this section we establish Galerkim’s method as a procedure

to solve the problems (3.1), (3.2) and (4.1), (4.2) numerically. We

look for approximative solutions of the form

um=un(t)=ua+l=obl(t)hl um(0)=Uno=Ua+.
= lhl l=(Vo,hl ) (5.1)

Here hl, ua and Vo are the functions given by (2.4) and (3.4).

A function un having the form (5.1) is said to be the n-th Galerkin
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approximation of the solution u of (3.1), (3.2) if the (complex-

valued) coefficient functions bI solve the initial value problem

(iumt+klUnxx+(k2+k3PrUn 2PrUn,hl)=, bl(O)=l, 1=0, ...,n. (5.2)

Here Pr ist the operator defined by (3.6) and r is an arbitrary

bound for maxu(t,x), tS xe[0,1]
REMARK 5.1. We can get a suitable bound r by calculating ax-

plicitly the constant c in (3.15).

REMARK 5.2. By introducing the operator Pr in (5.2) we have

slightly modified the usual Galerkin rule. We had to do so because

we could not find C(S;HI)-a priori estimates for the classical

alerkin approximations.

REMARK 5.3. In order to solve (5.2) numerically one can intro-
n

duce the functions Vn--e-iPun--e Pua+ blCOS lIKx and rewrite
l=O

(5.2) as follows

2l+ik1lbl (i(k2+k31PrVnl)PrVn+i(e-iPua)xx-kl (2PVnx+
+(p’+ip2)Vn) cos 111x) d bbl=- l’ =0, ,n

TOREM 5.1. Let the assumptions of Theorem 3.1 be satisfied.

Let (un) be the Galerkin sequence given by (5.1), (52) and let

u be the solution of (3.1), (3.2). Then

UnU in C(S;H2), Unt--ut in L2(S;HI) and C(S;H)

PROOf. We can regard the function vn=un-ua as n-th Galerkin

approximation of the solution of problem (3.1 I). Therefore, taking

into account (3.12), (3 13) and the relation CrYo HI the theorem

follows from [4, Satz 2.3.
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COROLLARY 5. I. Let Unj (t)=tln(t, j )-aj and Uj (t)--u(t, j )-aj
j--O, I. Then

in L2(S)Unj --+ Uj in C(S) (Unj)t-- (Uj) t
PROOP. The assertions follow immediately from (5.3) and (2. I ).

Now we turn to Galerkin’s method for the undamped problem (4.1),

(4,2). A function un of the form (5.1) is said to be the n-th

Galerkin approximation of the problem (4. I), (4.2) if the functions

bI solve the following initial value problem

(iUnt+Umxx+kPrUn2Prttn,hl)=O, bl(O)=l I=O, I, ...,n. (5.4).

Here again Pr is the operator from (3.6), r is an arbitrary bound

for max|u(t,x), tS, xe[0,1]. (The existence of such a bound is

guaranteed by (4.14) )

REMARK 5.4. Introducing Vn=e blCOS 11[x, we can write

(5.4) in the form

l+ilbl=(ikPrVnl2PrVn+i(e-iPua)xx-2pVnx-(P’+ip2)Vn cos 11 x)

bl(O)=pl l=0,1,...,n

which is more oonvenlent for numerical purpose.

THEORE 5.2. Suppose ,jZO, j=0,1, Vo=Uo-UaV Let (un) be

the Galerkin sequence given by (5.1), (5.4) and let u be the solu-

tion of (4.1), (4.2). Set Unj=Un(t,j)-aj, Uj(t)=u(t,j)-aj, j=0,1.

Then

Un-+ u in C(S;H) j Unj--+j Uj in L2(S)
n

PROOP. We write Wn=Ua+ (u-ua,h1)h1 Now from Lemma 2.3,
1=O

Uo-UaV and Theorem 4.1 it follows that

Uno--guo in H2, Wn--@ u in L2(S;H2) and C(S;HI)
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(5.5)

Wnt--+ut in L2(S;H)

Setting qn=U-Un Qnj (’’ j)-un(’’ j ) Zn=Wn-U Z

we conclude from (5.1) and (5.4) that

nj=Wn(’’ j)-u(’’ j %

t
0 21m 0 (iqnt+qnxx+k( u-PrUl 2PrUn), qn+Zn) ds

j=O
I

PrUn12PrUn qn+Zn)-i (qn, Znt ) +2i
j=O

o’Qnjnj+ (qnznxx) ds +

2Re(qn(t),Zn(t)) (qn(O),Zn(O))].
Using" (3.8) (for k2=O k3=k) and (5.5) we deduce from this equa-

tion the theorem.

REN 5.5. The proved convergence of the boundary values

Un(t,j) is of some physical interest because they represent the

reflexion and transmission properties of the plasma layer described

by (4. ),
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