SMOOTHNESS PROPERTIES OF FUNCTIONS IN R ${ }^{\mathbf{2}}$ (X) AT CERTAIN BOUNDARY POINTS

EDWIN WOLF
Department of Mathematics
East Carolina University Greenville, North Carolina 27834

(Received January 31, 1979)

ABSTRACT. Let X be a compact subset of the complex plane ϕ. We denote by $R_{0}(X)$ the algebra consisting of the (restrictions to X of) rational functions with poles off X. Let m denote 2-dimensional Lebesgue measure. For $p \geq 1$, let $R^{p}(X)$ be the closure of $R_{0}(X)$ in $L^{p}(X, d m)$.

In this paper, we consider the case $p=2$. Let $x \varepsilon \partial X$ be both a bounded point evaluation for $R^{2}(X)$ and the vertex of a sector contained in Int X. Let L be a line which passes through x and bisects the sector. For those $y \in L \cap X$ that are sufficiently near x we prove statements about $|f(y)-f(x)|$ for all $f \varepsilon R^{2}(X)$.
KEY WORDS AND PHRASES. Rational functions, compact set, L^{p}-spaces, bounded point evaluation, admissible function.

1980 Mathematics Subject Classification Codes: Primary 30A98, Secondary 46 E99.

1. INTRODUCTION.

Let X be a compact subset of the complex plane $\boldsymbol{\phi}$. We denote by $R_{0}(X)$ the algebra consisting of the (restrictions to X of) rational functions with poles off X. Let m denote 2-dimensional Lebesgue measure. For $p \geq 1$, let $L^{p}(X)=L^{p}(X, d m)$. The closure of $R_{0}(X)$ in $L^{p}(X)$ will be denoted by $R^{p}(X)$. Whenever p and q both appear, we will assume that $p^{-1}+q^{-1}=1$.

In "Bounded point evaluations and smoothness properties of functions in ${ }_{R}{ }^{p}(\mathrm{X})$ ", [6, p .76$]$, we proved the following:

THEOREM 1.1. Let ϕ be an admissible function and s a nonnegative integer. Suppose that $p>2$ and that there is an $x \varepsilon X$ represented by a function $g \varepsilon L^{q}(X)$ such that $(z-x)^{-8} \phi(|z-x|)^{-1} g \varepsilon L^{q}(X)$. Then for every $\varepsilon>0$ there is a set E in X having full area density at x such that for every $f \in R^{P}(X)$
(i) $f=\sum_{j=0}^{S}\left(D_{x}^{j} f\right)(z-x)^{j}+R$ where $R \in R^{p}(X)$ satisfies
(ii) $|R(y)| \leq \varepsilon|y-x|^{\mathbf{s}} \phi(|y-x|)| | f| |_{p}$ for all y εE, and
(iii) app $\lim _{y \rightarrow x} \frac{R(y)}{|y-x|^{s} \phi(|y-x|)}=0$.

It is natural to ask whether a similar result holds for the case $p=2$. The problem in extending the proof of Theorem 1.1 to the case $p=2$ is that $z^{-1} \notin \mathrm{~L}_{10 c}^{2}$. Fernstrơm and Polking have shown at least one way in which the case $p>2$ differs from $p=2$ [2, $p p$. 5-9]. They have constructed a compaci set X such that $R^{2}(X) \neq L^{2}(X)$ but no point in X is a bounded point evaluation for $R^{2}(X)$. In this paper we consider the case $p=2$ when $x \varepsilon \partial X$ is a bounded point evaluation for $R^{2}(X)$ and is a special kind of boundary point. We will assume that $x \varepsilon \partial X$ is the vertex of a sector contained in Int X.

To prove our theorem we will need the representing functions used in [6] and a capacity defined in terms of a Bessel kernel. We will also use results of Fernstrobm and Polking to construct a representing function for x with support outside the sector mentioned above.
2. REPRESENTING FUNCTIONS.

In this paper z will denote the identity function.
DEFINITION 2.1. A point $x \varepsilon X$ is a bounded point evaluation (BPE) for $R^{2}(X) \subset L^{2}(X)$ if there is a constant C such that

$$
|f(x)| \leq C\left\{\int|f|^{2} d m\right\}^{1 / 2} \quad \text { for all } f \varepsilon R^{2}(X) .
$$

It follows from the Riesz representation theorem that if $x \in X$ is a BPE for $R^{2}(X)$ then there is a function $g \in L^{2}(X)$ such that $f(x)=\int f g d m$ for all $f \varepsilon R^{2}(X)$. Such $a g$ is called a representing function for x.

DEFINITION 2.2. We define the Cauchy transform of g to be

$$
\hat{g}(y)=\int(z-y)^{-1} g d m
$$

for each y such that $\int|z-y|^{-1}|g| d m<\infty$.
The following lemma was proved by Bishop for the sup norm case. The proof for our case is similar and is found in [6, p. 73].

LEMMA 2.1. Suppose that $g \in L^{2}(X)$ and that $\int f g d m=0$ for all $f \varepsilon R^{2}(X)$. Suppose that $\hat{g}(y)$ is defined and $\neq 0$ and that $(z-y)^{-1} g \varepsilon L^{2}(X)$. Then $\hat{g}(y)^{-1}(z-y)^{-1} g$ is a representing function for y.

Let $\quad c(y)=\int(z-x)(z-y)^{-1} g d m=1+(y-x) \hat{g}(y)$. From the above lemma there follows

COROLLARY 2.1. Let $g \varepsilon L^{2}(X)$ be a representing function for $x \in X$. Then $c(y)^{-1}(z-x)(z-y)^{-1} g$ is a representing function for y whenever $c(y)$ is defined and $\neq 0$, and $(z-y)^{-1} g \varepsilon L^{2}(X)$.

3. CAPACITY DEFINED USING A BESSEL KERNEL.

Denote the Bessel kernel of order 1 by G_{1} where G_{1} is defined in terms of its Fourier transform by

$$
\hat{G}_{1}(z)=\left(1+|z|^{2}\right)^{-1 / 2}
$$

For $f \varepsilon L^{2}(C)$ we define the potential

$$
U_{1}^{f}(z)=\int G_{1}(z-y) f(y) d m(y)
$$

DEFINITION. \mathcal{L}_{1}^{2} denotes the space of functions $U_{1}^{f}, f \varepsilon L^{2}$, where the norm is defined by $\left\|U_{1}^{f}\right\|=\|f\|_{2}$.

DEFINITION. L_{1}^{2} is the Sobolev space of functions in L^{2} whose distribution derivatives of order 1 are functions in L^{2}.

The Calderon-Zygmund theory shows that \mathcal{L}_{1}^{2} equals the space of functions L_{1}^{2} and that the norms are equivalent [4].

We recall the definition of the capacity Γ_{2}.
DEFINITION. Let $E \subset \phi$ be an arbitrary set. Then $\Gamma_{2}(E)=$ $\inf _{\omega} \int|\operatorname{grad} \omega|^{2} \mathrm{dm}$ where the infimum is taken over all $\omega \varepsilon \mathrm{L}_{1}^{2}$ such that $\omega \geq 1$ on E. Hedberg has used this capacity to characterize BPE's for $R^{2}(\mathrm{X})$ [3]. The next theorem is proved in [6, p. 82].

THEOREM 3.1. Let $0 \varepsilon X$ be a BPE for $R^{2}(X)$ that is represented by a function $v \in L^{2}(X)$. Suppose that ϕ is an admissible function such that $\phi(|z|)^{-1} v \varepsilon L^{2}(X)$. Then $\sum_{n=1}^{\infty} 2^{2 n} \phi\left(2^{-n}\right)^{-2} \Gamma_{2}\left(A_{n} \backslash X\right)<\infty$.

REMARK. The theorem is, in fact, true if ϕ is any positive nondecreasing function defined on $(0, \infty)$.

Now we define the Bessel capacity which Fernström and Polking use to describe BPE's for $R^{2}(X)$.

DEFINITION. Let $E \subset \phi$ be an arbitrary set. Then $C_{1,2}(E)=$ inf $\int|f|^{2} d m$ where the infimum is taken over all $f \varepsilon L^{2}(\phi)$ such that $f(z) \geq 0$ and $U_{1}^{f}(z) \geq 1$ for all $z \varepsilon E$.

The equivalence of the norms on \mathcal{L}_{1}^{2} and L_{1}^{2} implies that the capacities Γ_{2} and $C_{1,2}$ are equivalent.

4. A FUNDAMENTAL SOLUTION FOR $\frac{\partial}{\partial \bar{z}}$

We will use $\beta=\left(\beta_{1}, \beta_{2}\right)$ to denote a double index that may be $(0,0)$, $(0,1)$, or $(1,0)$. We set $|\beta|=\beta_{1}+\beta_{2}$. Letting $z=x+i y$, we denote the first order partial derivatives by

$$
D^{\beta}=\frac{\partial^{\beta} 1}{\partial x^{\beta}} \frac{\partial^{\beta_{2}}}{\partial y^{\beta}}
$$

The differential operator $\frac{\partial}{\partial \bar{z}}=\frac{1}{2} \frac{\partial}{\partial x}+\frac{i}{2} \frac{\partial}{\partial y}$ has the function $H(w, z)=$ $\frac{1}{\pi}\left(\frac{1}{z-w}\right)$ as a bi-regular fundamental solution. Hence $\frac{\partial}{\partial \bar{z}} H(z, w)=\delta_{w}$ and $\frac{t^{2}}{\partial \bar{w}} H(z, w)=\delta_{z}$ where $\frac{t^{\prime}}{\partial \bar{w}}$ is the formal adjoint of $\frac{\partial \partial \bar{z}}{\partial \bar{z}}$ and δ_{z} is the Dirac measure supported at z. We note that for $\beta=(0,0),(0,1),(1,0)$

$$
\left|D^{\beta} H(0, z)\right| \leq \frac{1}{\pi}|z|^{-1-|\beta|}, \quad z \neq 0 .
$$

The next lemma links BPE's to the function $H(w, z)$. A proof which includes this as a special case is in [2, p. 3].

LEMMA 4.1. A point $z_{0} \varepsilon X$ is a BPE for $R^{2}(X) \subset L^{2}(X)$ if and only if there is a function $f \in L_{1,1 o c}^{2}(\phi)$, such that $f(z)=\frac{1}{\pi}\left(\frac{1}{z-z_{0}}\right)$ for all $z \varepsilon \phi \backslash X$.

The next lemma we need is proved by Fernström and Polking in [2, pp. 13-15].
It is interesting that this lemma holds for $\beta=(0,0)$ as well as $(0,1)$
and $(1,0)$. Before stating it we introduce more notation.
DEFINITION. For a compact set X, let

$$
X_{\varepsilon}=\{z \mid \operatorname{Dist}(z, X)<\varepsilon\}
$$

DEFINITION. We denote $A_{k}(0)=\left\{z\left|2^{-k-1} \leq|z| \leq 2^{-k+1}\right\}\right.$ by A_{k}.
DEFINITION. Let $A_{k}^{\prime}=\left\{z\left|2^{-k-2} \leq|z| \leq 2^{-k+1}\right\}\right.$.
LEMMA 4.2. Let $\mathrm{X} \subset \phi$ be compact and suppose that

$$
\sum_{k=0}^{\infty} 2^{2 k} C_{1,2}\left(A_{k} \backslash x\right)<\infty
$$

Then for each $\varepsilon>0$ and for each $k \geq 0$ there is a function $\psi_{k} \varepsilon C^{\infty}$ such that
(i) $\psi_{k}(z) \equiv 1$ for z near $A_{k}^{\prime} \backslash X_{\varepsilon}$, and

$$
\begin{align*}
& \quad \int_{|z| \leq 2^{-k+1}}\left|D^{\beta} \psi_{k}(z)\right|^{2} d m(z) \leq F 2^{-2 k(1-|\beta|)} C_{1,2}\left(A_{k}^{\prime} \backslash X\right) \tag{ii}\\
& \text { for } \beta=(0,0),(0,1) \text {, and }(1,0) \text {. The constant } F \text { is independent } \\
& \text { of } k \text {. }
\end{align*}
$$

5. THE MAIN RESULT.

It is no restriction to assume that the boundary point $x \varepsilon \partial X$ is the origin $(x=0)$. Also, we may assume that $X \subset\{|z|<2\}$. In taking 0 to be the vertex of a sector in Int X we mean that there are numbers $\alpha, \beta, 0 \leq \alpha<\beta<2 \pi$, and a number $a, 0<a<2$, such that if (r, θ) are polar coordinates, and $S=\{(r, \theta) \mid \alpha \leq \theta \leq \beta, 0 \leq r \leq a\}$, then Int $S \subset$ Int X. Let L be the mid-1ine $L=\left\{(r, \theta) \left\lvert\, \theta=\frac{\beta-\alpha}{2}\right., 0 \leq r<a\right\}$. Since $y \varepsilon$ Int X is a BPE for $R^{2}(X)$, we may use $f(y)$ to represent the value of that linear functional at a given $f \varepsilon R^{2}(X)$. We want to study $f(y)-f(0)$ for $f \varepsilon R^{2}(X)$ as y approaches 0 along L.

First we will construct a function $g \varepsilon L^{2}(X)$ which represents 0 for $R^{2}(X)$ and which has support disjoint from a sector surrounding L. This second sector S^{\prime} is a subset of S defined by $S^{\prime}=\left\{(r, \theta) \left\lvert\, \alpha+\frac{\beta-\alpha}{3} \leq \theta \leq \beta-\frac{\beta-\alpha}{3}\right., 0 \leq r<a\right\}$.
LEMMA 5.1. Suppose that 0 is a BPE for $R^{2}(X)$ that is the vertex of a sector S in X. Then, there is a function $g \varepsilon L^{2}(X)$ such that:
(i) g represents 0 for $R^{2}(X)$,
(ii) $m\left((\operatorname{supp} g) \cap S^{\prime}\right)=0$,
(iii) For all $n \geq 0$,

$$
\int_{A_{n} \cap x}|g|^{2} d m \leq F \sum_{k=n-1}^{n+1} 2^{2 k} C_{1,2}\left(A_{k}^{\prime} \backslash x\right)
$$

$$
\text { where } F \text { is a constant independent of } n \text {. }
$$

PROOF. Choose $\lambda \varepsilon C_{0}^{\infty}\left(R^{1}\right)$ such that

$$
\lambda(t)=\left\{\begin{array}{l}
0 \text { if } t \leq \frac{1}{4} \text { or } t \geq 2 \\
1 \text { if } \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

For each integer k set

$$
\lambda_{k}(z)=\lambda\left(2^{k}|z|\right) / \sum_{j=-\infty}^{\infty} \lambda\left(2^{j}|z|\right) \quad \text { for } z \varepsilon \phi \backslash \text { Int } S
$$

For those values of z in Int S define $\lambda_{k}(z)$ so that the following three conditions are satisfied:
(1) $\lambda_{k}(z) \in C^{\infty}$
(2) $\lambda_{k}(z)=0$ for $z \varepsilon X \cap S^{\prime}$, and
(3) There are constants F_{1} and F_{2} such that for all k

$$
\left|\frac{\partial \lambda_{k}(z)}{\partial x}\right| \leq F_{1} 2^{k} \quad \text { and } \quad\left|\frac{\partial \lambda_{k}(z)}{\partial y}\right| \leq F_{2} 2^{k}
$$

The constants F_{1} and F_{2} are independent of k.
Given $\varepsilon>0$ choose the functions ψ_{k} of Lemma 4.2. On the complement of X_{ε} we have $\psi_{k} \lambda_{k} \equiv \lambda_{k}$ since supp $\lambda_{k} \subset A_{k}^{\prime}$. Thus, $\sum_{0}^{\infty} \psi_{k} \lambda_{k} \equiv 1$ on $\Delta(0,1 / 4) \backslash X_{\varepsilon}$. Choose $X \in C_{0}^{\infty}$ with $X(z) \equiv 1$ near X. Set $h(z)=X(z) H(0, z)$ where $H(0, z)=\frac{1}{\pi z}$.

For each double index $\beta=(0,0),(0,1)$, and $(1,0)$ there is a constant F_{β} such that

$$
\left|D^{\beta} h(z)\right| \leq F_{\beta}|z|^{-1-|\beta|}
$$

These inequalities follow from those of Section 4 and the fact that X and its derivatives are bounded. Set $f_{\varepsilon}=h \sum_{0}^{\infty} \psi_{k} \lambda_{k}=\sum_{0}^{\infty} \psi_{k} h_{k}$ where $h_{k}=\lambda_{k} h$. Since supp $\lambda_{k} \subset A_{k}^{\prime}$, the above inequalities imply that

$$
\left|D^{\beta} h_{k}(z)\right| \leq F_{\beta^{2}} 2^{k(1+|\beta|)} .
$$

Henceforth, we will limit the number of symbols denoting constants by letting F denote any constant. The inequalities (*) combined with Lemma 4.2 imply that

$$
\begin{aligned}
\left\|f_{\varepsilon}\right\|_{L_{1}^{2}}^{2} & \leq F \sum_{|\beta+\lambda| \leq 1} \sum_{k=0}^{\infty} \int\left|D^{\beta} h_{k}(z) D^{\gamma} \psi_{k}(z)\right|^{2} d m(z) \\
& \leq\left. F \sum_{k=0}^{\infty} \sum_{|\beta+\lambda| \leq 1} 2^{2 k(1+|\beta|)} \quad \int_{|z| \leq 2}{ }^{-k+1} D^{\lambda} \psi_{k}(z)\right|^{2} d m(z) \\
& \leq F \sum_{k=0}^{\infty} 2^{2 k} C_{1,2}\left(A_{k}^{\prime} \backslash X\right) .
\end{aligned}
$$

Finally, by the subadditivity of the capacity $C_{1,2}$, we have

$$
\left\|f_{\varepsilon}\right\|_{L_{1}}^{2} \leq F \quad \sum_{k=0}^{\infty} 2^{2 k_{1,2}} C_{1,2}\left(A_{k} \backslash X\right)
$$

The net $\left\{f_{\varepsilon}\right\}$ is bounded in L_{1}^{2}. We can choose a subsequence $\left\{f_{\varepsilon_{j}}\right\}$ that converges weakly in L_{1}^{2}. Let $f(z)=\lim _{j \rightarrow \infty} f_{\varepsilon_{j}}(z)+(1-x) H(0, z)$ for $z \varepsilon \phi \backslash X$. Then $f \varepsilon L_{1,1 o c}^{2}$, and $f(z)=H(0, z)$ for $z \varepsilon \phi \backslash X$. Note that since $f_{\varepsilon_{j}}(z)=0$ for all $z \varepsilon X \cap S^{\prime}, f(z)=0$ for a.e. $z \varepsilon X \cap S^{\prime}$. If necessary, we may redefine f on $X \cap S^{\prime}$ so that $f(z)=0$ for every $z \varepsilon X \cap S^{\prime}$.

Set $g=\frac{t^{\prime}}{\partial \bar{z}} f$. Then $g \varepsilon L^{2}(X)$, and g is a representing function for 0 (see [2, p. 3]). If $z \notin X, g(z)=0$. Clearly, $m\left((\operatorname{supp} g) \cap S^{\prime}\right)=0$. We have

$$
\begin{aligned}
\int_{A_{n} \cap x}|g|^{2} d m & \leq F \quad \sum_{|\beta| \leq 1} \int_{A_{n} \cap x}\left|D^{\beta} f\right|^{2} d m \\
& \leq F \quad \sum_{|\beta+\lambda| \leq 1} \sum_{k=0}^{\infty} \int_{A_{n} \cap x}\left|D^{\beta} h_{h_{k}} D^{\lambda} \psi_{k}\right|^{2} d m .
\end{aligned}
$$

The integral $\int_{A_{n} \cap X}\left|D^{\beta} h_{k} \psi_{k}\right|^{2} d m$ will be nonzero only for those k such that
$A_{k}^{\prime} \cap A_{n} \cap x \neq \phi$, i.e., $k=n-1, n, n+1$. Thus, by (*) and Lemma 4.2,

$$
\left.\begin{aligned}
\int & |g|^{2} d m
\end{aligned} \leq F \sum_{|\beta+\lambda| \leq 1} \sum_{k=n-1}^{n+1} \int_{A_{n} \cap x} \right\rvert\, D^{\left.\beta_{n} \cap h_{k} D^{\lambda} \psi_{k}\right|^{2} d m}
$$

This completes the proof of (i), (ii), and (iii).
We will use the next lemma to obtain representing functions for points near 0 on the line segment L. Let $0, X, S$, and g be as in the previous lemma, and let $c(y)$ be as defined in Section 2.

LEMMA 5.2. Let $0 \varepsilon X$ be represented by a function $v \in L^{2}(X)$.
Suppose that ϕ is an admissible function and that $v(z) \phi(|z|)^{-1} \varepsilon L^{2}(X)$. Then for any $\varepsilon>0$ there exists $a \delta$ such that if $|y|<\delta$ and $y \varepsilon L$, then $|c(y)|=|1+y \hat{g}(y)|>1-\varepsilon$.

PROOF. Since the capacities Γ_{2} and $C_{1,2}$ are equivalent, Theorem 3.1 implies that

$$
\sum_{n=1}^{\infty} 2^{2 n}{ }_{\phi}\left(2^{-n}\right)^{-2} C_{1,2}\left(A_{n} \backslash X\right)<\infty
$$

To show that $c(y)$ is defined, we first note that

$$
|y|\left|\int g \cdot(z-y)^{-1} d m\right| \leq \phi(|y|) \psi(|y|) \int|g| \psi(|z-y|)^{-1} \phi(|z-y|)^{-1} d m
$$

where $\psi(r)=r \cdot \phi(r)^{-1}$. By definition of S^{\prime} there is a constant k_{1} such that $k_{1}|z-y| \geq|z|$ for any $y \varepsilon L$ and $z \varepsilon X \backslash S^{\prime}-\{0\}$. Similarly, there is a constant k_{2} such that $k_{2}|z-y| \geq|y|$ for any $y \varepsilon L$ and $z \varepsilon X \backslash S^{\prime}-\{0\}$. Since ϕ and ψ are both increasing,

$$
\phi(|z|) \phi(|z-y|)^{-1} \leq k_{1} \quad \text { and } \quad \psi(|y|) \psi(|z-y|)^{-1} \leq k_{2}
$$

Hence

$$
|y|\left|\int g \cdot(z-y)^{-1} d m\right| \leq F \phi(|y|) \int|g| \cdot \phi^{-1} d m .
$$

We claim that $g \cdot \phi^{-1} \varepsilon L^{2}(X)$ and therefore $g \cdot \phi^{-1} \varepsilon L^{1}(X)$. First observe that

$$
\int|g|^{2} \cdot \phi^{-2} d m \leq \sum_{n=1}^{\infty} \phi\left(2^{-n}\right)^{-2} \int_{A_{n} \cap X}|g|^{2} d m
$$

By Lemma 5.1 and the subadditivity of $C_{1,2}$ we get

$$
\int|g|^{2} \phi^{-2} d m \leq \sum_{n=1}^{\infty} \phi\left(2^{-n}\right)^{-2} 2^{2 n} C_{1,2}\left(A_{n} \backslash x\right)
$$

The capacity series converges. Thus, $\hat{g}(y)$ is defined. Since $\lim _{r \rightarrow 0} \phi(r)=0$, we can choose for any given $\varepsilon>0$ a $\delta>0$ such that

$$
|y \hat{g}(y)|=|y|\left|\int g \cdot(z-y)^{-1} d m\right| \leq F \phi(|y|) \int|g| \cdot \phi^{-1} d m<\varepsilon
$$

for $|y|<\delta$ and $y \varepsilon L$. It follows that $|c(y)|=|1+y \hat{g}(y)|>1-\varepsilon$.
In the following theorem, $\mathrm{X}, 0$, and L are just as they have been.
THEOREM 5.1. Let $0 \varepsilon \partial X$ be a BPE for $R^{2}(X)$ which is represented by function $v \in R^{2}(X)$. Suppose that ϕ is an admissible function and that $v(z) \phi(|z|)^{-1} \varepsilon L^{2}(X)$. Then for any $\varepsilon>0$ there is a $\delta>0$ such that if $y \in L \cap \Delta(0, \delta)$,

$$
|f(y)-f(0)| \leq \varepsilon \phi(|y|)| | f| |_{2}
$$

for all $f \varepsilon R^{2}(X)$.
PROOF. Let $g \in L^{2}(X)$ be a representing function for 0 as in Lemma 5.1. Choose δ_{1} by Lemma 5.2 so that for $y \varepsilon L$ and $|y|<\delta_{1},|c(y)|>1 / 2$. Then by Corollary 2.1,

$$
\begin{aligned}
f(y)-f(0) & =c(y)^{-1} \int[f-f(0)] z(z-y)^{-1} g d m \\
& =c(y)^{-1} \int[f-f(0)]\left[1+y(z-y)^{-1}\right] g d m \\
& =y c(y)^{-1} \int[f-f(0)](z-y)^{-1} g d m
\end{aligned}
$$

Thus, for $y \in L$ and $|y|<\delta_{1}$

$$
|f(y)-f(0)| \leq 2|y| \int^{1}|f-f(0)||z-y|^{-1}|g| d m
$$

There exists a monotone, increasing function $\bar{\phi}$ such that $\lim _{r \rightarrow 0^{+}} \bar{\phi}(r)=0$ and $\phi(|z|)^{-1} \bar{\phi}(|z|)^{-1} v(z) \varepsilon L^{2}(X)$ (see $[6, p$. 74]). Moreover, we may choose $\bar{\phi}$ so that the function $r \phi(r)^{-1} \bar{\phi}(r)^{-1}$ is also monotone increasing. Let $\Phi(r)=\phi(r) \cdot \bar{\phi}(r)$. Then recalling that $k_{1}|z-y| \geq|z|$ and $k_{2}|z-y| \geq|y|$ for $y \varepsilon L$ and $z \varepsilon X \backslash S^{\prime}-\{0\}$, we have

$$
|f(y)-f(0)| \leq F \Phi(|y|)| | f| |_{2}\left\{\sum_{n=1}^{\infty} \Phi\left(2^{-n}\right)^{-2} \int_{A_{n} \cap x}|g|^{2} d m\right\}^{1 / 2}
$$

If the sum of the infinite series is less than 1 , the theorem is nearly proved. Suppose the sum is greater than or equal to 1 . Then

$$
\begin{aligned}
|f(y)-f(0)| & \leq\left. F|(|y|)||f|\right|_{2} \sum_{n=1}^{\infty} 2^{2 n} \Phi\left(2^{-n}\right)^{-2} C_{1,2}\left(A_{n} \backslash x\right) \\
& \leq F \bar{\phi}(|y|) \phi(|y|)| | f| |_{2} \sum_{n=1}^{\infty} 2^{2 n} \Phi\left(2^{-n}\right)^{-2} C_{1,2}\left(A_{n} \backslash x\right) .
\end{aligned}
$$

Since the capacity series converges by Theorem 3.1 , we may choose δ_{2} such that for $|y|<\delta_{2} \quad F \bar{\phi}(|y|) \sum_{n=1}^{\infty} 2^{2 n} \Phi\left(2^{-n}\right)^{-2} C_{1,2}\left(A_{n} \mid x\right)<\varepsilon$.
Then $|f(y)-f(0)| \leq \varepsilon \phi(|y|)| | f \mid \|_{2}$ for $|y|<\min \left(\delta_{1}, \delta_{2}\right)$ and $y \quad \varepsilon$ L. This concludes the proof.

REMARKS. (i) If $0 \varepsilon \delta X$ is a BPE for $R^{2}(X)$, there always exists an admissible function ϕ as in the hypotheses of Theorem 5.1 (see [5, p. 74]).
(ii) The theorem may be extended by techniques of Wang [5] to include bounded point derivations of order s so that a statement similar to Theorem 1.1 (ii) holds for $y \varepsilon L \cap \Delta(0, \delta)$.
(iii) For certain sets X a point $0 \varepsilon \partial X$ which is a BPE for $R^{2}(X)$ may not be the vertex of any sector having interior in Int X. Suppose, however, that 0 is a cusp for a curve whose interior is in Int X. Let L be a line segment which bisects the cusp at 0 and let C denote the interior of the cusp near 0 . Then if $y \varepsilon L \cap C$ and $z \varepsilon X \backslash C,|y-z| \tau(|y|) \geq|y|$
 on how rapidly τ approaches ∞ at 0 (or how rapidly the cusp "narrows"), we can show that functions in $R^{2}(X)$ satisfy an inequality similar to that of Theorem 5.1.

REFERENCES

1. Calderón, A. P., Lebesgue spaces of differentiable functions and distributions. Proc. Sympos. Pure Math. 4, 33-49, Providence, R. I., Amer. Math. Soc. 1961.
2. Fernström, C. and Polking, J., Bounded point evaluations and approximation in L^{P} by solutions of elliptic partial differential equations. J. Functional Analysis, 28, 1-20(1978).
3. Hedberg, L. I., Bounded point evaluations and capacity. J. Functional Analysis, 10, 269-280 (1972).
4. Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press (1970).
5. Wang, J., An approximate Taylor's theorem for $R(X)$, Math. Scand. 33, 343-358 (1973).
6. Wolf, E., Bounded point evaluations and smoothness properties of functions in $\mathrm{R}^{\mathrm{P}}(\mathrm{X})$, Trans. Amer. Math. Soc. 238, 71-88(1978).
