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ABSTRACT. In this series, we investigate the conditions under which both a graph

G and its complement G possess certain specified properties. We now characterize

all the graphs G such that both G and G have the same girth. We also determine

all G such that both G and G have circumference 3 or4.
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I. NOTATIONS AND BACKGROUND.

In the first paper [2] in this series, we found all graphs G such that both

G and its complement G have (a) connectivity 1, (b) line-connectivity 1,

(c) mo cycles, (d) only even cycles, and other properties. Continuing this study,

we determined in [3] the graphs G for which G and 6 are (a) block-graphs,

(b) middle graphs, () bivariegated, and (d) n’th subdivision graphs. Now we

concentrate on the two invariants concerning cycle lengths- girth and circum-

ference. We will see that whenever G and G have the same girth g then

g 3 or 5 only. For the circumference c we study only the cases where both

G and G have c 3 or 4

Following the notation and terminology of [4], the join G
1

+ G
2

of two

graphs is the union of G
1

and G
2

with the complete bigraph having point sets

V
1

and V
2

We will require a related ternary operation denoted G
1

+ G
2

+ G
3

on three disjoint graphs, defined as the union of the two joins G
1

+ G
2

and

G
2

+ G
3 Thus, this resembles the composition of the path P3 not with just

one other graph but with three graphs, one for each point; Figure 1 illustrates

the "random" graph K4 e K
1

+ K
2

+ K
1

Of course the quaternary operation

G1
+ G

2
+ G

3
+ G

4
is defined similarly.

Recall that the corona G H of two graphs G with p points v
i

and H is obtained from G and p copies of H by joining each point

of G with all the points of the i’th copy of H Again, for our result on

girth we need a ternary operation written G
1

+ G
2

G
3

which is defined as the

union of the join G
1

+ G
2

with the corona G
2

G
3

For example, Figure 2

illustrates the graph A K
1

+ K
2

K
1

K
4

e"

Figure i. K4 e K
1

+ K
2

+ K
1



GRAPH AND ITS COMPLEMENT WITH SPECIFIED PROPERTIES 687

A"

Figure 2. A K
1

+ K
2

K
1

2. GIRTH

The girth of a graph G denoted by g g(G) is the length of a shortest

cycle (if any) in G Note that this invariant is undefined if G has no cycles.

For instance, the tetrahedron K4 the 3-cube Q3 and the Petersen graph P

illustrated in Figure 3 have girth 3, 4 and 5 respectively.

K4" Q3" P"

Figure 3. Graphs with small girth

Let g denote g(G) In order to find all graphs G with g-- g we

first develop two lemmas dealing with g > 4 and with g 3

LEMMA I. There are no graphs G other than C
5

such that both G and G

have girth at least 4

PROOF. If the number of points of G is at least 6 then G or G

contains C
3

since the ramsey number r(C3) 6 see [4, p. 16]. On the other

hand, the only graphs G with at most 5 points and of girth at least 4 are

C4, C4KI, C
4 K2 and C

5 However, none of their complements except C
5

has girth at least 4
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LEMMA 2. If both G and G contain a triangle, then there are two triangles,

one in G and the other in G which have exactly one common point.

PROOF. Take any pair of triangles T
1

from G T
2

from G Obviously,

T
1

and T
2

can have at most one common point. Since the lemma is trivial if

T
1

and T
2

have a common point, we may assume that T
1

and T
2

have no common

points. Color the lines of T1
and T

2
with green and red, respectively. Consider

the complete bigraph K3, 3
whose point sets are V(TI) and V(T2) and color

the lines of K3, 3
with either green or red arbitrarily. Since there are in

K3, 3
at least 5 lines of the same color, say green, there is a point of V(T2)

with which two green lines of K3, 3
are incident. Thus, these two lines and a

line of T
1

determine a green triangle in G which has a common point v with

the red triangle T
2

in G

We can restate Lemma 2 in terms of acquaintances at a party. At any party with

at least five people where there are three mutual acquaintances and three mutual

strangers, there must be a person who is acquainted with a pair of mutual

acquaintances and who is acquainted with neither of two mutual strangers.

A subject related to Lemma 2 is discussed in [5], which specifies all the

cases such that there are exactly two monochromatic triangles in the 2-colorings

of K
6

K3 K
2

KI$ KS K
2

K
1 K2

+ K
2

K2 + K
1

+ K2
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K1 + K2 K1 K1 + K1 + p
3 K2 + K3

Figure 4. The seven graphs of the iff-induced family for the set of all graphs G

with g g 3

Consider two family of graphs =N and =H In [i], the letter _N_ was chosen

to stand for "necessary subgraphs". However, for the purpose of specifying all

graphs G with g g 3 we require the family _N to be both necessary and

sufficient in the following sense. We say that __N is an iff-induced family of

graphs for =H if-

a) every graph in =H contains some graph in N= as an induced subgraph; and

b) every graph G containing some graph in N= as an induced subgraph must

be in H

We illustrate with Beineke’s characterization of line graph in terms of the

set =N of nine forbidden induced subgraphs shown in [4, p. 75]. Let =H be the

family of all graphs which are not line graphs. Then this set _N_ is an

iff-induced family for =H

THEOREM 1. Let H be a family of graphs with g g 3 Then the set of

seven graphs K
3 0 2 KI U K

3 K
1

K
1

K
2

+ K--2, K2
+ K

1
+ K, K1

+ K
2

K1

K1 / K1 / P3 and K
2

+ K
5

is an iff-induced family for

PROOF. When g g 3 by definition both G and G contain a triangle.

By Lemma 2, there is a set U of five points of G such that both the induced

subgraphs <U> in G and in G contain triangles. A graph F of order S

such that both F and F contain a triangle is one of the 7 graphs in Figure 4.

Thus, the sufficiency is proved. Since each of the seven graphs and their

complements contain a triangle, the necessity also holds.
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3. CIRCUMFERENCE

It is now natural to. consider the circumference c c(G) the length of a

longest cycle in G in place of the girth. However, as it s known that almost

all graphs are hamiltonian, see Wright [7], this question is hopeless in general

since there will be too many graphs G such that both G and have

circumference p the number of points of G Hence, we now ask this question

only for c 3 and 4

Figure 5. Graphs with c c 4

THEOREM 2. The graph A K
1

+ K
2

K
1

is the only graph with c 3

All the eighteen graphs with c c 4 are G
1

K
4 K3, G

2
K
1

+ K
1

+ K
1

+ K
3

G3 K2 + KI + K3’ G4 KI KI + KI + K3’ G5 K2 K4’ G6 K4 2’
G
7 K

2
+ K

2
KI, G

8
K
2

+ K
1

+ K
2

+ KI, and G
9 K--2 + K

1
+ K2

+ K1 and their

complements.

PROOF. We first settle the condition c c 3 This precludes graphs G

of order p > 6 since the ramsey number r(C4) 6 as mentioned in [6]. Hence,

when p >_ 6, G or G contains C
4 and so has circumference at least 4 Thus,

if c 3 then p < 5 But as K
4

does not have two line-disjoint triangles

we also have p > 5 Thus, it is sufficient to consider graphs with exactly
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five points. It is easily verified that the only graph with c c 3 is

A K
1

+ K
2 K1 among all graphs of orde9 5.

We now find all the graphs G with c c 4 Since K5 does not

contain two line-disjoint 4-cycles, the number of points p(G) > 6 We see by

exhaustion that there are exactly 18 graphs G of order 6 such that neither

G nor G contains C
5

or C
6 namely the nine graphs G

i
in Figure 5 and

their complements G.. It is easily verified that all of them satisfy c c 4
1

Assume that there exists a graph H of order 7 such that c c 4 Then the

graph G obtained by removing a point v of H must be one of the 18 graphs G.

or 6i, i 1,2 9 However, we now show that there are no graphs tt of

order 7 such that neither H nor H contains a cycle of length at least 5 and

H-v is one of the G.I or G.I We label the points vI, v2, v3, v4, v
5

and v
6

or G just as in G
1

in Figure 5, and denote by v the point ofof each GI i

H not belonging to Gi, i 1,2 9 It is convenient to divide the proof

into two cases.

CASE I. Either H-v or H-v is one of the G., i 1,2,..., 7 Without

loss of generality, we may assume that H-v is one of the Gi, i 1,2,..., 7

and vk in both G.We see that there are paths of length 3 or 4 joining v]
and G. for any distinct points v. and v

k
1 < j, K < 3 The point v

1

must be adjacent to at least two points vj, I, 2, 3, in either H or H

Thus either H or H contains C
5

or C
6

which is a contradiction.

CASE 2. Either H-v or H-v is G
8

or G
9

There are two possibilities. If v is adjacent to v2 in H then v is

forced to be nonadjacent to v
3

in H since in Gi there is a path of

length 3 joining v
2

and v3 There is also a path of length 3 in G. joining

v
2

and v
6

and one in G. joining v
3

and v
6

Hence either H or H

contains C
5

which is a contradiction.
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On the other hand, if v is not adjacent to v
2 in H then v is forced

to be adjacent to v
5

in G.I since in G.I there is a path of length 4 joining

v
2

and v
5

As there is a path in G
i

of length 5 joining v
5

and v
6

v

is forced to be nonadjacent to v in H Independent of the adjacency of v

and v
4

in H either H or H contains C
5

a contradiction. Since there

are no graphs of order 7 with c c 4 no graph of greater order can satisfy

this condition.
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