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ABSTRACT. Let X be a compact subset of the complex plane . We denote by

Ro(X) the algebra consisting of the (restrictions to X of) rational functions

with poles off X. Let m denote 2-dlmenslonal Lebesgue measure. For p >_ I,

let Rp(X) be the closure of R0(X) in Lp(X,dm).

In this paper, we consider the case p 2. Let x e X be both a

bounded point evaluation for R
2 (X) and the vertex of a sector contained in

Int X. Let L be a lne which passes through x and bisects the sector.

For those y E L X that are sufficiently near x we prove statements

R
2

about If(y) f(x) for all f (X).
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i. INTRODUCTION.

Let X be a compact subset of the complex plane . We denote by R0(X)
the algebra consisting of the (restrictions to X of) rational functions with

poles off X. Let m denote 2-dimenslonal Lebesgue measure. For p > I, let

Lp(X) Lp(X,dm). The closure of (X) in Lp(X) will be denoted by Rp(X).
-i -i

Whenever p and q both appear, we will assume that p + q i.

In "Bounded point evaluations and smoothness properties of functions in

RP(x) ’’, [6, p. 76], we proved the following:

THEOREM i.i. Let be an admissible function and s a nonnegative

integer. Suppose that p > 2 and that there is an x X represented by a

function g Lq(X) such that (z-x)-s(l z-xl)-ig Lqv (X). Then for every

> 0 there is a set E in X having full area density at x such that for

every f E RP(x)

(i) f
s

(DJxf) (z-x) j + R
J--O

where R Rp(X) satisfies

(iii) app lim R(y) O.

for all y E, and

It is natural to ask whether a similar result holds for the case p 2.

The problem in extending the proof of Theorem i.i to the case p 2 is that

-i L2z loc" Fernstrm and Polking have shown at least one way in which the

case p > 2 differs from p 2 [2, pp. 5-9]. They have constructed a compac!

set X such that R2(X) + L2(X) but no point in X is a bounded point eval-

uation for R2(X). In this paper we consider the case p 2 when x e X

is a bounded point evaluation for R2(X) and is a special kind of boundary

point. We will assume that x X is the vertex of a sector contained in

Int X.



SMOOTHNESS PROPERTIES OF FUNCTIONS 417

To prove our theorem we will need the representing functions used in [6]

and a capacity defined in terms of a Bessel kernel. We will also use results

of Fernstrm and Polking to construct a representing function for x with

support outside the sector mentioned above.

2. REPRESENTING FUNCTIONS.

In this paper z will denote the identity function.

DEFINITION 2.1. A point x e X is a bounded point evaluation (BPE) for

R2(X) L2(X) if there is a constant C such that

I R2If(x) < C{ Ifl2dm}112 for all f e (X).

It follows from the Rlesz representation theorem that if x X is a

BPE for R2(X) then there is a function g (X) such that f(x) fg dm

for all f R2(X). Such a g is called a representing function for x.

DEFINITION 2.2 We define the Cauchy transform of g to be

(y) [ (z-y)-lg dm

for each y such that I z-Yl-iIgldm < ""
The following lemma was proved by Bishop for the sup norm case. The

proof for our case is similar and is found in [6, p. 73].

that- g L2(X) and that [ fg dm- 0 for allLEMMA 2.1. Suppose

L2f R2(X) Suppose that (y) is defined and + 0 and that (z-y)-ig (X).

Then (y)-l(z-y)-lg is a representing function for y.

Let c(y) (z-x)(z-y)-ig dm i + (y-x)(y). From the above lemma

there follows

L2COROLLARY 2 1 Let g (X) be a representing function for x X.

Then c (y)-i (z-x) (z-y)-Ig is a representing function for y whenever c (y)

is defined and + O, and (z-y)-ig L
2
(x).
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3. CAPACITY DEFINED USING A BESSEL KERNEL.

Denote the Bessel kernel of order i by G
I where G

I
is defined in

terms of its Fourier transform by

l(Z) (i+ Iz12) -1/2
L2For f e (C) we define the potential

UIf(z) I Gl(z-y)f(y)dm(y)"
L2f

f e where
2

denotes the space of functions UI,DEFINITION. i
the norm is defined by IUI 2"

2
is the Sobolev space of functions in L

2
whose distri-DEFINITION. LI

bution derivatives of order i are functions in L2.
2

equals the space of functionsThe Calderdn-Zygmund theory shows that i
LI2 and that the norms are equivalent [4].

We recall the definition of the capacity F2.

DEFINITION. Let E be an arbitrary set. Then F2(E)
inf Igrad 12dm where the infimum is taken over all e LI such that

m >_ i on E. Hedberg has used this capacity to characterize BPE’s for

R2(X) [3]. The next theorem is proved in [6, p. 82].

THEOREM 3.1. Let 0 X be a BPE for R2(X) tkat is represented by

L
2

a function v (X). Suppose that is an admissible function such that

(I z l)-iv L2 -mr
2

e (x). Then 22n(2-n) (An\X) < .
n=l

REMARK. The theorem is, in fact, true if is any positive non-

decreasing function defined on (0,).

Now we define the Bessel capacity which Fernstrm and Polking use to

describe BPE’s for R2(X).
DEFINITION. Let E be an arbitrary set. Then CI, 2(E)

inf .f.2dm where the infimum is taken over all f () such that

ff(z) >_ 0 and Ul(Z) >_ i for all z e E.
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2
and

2
implies that the capacitiesThe equivalence of the norms on ’i LI

F2 and C1 2
are equivalent.

4. A FUNDAMENTAL SOLUTION FOR

We will use 8 (81,82 to denote a double index that may be (0,0),

(0,i), or (i,0). We set 181 81 + 82 Letting z x + iy, we denote

the first order partial derivatives by

81 82
D

81 82
@x @y

The differential operator 2 x +
2

i.i)
z

zw as a hi-regular fundamental solution. Hence ---H(z,w) and
w

t__t H(z,w) where is the formal ad]oint of and is the
z

Dirac measure supported at z. We note that for 8 (0,0), (0,i), (i,0)

1 -1-1 1IDs.<0,z) <_Tlzl z+0.
The next lemma links BPE’s to the function H(w,z). A proof which includes

this as a sp.eclal case is in [2, p. 3].

LEMMA 4.1. A point z
0

e X is a BPE for R2(x) L2(x) if and only if

2 () such that f(z) i( i
there is a function f e Ll,loc z_z0) for all

z e \X.
The next lemma we need is proved by Fernstrm and Polking in [2, pp. 13-15].

It is interesting that this lemma holds for 8 (0,0) as well as (0,i)

and (i,0). Before stating it we introduce more notation.

DEFINITION. For a compact set X, let

X {zlDist(z,X) < }.

DEFINITION. We denote (0) {z12-k-I <_ zl <_ 2-k+l} by .
DEFINITION. Let {z12-k-2 <_ zl <_ 2-k+I}-

LEMMA 4.2. Let X be compact and suppose that
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[ 22kci,2 (Ak\X) < ""
Then for each > 0 and for each k > 0 there is a function k e C

such that

(i) k(Z) I for z near \ Xe, and

(il) ! IDSk(Z) 12am(z) <- F2-2k(I-]I)CI,2(\X)
Izl
for 8 (0,0), (0,i), and (i,0). The constant F is independent

of k.

5. THE MAIN RESULT.

It is no restriction to assume that the boundary point x e X is the

origin (x 0). Also, we may assume that X { zl < 2}. In taking 0

to be the vertex of a sector in Int X we mean that there are numbers

a, , 0 -< a < < 2, and a number a, 0 < a < 2, such that if (r,8) are

polar coordinates, and S {(r,8) la < 8 < 8, 0 -< r < a}, then Int S Int X.

8-a 0 < r < a}. Since y Int XLet L be the mld-llne L {(r,8)18 ---is a BPE for R2(x), we may use f(y) to represent the value of that linear

R
2

functional at a given f e (X). We want to study f(y) f(0) for

R
2

f e (X) as y approaches 0 along L.

L2First we will construct a function g (X) which represents 0 for

R2(X) and which has support disjoint from a sector surrounding L. This

second sector S’ is a subset of S defined by

S’ {(r,8)la + < 8 < ----, 0 -< r < a}.

LEMMA 5.1. Suppose that 0 is a BPE for R2(X) that is the vertex of

L2a sector S in X. Then, there is a function g e (X) such that:

(1) g represents 0 for R2(x),
(il) m((supp g) f S’) 0,

(iii) For all n >-0,
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n+l

2kClIg]2dm < F 1 2 (\X)
A % X k--n-i ,2

n

where F is a constant independent of n.

PROOF. Choose X C0(RI) such that

(t) Ii
For each integer k set

I
if t -< or t >- 2

i
if <tbl

Xk(.) (2kl1)/ Y. x(2J1.l) for z \Int S.

For those values of z in Int S define Xk(Z) so that the following

three conditions are satisfied:

(i) kk(z) C

(2) (z) 0 for z X ’ S’, and

(3) There are constants FI and F
2

such that for all k

k(z) k(z)
2kI- x < Fl2k and I- y < F2

The constants FI and F
2

are independent of k.

Given > 0 choose the functions k of Lemma 4.2. On the complement

of X we have k%k %k since supp %k C . Thus, I k%k I on
0

A(0,1/4)\X. Choose X e CO with X(z) I near X. Set h(z) E(z)H(0,z)

i
where H(0,z) ---.z

For each double index 8 (0,0), (0,i), and (i,0) there is a constant

F8 such that

IDSh(z) < FsIzl -I-181
These inequalities follow from those of Section 4 and the fact that X and

its derivatives are bounded. Set fE h
0
[ k khk where h

k h.
Since supp %k C , the above inequalities imply that
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(*) IDS(z) < F82k(l+ISl)"
Henceforth, we will limit the number of symbol.s denoting constants by

letting F denote any constant The inequalities (*) combined with Lemma 4.2

imply that

e 2
-< F IDS(z)DYk(Z 12dm(z)

LI I+ I<l
_< F I 22k(i+181)

k--0 18+ I<I z l_2_k+l
D k(Z) 12dm(z)

-< F 22kc
1k;O ,2

Finally, by the subadditivity of the capacity CI, 2, we have

II f I12 < F I 22kc
I (\X)e 2 2

L
1

k--0

2
The net {fe } is bounded in LI. We can choose a subsequence {fe

J2 Let f(z) lim f (z) + (I-x)H(0,z) forthat converges weakly in LI. J- J2
z e \X. Then f Ll,loc, and f(z) H(0,z) for z e \X. Note that

since f (z) 0 for all z e X f% S’ f(z) 0 for a e z e X S’

zeXfNS’.

t L2Set g--- f. Then g (X), and g is a representing function for

0 (see [2, p. 3]). If z X, g(z) 0. Clearly, m((supp g) ’ S’) 0.

We have

A X A nX
n n

I DShkDk< F 12dm-
18+ 1-<i k=O A X

n

The integral f JDShk,kl2dm will be nonzero only for those k such that

n

i.e., k --n- i, n, n + i. Thus, by (*) and Lemma 42,
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Igl2dm < F . IDShkD%kl2dm18+ I<I k--n-i
AOX AX
n n+l

n

< F [ 22kci 2(\X).
k--n-i

This completes the proof of (i), (ii), and (iii).

We will use the next lemma to obtain representing functions for points

near 0 on the line segment L. Let 0,X,S, and g be as in the previous

lemma, and let c(y) be as defined in Section 2.

L2LEMMA 5 2 Let 0 e X be represented by a function v e (X).

Suppose that is an admissible function and that v(z)(Izl)-i L
2 (x).

Then for any e > 0 there exists a such that if IYl < and y e L,

then Ic(y) I + Y(Y) > i E.

PROOF Since the capacities r
2

and CI, 2
are equivalent, Theorem 3.1

implies that

[ 22n (2-n)-2Ci,2 (A \X) <
nn=l

To show that c(y) is defined, we first note that

IYll I g’(z-Y)-idml -< *(IYl)(lYl)I
where (r) r-(r) -I By definition of S’ there is a constant kI such

that kllZ-y > Izl for any y L and z e X\S’ {0}. Similarly, there

is a constant k
2 such that k21z-y >- IYl for any y L and z XkS’ {0}.

Since # and are both increasing,

(Izl)(lz-yl) -I < kI and ,(lyl),(Iz-yl) -I < k2.

Hence

We claim that g’-i L2

IYl g. (z-y) < (IY

(X) and therefore g -I L
I

e (X). First observe

that

Igl2.-2dm < . (2-n)-2 jgl2dm.
n=l AOX

n
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By Lemma 5.1 and the subadditivity of CI, 2 we get

_222ncigl2-2dm < (2-n) (An\X)
n=l ,2

The capacity series converges. Thus, (y) is defined. Since lira (r) 0,

we can choose for any given e > 0 a > 0 such that

for IYl < and y L. It follows that Ic(Y) I + Y(Y) > i- e.

In the following theorem, X, 0, and L are just as they have been.

THEOREM 5.1. Let 0 X be a BPE for R2(X) which is represented by

R
2

function v (X). Suppose that is an admissible function and that

v(z)(Izl)-I L2 (X). Then for any e > 0 there is a > 0 such that if

y e L A(0,),

If(y) f(0) < e(lyl)llfl 12
R2for all f (X).

L
2

PROOF. Let g e (X) be a representing function for 0 as in Lemma 5.1.

Choose i by Lemma 5.2 so that for y L and IYl < i’ Ic(Y) > 1/2.

Then by Corollary 2.1,

f(y) f(0) c(y) -1 i
c(Y)-I IY(Y)- I

Thus, for y e L and Yl < I

[f f(0)]z(z-y)-igdm
-i[f- f(0)][l + y(z-y) ]gdm

[f f (0) (z-y)-igdm.

f(0) -< 21yl
r

J If- f(0)l Iz-yl-Zlgldm.If(Y)

There exists a monotone, increasing function such that llm (r) 0
r+0+

and (Izl)-l(l zl)-Iv(z) L2(x) (see [6, p. 74]). Moreover, we may choose

so that the function r(r)-l(r)-I is also monotone increasing. Let

(r) (r).(r). Then recalling that kllZ-y > Izl and k21z-y > lYl
for y e L and z e X\S’ {0}, we have
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If(y) f(0) _< F(lyl)llf il 2 { . (2-n)-2 Igl2dm}I/2.
n=l AX

If the sum of the infinite series is less than i, the theorem is nearly

proved. Suppose the sum is greater than or equal to I. Then

If(Y) f(0) < FI (lyl)]Ifl 12 I 22n(2-n)-2Cl,2 (%\X)
n--1

<- F$(IYl)*([Y[)IIf[ [2 I 22n(2-n)-2C
1 2(An\X)-

n=l
Since the capacity series converges by Theorem 3.1, we may choose 6

2 such that

for IYl < 62 F$ClYl) 22nc2-n)-2Cl 2CAn\X) < "n=l

Then If(y) f(O) < e,(lY[)llfll 2
for [Yl < min(l,2) and y e L.

This concludes the proof.

REMARKS. (i) If 0 e X is a BPE for R2(X), there always exists an

admissible function as in the hypotheses of Theorem 5.1 (see [5, p. 74]).

(ii) The theorem may be extended by techniques of Wang [5] to

include bounded point derivations of order s so that a statement similar

to Theorem l.l(ii) holds for y e L % (0,).

(iii) For certain sets X a point 0 e X which is a BPE for

R2(x) may not be the vertex of any sector having interior in Int X. Suppose,

however, that 0 is a cusp for a curve whose interior is in Int X. Let L

be a llne segment which bisects the cusp at 0 and let C denote the interior

of the cusp near 0. Then if y L C and z e X\C, ly-zlT(lyl) >- lyl

where r is a monotone decreasing function such that lim+v(r) =. Depending

on how rapidly r approaches at 0 (or how rapidly the cusp "narrows"),

we can show that functions in R2(X) satisfy an inequality similar to that

of Theorem 5.1.
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