A GRAPH AND ITS COMPLEMENT WITH SPECIFIED PROPERTIES III: GIRTH AND CIRCUMFERENCE

JIN AKIYAMA AND FRANK HARARY
Department of Mathematics
The University of Michigan
Ann Arbor, Michigan 48109 U.S.A.

(Received April 5, 1979)

ABSTRACT. In this series, we investigate the conditions under which both a graph G and its complement \bar{G} possess certain specified properties. We now characterize all the graphs G such that both G and \bar{G} have the same girth. We also determine all G such that both G and \bar{G} have circumference 3 or 4 .

KEY WORDS AND PHRASES. Graph, Complement, Girth, Circumference.
1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. $05 C 99$.

[^0]1. NOTATIONS AND BACKGROUND.

In the first paper [2] in this series, we found all graphs G such that both G and its complement \bar{G} have (a) connectivity 1 , (b) line-connectivity 1 , (c) no cycles, (d) only even cycles, and other properties. Continuing this study, we determined in [3] the graphs G for which G and \bar{G} are (a) block-graphs, (b) middle graphs, (c) bivariegated, and (d) n 'th subdivision graphs. Now we concentrate on the two invariants concerning cycle lengths: girth and circumference. We will see that whenever G and \bar{G} have the same girth g, then $g=3$ or 5 only. For the circumference c, we study only the cases where both G and \bar{G} have $c=3$ or 4 .

Following the notation and terminology of [4], the join $G_{1}+G_{2}$ of two graphs is the union of G_{1} and G_{2} with the complete bigraph having point sets V_{1} and V_{2}. We will require a related ternary operation denoted $G_{1}+G_{2}+G_{3}$ on three disjoint graphs, defined as the union of the two joins $G_{1}+G_{2}$ and $G_{2}+G_{3}$. Thus, this resembles the composition of the path P_{3} not with just one other graph but with three graphs, one for each point; Figure 1 illustrates the "random" graph $K_{4}-e=K_{1}+K_{2}+K_{1}$. Of course the quaternary operation $G_{1}+G_{2}+G_{3}+G_{4}$ is defined similarly.

Recall that the corona $G \circ H$ of two graphs G with p points $\mathbf{v}_{\mathbf{i}}$, and H is obtained from G and p copies of H by joining each point v_{i} of G with all the points of the i'th copy of H. Again, for our result on girth we need a ternary operation written $G_{1}+G_{2} \circ G_{3}$ which is defined as the union of the join $G_{1}+G_{2}$ with the corona $G_{2} \circ G_{3}$. For example, Figure 2 illustrates the graph $A=K_{1}+K_{2} \circ K_{1}$.

Figure 1. $\quad K_{4}-e=K_{1}+K_{2}+K_{1}$

Figure 2. $\quad A=K_{1}+K_{2} \circ K_{1}$
2. GIRTH

The girth of a graph G, denoted by $g=g(G)$, is the length of a shortest cycle (if any) in G. Note that this invariant is undefined if G has no cycles. For instance, the tetrahedron K_{4}, the 3-cube Q_{3} and the Petersen graph P illustrated in Figure 3 have girth 3,4 and 5 , respectively.

Figure 3. Graphs with small girth
Let \bar{g} denote $g(\bar{G})$. In order to find all graphs G with $g=\bar{g}$, we first develop two lemmas dealing with $g \geq 4$ and with $g=3$.

LEMMA 1. There are no graphs G other than C_{5} such that both G and \bar{G} have girth at least 4 .

PROOF. If the number of points of G is at least 6 , then G or \bar{G} contains C_{3} since the ramsey number $r\left(C_{3}\right)=6$; see [4, p. 16]. On the other hand, the only graphs G with at most 5 points and of girth at least 4 are $C_{4}, C_{4} \cup K_{1}, C_{4} \cdot K_{2}$ and C_{5}. However, none of their complements except C_{5} has girth at least 4 .

LEMMA 2. If both G and \bar{G} contain a triangle, then there are two triangles, one in G and the other in \bar{G}, which have exactly one common point.

PROOF. Take any pair of triangles T_{1} from G, T_{2} from \bar{G}. Obviously, T_{1} and T_{2} can have at most one common point. Since the lemma is trivial if T_{1} and T_{2} have a common point, we may assume that T_{1} and T_{2} have no common points. Color the lines of T_{1} and T_{2} with green and red, respectively. Consider the complete bigraph $K_{3,3}$ whose point sets are $V\left(T_{1}\right)$ and $V\left(T_{2}\right)$, and color the lines of $K_{3,3}$ with either green or red arbitrarily. Since there are in $K_{3,3}$ at least 5 lines of the same color, say green, there is a point of $V\left(T_{2}\right)$ with which two green lines of $K_{3,3}$ are incident. Thus, these two lines and a line of T_{1} determine a green triangle in G which has a common point v with the red triangle $\quad \mathrm{T}_{2}$ in $\overline{\mathrm{G}} .[]$

We can restate Lemma 2 in terms of acquaintances at a party. At any party with at least five people where there are three mutual acquaintances and three mutual strangers, there must be a person who is acquainted with a pair of mutual acquaintances and who is acquainted with neither of two mutual strangers.

A subject related to Lemma 2 is discussed in [5], which specifies all the cases such that there are exactly two monochromatic triangles in the 2 -colorings of K_{6}.

Figure 4. The seven graphs of the iff-induced family for the set of all graphs G with $g=\bar{g}=3$.

Consider two family of graphs $\underset{=}{N}$ and $\underset{=}{H}$. In [1], the letter N was chosen to stand for "necessary subgraphs". However, for the purpose of specifying all graphs G with $g=\bar{g}=3$, we require the family N to be both necessary and sufficient in the following sense. We say that $\underset{N}{N}$ is an iff-induced family of graphs for $\underset{\underline{H}}{ }$ if:
a) every graph in $\underset{x}{H}$ contains some graph in $\underset{N}{N}$ as an induced subgraph; and
b) every graph G containing some graph in N as an induced subgraph must be in $\stackrel{H}{\underline{H}}$.

We illustrate with Beineke's characterization of line graph in terms of the set $\stackrel{N}{=}$ of nine forbidden induced subgraphs shown in [4, p. 75]. Let $\xrightarrow[=]{H}$ be the family of all graphs which are not line graphs. Then this set N is an iff-induced family for $\underset{\underline{H}}{ }$.

THEOREM 1. Let $\xlongequal[=]{H}$ be a family of graphs with $g=\bar{g}=3$. Then the set of seven graphs $K_{3} \cup \bar{K}_{2}, K_{1} \cup K_{3} \cdot K_{1}, K_{1} \cup K_{2}+\bar{K}_{2}, K_{2}+K_{1}+\dot{\bar{K}}_{2}, K_{1}+K_{2} \cdot K_{1}$, $K_{1}+K_{1}+P_{3}$ and $K_{2}+\bar{K}_{3}$ is an iff-induced family for $\stackrel{H}{=}$.

PROOF. When $g=\bar{g}=3$, by definition both G and \bar{G} contain a triangle. By Lemma 2, there is a set U of five points of G such that both the induced subgraphs <U> in G and in \bar{G} contain triangles. A graph F of order 5 such that both F and \bar{F} contain a triangle is one of the 7 graphs in Figure 4. Thus, the sufficiency is proved. Since each of the seven graphs and their complements contain a triangle, the necessity also holds. []

3. CIRCUMFERENCE

It is now natural to consider the circumference $c=c(G)$, the length of a longest cycle in G, in place of the girth. However, as it is known that almost all graphs are hamiltonian, see Wright [7], this question is hopeless in general since there will be too many graphs G such that both G and \bar{G} have circumference p, the number of points of G. Hence, we now ask this question only for $c=3$ and 4 .

Figure 5. Graphs with $c=\bar{c}=4$

THEOREM 2. The graph $A=K_{1}+K_{2} \circ K_{1}$ is the only graph with $c=\bar{c}=3$. All the eighteen graphs with $c=\bar{c}=4$ are $G_{1}=K_{4} \cdot K_{3}, G_{2}=K_{1}+K_{1}+K_{1}+K_{3}$, $G_{3}=\bar{K}_{2}+K_{1}+K_{3}, G_{4}=K_{1} \boldsymbol{U} K_{1}+K_{1}+K_{3}, G_{5}=K_{2} \boldsymbol{U} K_{4}, G_{6}=K_{4} \boldsymbol{U} \bar{K}_{2}$, $\mathrm{G}_{7}=\mathrm{K}_{2}+\mathrm{K}_{2} \circ \mathrm{~K}_{1}, \mathrm{G}_{8}=\mathrm{K}_{2}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{1}$, and $\mathrm{G}_{9}=\mathrm{K}_{2}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{1}$ and their complements.

PROOF. We first settle the condition $c=\bar{c}=3$. This precludes graphs G of order $p \geq 6$ since the ramsey number $r\left(C_{4}\right)=6$ as mentioned in [6]. Hence, when $p \geq 6, G$ or \bar{G} contains C_{4} and so has circumference at least 4 . Thus, if $c=\bar{c}=3$, then $p \leq 5$. But as K_{4} does not have two line-disjoint triangles, we also have $p \geq 5$. Thus, it is sufficient to consider graphs with exactly
five points. It is easily verified that the only graph with $c=\bar{c}=3$ is $A=K_{1}+K_{2} \circ K_{1}$ among all graphs of order 5 .

We now find all the graphs G with $c=\bar{c}=4$. Since K_{5} does not contain two line-disjoint 4-cycles, the number of points $p(G) \geq 6$. We see by exhaustion that there are exactly 18 graphs G of order 6 such that neither G nor \bar{G} contains C_{5} or C_{6}, namely the nine graphs G_{i} in Figure 5 and their complements \bar{G}_{i}. It is easily verified that all of them satisfy $c=\bar{c}=4$ Assume that there exists a graph H of order 7 such that $c=\bar{c}=4$. Then the graph G obtained by removing a point v of H must be one of the 18 graphs G_{i} or $\bar{G}_{i}, i=1,2, \ldots, 9$. However, we now show that there are no graphs H of order 7 such that neither H nor \bar{H} contains a cycle of length at least 5 and $H-v$ is one of the G_{i} or \bar{G}_{i}. We label the points $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and v_{6} of each G_{i} or \bar{G}_{i} just as in \bar{G}_{1} in Figure 5 , and denote by v the point of H not belonging to $G_{i}, i=1,2, \ldots, 9$. It is convenient to divide the proof into two cases.

CASE 1. Either $H-v$ or $\overline{H-v}$ is one of the G_{i}, $i=1,2, \ldots, 7$. Without loss of generality, we may assume that $H-v$ is one of the $G_{i}, i=1,2, \ldots, 7$. We see that there are paths of length 3 or 4 joining v_{j} and v_{k} in both G_{i} and \bar{G}_{i} for any distinct points v_{j} and $v_{k}, 1 \leq j, K \leq 3$. The point v must be adjacent to at least two points $v_{j}, j=1,2,3$, in either H or \bar{H}. Thus either H or \bar{H} contains C_{5} or C_{6}, which is a contradiction.

CASE 2. Either $H-v$ or $\overline{H-v}$ is G_{8} or G_{9}.
There are two possibilities. If v is adjacent to v_{2} in H, then v is forced to be nonadjacent to v_{3} in H, since in G_{i} there is a path of length 3 joining v_{2} and v_{3}. There is also a path of length 3 in G_{i} joining v_{2} and v_{6}, and one in \bar{G}_{i} joining v_{3} and v_{6}. Hence either H or \bar{H} contains C_{5}, which is a contradiction.

On the other hand, if v is not adjacent to v_{2} in H, then v is forced to be adjacent to V_{3} in G_{i} since in \bar{G}_{i} there is a path of length 4 joining v_{2} and v_{3}. As there is a path in G_{i} of length 3 joining v_{3} and v_{6}, v is forced to be nonadjacent to v in H. Independent of the adjacency of v and v_{4} in H, either H or \bar{H} contains C_{5}, a contradiction. Since there are no graphs of order 7 with $c=\bar{c}=4$, no graph of greater order can satisfy this condition. \square

REFERENCES

1. Akiyama, J., G. Exoo and F. Harary Covering and packing in graphs IIl: Cyclic and acyclic invariants. Math. Slovaca (to appear).
2. Akiyama, J. and F. Harary A graph and its complement with specified properties I. Int'1. J. Math. and Math. Physics (to appear).
3. Akiyama, J. and F. Harary A graph and its complement with specified properties II. Nanta Math. (to appear).
4. Harary, F. Graph Theory. Addison-Wesley, Reading (1969).
5. Harary, F. The two-triangle case of the acquaintance graph. Math. Mag. 45 (1972) 130-135.
6. Harary, F. A survey of generalized ramsey theory. Graphs and Combinatorics (R. Bari and F. Harary, eds.) Springer Lecture Notes 406 (1973) 10-17.
7. Wright, E. M. The proportion of unlabelled graphs which are hamiltonian. Bull. London Math. Soc. 8 (1976) 241-244.

[^0]: ${ }^{1}$ Visiting Scholar, 1978-79, from Nippon Ika University, Kawasaki, Japan.
 ${ }^{2}$ Vice-President, Calcutta Mathematical Society, 1978 and 1979.

