Internat. J. Math. & Math. Sci. Vol. 2 #3 (1979) 473-480

A POINTWISE CONTRACTION CRITERIA FOR THE EXISTENCE OF FIXED POINTS

V. M. SEHGAL

Department of Mathematics University of Wyoming Laramie, Wyoming 82071 U.S.A.

(Received May 7, 1979)

<u>ABSTRACT</u>. Let S be a subset of a metric space (X,d) and T: $S \rightarrow X$ be a mapping. In this paper, we define the notion of lower directional increment QT(x,y] of T at $x \in S$ in the direction of $y \in X$ and give sufficient conditions for T to have a fixed point when QT(x,Tx] < 1 for each $x \in S$. The results herein generalize the recent theorems of Clarke (Canad. Math. Bull. Vol. 21(1), 1978, 7-11) and also improve considerably some earlier results. AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 47H10, Secondary 54H25.

INTRODUCTION.

In a recent paper [2], Clarke introduced the notion of lower derivative $\underline{DT}(x,Tx)$ for a mapping T: $X \rightarrow X$ on a metric space X and obtained sufficient conditions for a continuous mapping T to have a fixed point in X when $\underline{DT}(x,Tx) < 1$ for each $x \in X$. However, in order that $\underline{DT}(x,y)$ be

finite, it is necessary that (x,y) (to be defined later) contain points arbitrary close to x whenever $x \neq y$. The purpose of this paper is (a) to remove the i ove restriction by introducing the notion of lower directional increment (see below), (b) to consider mappings that are not necessarily continuous and are defined on a subset S of X with values in X. As a consequence of our main result, we obtain the results contained in [2] and also some other results (see [3] and [5]).

1. PRELIMINARIES.

Throughout this paper, let (X,d) denote a complete metric space and S a nonempty subset of X. A function $\phi: S \rightarrow R^+$ (nonnegative reals) is lower semicontinuous (1.s.c.) on S iff for each $x_0 \in S \{x \in S: \phi(x) > r\}$ is open for each real r. It is easy to verify that given a function $\phi: S \rightarrow R^+$, the function ϕ induces a partial order \leq in S given by

$$x \leq y$$
 in S iff $d(x,y) \leq \phi(y) - \phi(x)$. (1.1)

The following Lemma is well-known (see Brondsted [1] or Kasahara [4]).

LEMMA 1. Let S be a closed subset of X and $\phi: S \rightarrow R^+$ be a l.s.c. function on S. Then there is an element $u \in S$ which is minimal with respect to partial order (1.1) in S.

As a consequence of Lemma 1, we have

LEMMA 2. Let S be a closed subset of X and $\phi: S \rightarrow R^+$ be a l.s.c. function on S. Then for each ε with $0 < \varepsilon < 1$, there exists a $u = u(\varepsilon) \in S$ such that

$$\phi(\mathbf{u}) \leq \phi(\mathbf{x}) + \varepsilon d(\mathbf{x}, \mathbf{u}), \qquad (1.2)$$

for each $x \in S$.

PROOF. The proof is immediate by Lemma 1 (if we replace the metric d by d_{ϵ} , $d_{\epsilon} = \epsilon \cdot d$).

LEMMA 3. Let S be a closed subset of X and $\phi: S \rightarrow R^+$ be a l.s.c. on S. If for a sequence $\{x_n\} \subseteq S$ with a cluster point x_0 ,

$$\phi(\mathbf{x}_n) \leq \phi(\mathbf{x}) + \frac{1}{n} d(\mathbf{x}, \mathbf{x}_n),$$

for each $x \in S$, then $\phi(x_0) \leq \phi(x)$ for each $x \in S$.

PROOF. The proof is immediate since for any l.s.c. f, $d(y_n, y) \neq 0$ implies that $f(y) \leq \underline{\lim_{n \to \infty}} f(y_n)$.

2. MAIN RESULTS.

Let S be a subset of X. For an $x \in S$ and $y \in X$ with $x \neq y$, define

$$(x,y] = \{z \in X: z \neq x \text{ and } d(x,z) + d(z,y) = d(x,y)\}$$

note that $y \in (x,y]$.

Let T: $S \rightarrow X$ be a mapping. For $x \in S$ and $y \in X$, define the lower directional increment QT(x,y] of T at x in the direction y as

QT(x,y] = 0, if x = y,
=
$$\inf\{\frac{d(Tx,Tz)}{d(x,z)}: z \in (x,y] \cap S\}, if (x,y] \cap S \neq \phi,$$

= ∞ , if (x,y] $\cap S = \phi$.

For the convenience of the notation, we shall denote $\rho(x,y) = \frac{d(Tx,Ty)}{d(x,y)}$ if $x \neq y$.

REMARK. It may be noted that if QT(x,y] is finite and $x \neq y$, then there is a sequence $\{z_n\} \subseteq (x,y] \cap S$ such that $\rho(x,z_n) \neq QT(x,y)$.

The following is the main result of this paper and is related to the lines of argument in [2].

THEOREM 1. Let S be a closed subset of X and T: $S \rightarrow X$ be a mapping satisfying the following conditions:

The mapping
$$\phi: S \rightarrow R^+$$
 defined by $\phi(x) = d(x,Tx)$ is l.s.c. on S, (2.1)
For each $x \in S$, $QT(x,Tx] < 1$, (2.2)
If $\alpha = \sup\{QT(x,Tx]: x \in S\}$ then either (a) $\alpha < 1$ or (b) if $\alpha = 1$

then any sequence $\{x_n\} \subseteq S$ for which $QT(x_n, Tx_n] \rightarrow 1$ implies that the sequence $\{x_n\}$ has a cluster point. (2.3)

Then T has a fixed point in S.

PROOF. It follows by Lemma 2, that for each positive integer n, there is a $u_n \in S$ such that

$$\phi(u_n) \leq \phi(x) + \frac{1}{n} d(x, u_n), \qquad (2.4)$$

for each $x \in S$. We assert that if $\alpha < 1$ then $u_n = Tu_n$ for some n and if $\alpha = 1$, then $QT(u_n, Tu_n] \rightarrow 1$. Suppose $u_n \neq Tu_n$ for any n. Then by the remark, for each fixed n, there exists sequence $\{z_m\} \subseteq (u_n, Tu_n] \cap S$ such that

$$\rho(\mathbf{u}_{n}, \mathbf{z}_{m}) \neq QT(\mathbf{u}_{n}, T\mathbf{u}_{n}]$$
(2.5)

as $m \rightarrow \infty$. It now follows by (2.4) that for each m,

$$\phi(u_n) \leq \phi(z_m) + \frac{1}{n} d(u_n, z_m) \leq d(z_m, Tu_n) + d(Tu_n, Tz_m) + \frac{1}{n} d(u_n, z_m).$$
(2.6)
Since for each m, $d(u_n, z_m) + d(z_m, Tu_n) = \phi(u_n)$. We have for each m,

 $(1 - \frac{1}{n}) \leq \rho(u_n, z_m).$

Therefore, as $m \rightarrow \infty$, it follows by (2.5) and (2.2) that for each fixed n,

$$(1 - \frac{1}{n}) \leq QT(u_n, Tu_n] < 1.$$

Consequently, if $u_n \neq Tu_n$ for any n, then $QT(u_n,Tu_n) \rightarrow 1$. Therefore, if (2.3a) holds, then $u_n = Tu_n$ for some n and the theorem is established in this case, otherwise by (2.3b), the sequence $\{u_n\}$ has a cluster point $u \in S$. It follows by Lemma 3, that

$$\phi(\mathbf{u}) < \phi(\mathbf{x}), \qquad (2.7)$$

for each $x \in S$. We assert that Tu = u. Suppose $Tu \neq u$. Then again by the remark, there is a sequence $z_n \in (u,Tu] \cap S$ such that as $n \neq \infty$,

$$\rho(\mathbf{u}, \mathbf{z}_n) \rightarrow QT(\mathbf{u}, T\mathbf{u}]$$
(2.8)

However, by (2.7) and the relation $d(u,z_n) + d(z_n,Tu) = \phi(u)$, we have for each n,

$$d(u,z_n) + d(z_n,Tu) = \phi(u) \le \phi(z_n) \le d(z_n,Tu) + d(Tu,Tz_n).$$

This implies that $\rho(u, z_n) \ge 1$ for each n and hence by (2.8) $QT(u, Tu] \ge 1$. This contradicts (2.2). Thus u = Tu.

3. SOME APPLICATIONS.

For a mapping T: $X \rightarrow X$, Clarke [2] defined lower derivative $\underline{D}T(x,y)$ of T at x in the direction of y as $\underline{D}T(x,y) = 0$, if x = y, $= \underline{\lim}_{z \rightarrow x} \rho(x,z)$, if $(x,y) = (x,y] \{y\} \neq \phi$, $z \in (x,y)$ $= \infty$, if $(x,y) = \phi$, where $\underline{\lim}_{z \rightarrow x} \rho(x,z) = \lim_{z \rightarrow x} [\inf \rho(x,z)]$. $\epsilon \rightarrow 0 \ z \in (x,y)$ $z \in (x,y) d(z,x) < \epsilon$

Since for any $x,y \in X$, $QT(x,y] \leq DT(x,y)$, the following results in [2] are special cases of Theorem 1.

COROLLARY 1. Let T: $X \rightarrow X$ be a continuous mapping such that sup{ $\underline{DT}(x,Tx): x \in X$ } < 1. Then T has a fixed point.

COROLLARY 2. Let T: $X \rightarrow X$ be a continuous mapping such that

 $\underline{DT}(x,Tx) < 1$ for each $x \in X$. If for any sequence $\{x_n\}$ in X with $\underline{DT}(x_n,Tx_n) \neq 1$ implies that the sequence $\{x_n\}$ has a cluster point, then T has a fixed point.

The following simple examples show that both Corollaries 1 and 2 are indeed special cases of Theorem 1.

EXAMPLE 1. Let $X = \{0,1\}$ with the discrete metric and $T: X \rightarrow X$ be a constant mapping defined by Tx = 0 for each $x \in X$. Since $(1,T1) = \phi$, <u>D</u>T(1,T1) = ∞ , T does not satisfy the conditions of Corollary 1. However, since T is continuous and QT(x,Tx] = 0 for each $x \in X$, T satisfies conditions of Theorem 1 and it follows T has a fixed point.

EXAMPLE 2. Let X be the closed interval $[\frac{1}{2},3]$ with the usual metric. Let T: X \rightarrow X be the mapping defined by

$$Tx = \frac{1}{x} + 1.$$

Clearly, T is continuous, strictly decreasing and for each x with $Tx \neq x$, $(x,Tx) \neq \phi$. Further, it is easy to verify that for any $x \neq z$, $\rho(x,z) = \frac{1}{xz}$ and therefore, for any $x \in X$ with $x \neq Tx$, $\underline{DT}(x,Tx) = \frac{1}{x^2}$. Consequently, if $x \leq 1$, $\underline{DT}(x,Tx) \geq 1$ and hence T does not satisfy conditions of Corollary 2. However, since for any $x \neq Tx$, $Tx \in (x,Tx]$,

$$QT(x,Tx] = \inf \{\frac{1}{xz}: z \in (x,Tx]\} \le \frac{1}{x \cdot Tx} = \frac{1}{x+1} < 1.$$

Since X is compact, T satisfies conditions of Theorem 1. In this case $x = \frac{1+\sqrt{5}}{2}$ is the only fixed point of T in X.

For a set $S \subseteq X$, let S^{O} denote the interior of S and δS its boundary. A mapping T: $S \rightarrow X$ is a contraction mapping if there exists a constant k < 1 such that for all $x, y \in S$, $d(Tx, Ty) \leq kd(x, y)$. As another consequence of Theorem 1, we have

COROLLARY 3. Let S be a closed subset of a Banach space X and T: S \rightarrow X be a contraction mapping. If $T(\delta S) \subset S$, then T has a fixed point.

PROOF. Since T is continuous and for any $x,z \in S$, $\rho(x,z) \leq k \leq 1$, it suffices to show that for any $x \in S$ with $x \neq Tx$, $(x,Tx] \cap S \neq \phi$. Now, if $x \in S^{\circ}$, then for some $\varepsilon > 0$, $S(x,\varepsilon) = \{y: ||y-x|| < \varepsilon\} \leq S$. Choose a λ , $0 < \lambda < 1$ such that $(1-\lambda) ||x-Tx|| < \varepsilon$. Then $z = (\lambda x + (1-\lambda)Tx) \in$ $S(x,\varepsilon) \cap (x,Tx]$ and hence $(x,Tx] \cap S \neq \phi$. If $x \in \delta S$, then by hypothesis $Tx \in S$ and consequently $Tx \in (x,Tx] \cap S$. Thus $\alpha = \sup\{QT(x,Tx]: x \in S\} < 1$.

The result below was obtained by Su and the author [5] (see also Edelstein [3]) and is again a consequence of Theorem 1.

COROLLARY 4. Let S be a compact subset of a Banach space X and T: S \rightarrow X be a mapping satisfying the condition: for all x,y \in S, x \neq y, ||Tx-Ty|| < ||x-y||. If T(δ S) \subseteq S, then T has a fixed point.

PROOF. As in the proof of Corollary 3, for any $x \in S$ with $x \neq Tx$, $(x,Tx] \cap S \neq \phi$. Therefore, it follows by hypothesis that for any $x \in S$, QT(x,Tx] < 1. Since compactness implies (2.3b), T satisfies the conditions of Theorem 1 and has a fixed point in S.

V. M. SEHGAL

REFERENCES

- Brondsted, Arne. Fixed Points and Partial Orders, <u>Proc. Amer. Math.</u> <u>Soc. 60</u> (1976) 365-366.
- Clarke, Frank H. Pointwise Contraction Criteria for the Existence of Fixed Points, <u>Canad. Math. Bull.</u> <u>21</u> (1) (1978) 7-11.
- Edelstein, M. On Fixed and Periodic Points under Contractive Mappings, J. London Math. Soc. <u>37</u> (1962) 74-79.
- Kasahara, S. On Fixed Points in Partially Ordered Sets and Kirk-Caristi Theorem, <u>Math. Seminar Notes</u>, <u>Kobe University</u>, (3),2(1975).
- Su, C. H. and Sehgal, V. M. Some Fixed Point Theorems for Nonexpansive Mappings in Locally Convex Spaces, <u>Boll. Un. Mat. Ital.</u> (4), 10(1974) 598-601.

KEY WORDS AND PHRASES. Lower derivative, Lower directional increment, Fixed point theorems