Internat. J. Math. & Math. Sci. Vol. 2 No. 4 (1979) 685-692

A GRAPH AND ITS COMPLEMENT WITH SPECIFIED PROPERTIES III: GIRTH AND CIRCUMFERENCE

JIN AKIYAMA AND FRANK HARARY

Department of Mathematics The University of Michigan Ann Arbor, Michigan 48109 U.S.A.

(Received April 5, 1979)

<u>ABSTRACT</u>. In this series, we investigate the conditions under which both a graph G and its complement \overline{G} possess certain specified properties. We now characterize all the graphs G such that both G and \overline{G} have the same girth. We also determine all G such that both G and \overline{G} have circumference 3 or 4. <u>KEY WORDS AND PHRASES</u>. Graph, Complement, Girth, Circumference. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 05C99.

¹Visiting Scholar, 1978-79, from Nippon Ika University, Kawasaki, Japan.
²Vice-President, Calcutta Mathematical Society, 1978 and 1979.

1. NOTATIONS AND BACKGROUND.

In the first paper [2] in this series, we found all graphs G such that both G and its complement \overline{G} have (a) connectivity 1, (b) line-connectivity 1, (c) no cycles, (d) only even cycles, and other properties. Continuing this study, we determined in [3] the graphs G for which G and \overline{G} are (a) block-graphs, (b) middle graphs, (c) bivariegated, and (d) n'th subdivision graphs. Now we concentrate on the two invariants concerning cycle lengths: girth and circumference. We will see that whenever G and \overline{G} have the same girth g, then g = 3 or 5 only. For the circumference c, we study only the cases where both G and \overline{G} have c = 3 or 4.

Following the notation and terminology of [4], the join $G_1 + G_2$ of two graphs is the union of G_1 and G_2 with the complete bigraph having point sets V_1 and V_2 . We will require a related ternary operation denoted $G_1 + G_2 + G_3$ on three disjoint graphs, defined as the union of the two joins $G_1 + G_2$ and $G_2 + G_3$. Thus, this resembles the composition of the path P_3 not with just one other graph but with three graphs, one for each point; Figure 1 illustrates the "random" graph $K_4 - e = K_1 + K_2 + K_1$. Of course the quaternary operation $G_1 + G_2 + G_3 + G_4$ is defined similarly.

Recall that the corona $G \circ H$ of two graphs G with p points v_i , and H is obtained from G and p copies of H by joining each point v_i of G with all the points of the i'th copy of H. Again, for our result on girth we need a ternary operation written $G_1 + G_2 \circ G_3$ which is defined as the union of the join $G_1 + G_2$ with the corona $G_2 \circ G_3$. For example, Figure 2 illustrates the graph $A = K_1 + K_2 \circ K_1$.

<u>Figure 1</u>. $K_4 - e = K_1 + K_2 + K_1$

Figure 2. $A = K_1 + K_2 \circ K_1$

2. GIRTH

The <u>girth</u> of a graph G, denoted by g = g(G), is the length of a shortest cycle (if any) in G. Note that this invariant is undefined if G has no cycles. For instance, the tetrahedron K_4 , the 3-cube Q_3 and the Petersen graph P illustrated in Figure 3 have girth 3, 4 and 5, respectively.

Figure 3. Graphs with small girth

Let \overline{g} denote $g(\overline{G})$. In order to find all graphs G with $g = \overline{g}$, we first develop two lemmas dealing with $g \ge 4$ and with g = 3.

LEMMA 1. There are no graphs G other than C_5 such that both G and \overline{G} have girth at least 4 .

PROOF. If the number of points of G is at least 6, then G or \overline{G} contains C_3 since the ramsey number $r(C_3) = 6$; see [4, p. 16]. On the other hand, the only graphs G with at most 5 points and of girth at least 4 are C_4 , $C_4 U K_1$, $C_4 \cdot K_2$ and C_5 . However, none of their complements except C_5 has girth at least 4.

J. AKIYAMA AND F. HARARY

LEMMA 2. If both G and \overline{G} contain a triangle, then there are two triangles, one in G and the other in \overline{G} , which have exactly one common point.

PROOF. Take any pair of triangles T_1 from G, T_2 from \overline{G} . Obviously, T_1 and T_2 can have at most one common point. Since the lemma is trivial if T_1 and T_2 have a common point, we may assume that T_1 and T_2 have no common points. Color the lines of T_1 and T_2 with green and red, respectively. Consider the complete bigraph $K_{3,3}$ whose point sets are $V(T_1)$ and $V(T_2)$, and color the lines of $K_{3,3}$ with either green or red arbitrarily. Since there are in $K_{3,3}$ at least 5 lines of the same color, say green, there is a point of $V(T_2)$ with which two green lines of $K_{3,3}$ are incident. Thus, these two lines and a line of T_1 determine a green triangle in G which has a common point v with the red triangle T_2 in \overline{G} . []

We can restate Lemma 2 in terms of acquaintances at a party. At any party with at least five people where there are three mutual acquaintances and three mutual strangers, there must be a person who is acquainted with a pair of mutual acquaintances and who is acquainted with neither of two mutual strangers.

A subject related to Lemma 2 is discussed in [5], which specifies all the cases such that there are exactly two monochromatic triangles in the 2-colorings of K_6 .

688

Figure 4. The seven graphs of the iff-induced family for the set of all graphs G with $g = \overline{g} = 3$.

Consider two family of graphs \underline{N} and \underline{H} . In [1], the letter \underline{N} was chosen to stand for "necessary subgraphs". However, for the purpose of specifying all graphs G with $g = \overline{g} = 3$, we require the family \underline{N} to be both necessary and sufficient in the following sense. We say that \underline{N} is an <u>iff-induced</u> family of graphs for \underline{H} if:

- a) every graph in \underline{H} contains some graph in \underline{N} as an induced subgraph; and
- b) every graph G containing some graph in \underline{N} as an induced subgraph must be in \underline{H} .

We illustrate with Beineke's characterization of line graph in terms of the set \underline{N} of nine forbidden induced subgraphs shown in [4, p. 75]. Let \underline{H} be the family of all graphs which are not line graphs. Then this set \underline{N} is an iff-induced family for \underline{H} .

THEOREM 1. Let \underline{H} be a family of graphs with $g = \overline{g} = 3$. Then the set of seven graphs $K_3 \bigcup \overline{K}_2$, $K_1 \bigcup K_3 \cdot K_1$, $K_1 \bigcup K_2 + \overline{K}_2$, $K_2 + K_1 + \overline{K}_2$, $K_1 + K_2 \cdot K_1$, $K_1 + K_1 + P_3$ and $K_2 + \overline{K}_3$ is an iff-induced family for \underline{H} .

PROOF. When $g = \overline{g} = 3$, by definition both G and \overline{G} contain a triangle. By Lemma 2, there is a set U of five points of G such that both the induced subgraphs <U> in G and in \overline{G} contain triangles. A graph F of order 5 such that both F and \overline{F} contain a triangle is one of the 7 graphs in Figure 4. Thus, the sufficiency is proved. Since each of the seven graphs and their complements contain a triangle, the necessity also holds. []

3. CIRCUMFERENCE

It is now natural to consider the circumference c = c(G), the length of a longest cycle in G, in place of the girth. However, as it is known that almost all graphs are hamiltonian, see Wright [7], this question is hopeless in general since there will be too many graphs G such that both G and \overline{G} have circumference p, the number of points of G. Hence, we now ask this question only for c = 3 and 4.

Figure 5. Graphs with $c = \overline{c} = 4$

THEOREM 2. The graph $A = K_1 + K_2 \circ K_1$ is the only graph with $c = \overline{c} = 3$. All the eighteen graphs with $c = \overline{c} = 4$ are $G_1 = K_4 \cdot K_3$, $G_2 = K_1 + K_1 + K_1 + K_3$, $G_3 = \overline{K}_2 + K_1 + K_3$, $G_4 = K_1 \cup K_1 + K_1 + K_3$, $G_5 = K_2 \cup K_4$, $G_6 = K_4 \cup \overline{K}_2$, $G_7 = K_2 + K_2 \circ K_1$, $G_8 = K_2 + K_1 + K_2 + K_1$, and $G_9 = \overline{K}_2 + K_1 + K_2 + K_1$ and their complements.

PROOF. We first settle the condition $c = \overline{c} = 3$. This precludes graphs G of order $p \ge 6$ since the ramsey number $r(C_4) = 6$ as mentioned in [6]. Hence, when $p \ge 6$, G or \overline{G} contains C_4 and so has circumference at least 4. Thus, if $c = \overline{c} = 3$, then $p \le 5$. But as K_4 does not have two line-disjoint triangles, we also have $p \ge 5$. Thus, it is sufficient to consider graphs with exactly

690

five points. It is easily verified that the only graph with $c = \overline{c} = 3$ is A = K₁ + K₂ • K₁ among all graphs of order 5.

We now find all the graphs G with $c = \overline{c} = 4$. Since K_5 does not contain two line-disjoint 4-cycles, the number of points $p(G) \ge 6$. We see by exhaustion that there are exactly 18 graphs G of order 6 such that neither G nor \overline{G} contains C_5 or C_6 , namely the nine graphs G_i in Figure 5 and their complements $\overline{G_i}$. It is easily verified that all of them satisfy $c = \overline{c} = 4$ Assume that there exists a graph H of order 7 such that $c = \overline{c} = 4$. Then the graph G obtained by removing a point v of H must be one of the 18 graphs G_i or $\overline{G_i}$, $i = 1, 2, \ldots, 9$. However, we now show that there are no graphs H of order 7 such that neither H nor \overline{H} contains a cycle of length at least 5 and H-v is one of the G_i or $\overline{G_i}$. We label the points v_1 , v_2 , v_3 , v_4 , v_5 and v_6 of each G_i or $\overline{G_i}$ just as in $\overline{G_1}$ in Figure 5, and denote by v the point of H not belonging to G_i , $i = 1, 2, \ldots, 9$. It is convenient to divide the proof into two cases.

CASE 1. Either H-v or $\overline{H-v}$ is one of the G_i , i = 1, 2, ..., 7. Without loss of generality, we may assume that H-v is one of the G_i , i = 1, 2, ..., 7. We see that there are paths of length 3 or 4 joining v_j and v_k in both G_i and \overline{G}_i for any distinct points v_j and v_k , $1 \le j$, $K \le 3$. The point v must be adjacent to at least two points v_j , j = 1, 2, 3, in either H or \overline{H} . Thus either H or \overline{H} contains C_5 or C_6 , which is a contradiction.

CASE 2. Either H-v or $\overline{H-v}$ is G_8 or G_9 . There are two possibilities. If v is adjacent to v_2 in H, then v is forced to be nonadjacent to v_3 in H, since in G_1 there is a path of length 3 joining v_2 and v_3 . There is also a path of length 3 in G_1 joining v_2 and v_3 . There is also a path of length 3 in G_1 joining v_2 and v_6 , and one in $\overline{G_1}$ joining v_3 and v_6 . Hence either H or \overline{H} contains C_5 , which is a contradiction. On the other hand, if v is not adjacent to v_2 in H, then v is forced to be adjacent to v_3 in G_1 since in $\overline{G_1}$ there is a path of length 4 joining v_2 and v_3 . As there is a path in G_1 of length 3 joining v_3 and v_6 , v is forced to be nonadjacent to v in H. Independent of the adjacency of v and v_4 in H, either H or \overline{H} contains C_5 , a contradiction. Since there are no graphs of order 7 with $c = \overline{c} = 4$, no graph of greater order can satisfy this condition. []

REFERENCES

- Akiyama, J., G. Exoo and F. Harary Covering and packing in graphs III: Cyclic and acyclic invariants. <u>Math. Slovaca</u> (to appear).
- Akiyama, J. and F. Harary A graph and its complement with specified properties I. Int'l. J. Math. and Math. Physics (to appear).
- Akiyama, J. and F. Harary A graph and its complement with specified properties II. <u>Nanta Math.</u> (to appear).
- 4. Harary, F. Graph Theory. Addison-Wesley, Reading (1969).
- 5. Harary, F. The two-triangle case of the acquaintance graph. <u>Math. Mag.</u> 45 (1972) 130 135.
- Harary, F. A survey of generalized ramsey theory. <u>Graphs and Combinatorics</u> (R. Bari and F. Harary, eds.) Springer Lecture Notes 406 (1973) 10 - 17.
- 7. Wright, E. M. The proportion of unlabelled graphs which are hamiltonian. Bull. London Math. Soc. 8 (1976) 241 - 244.

692