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ABSTRACT. It is proved that a weakly compact generated Frechet space is

LindelBf in the weak topology. As a corollary it is proved that for a finite

measure space every weakly measurable function into a weakly compactly gener-

ated Frechet space is weakly equ’ivalent to a strongly measurable function.
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i. INTRODUCTION.

If E is a weakly compactly generated Banach space then it is proved in [7]

that E, with weak topology, is Lindelf. (A topological space is said to be

Lindelf if its every open covering has a countable subcovering.) In this note

we extend this result to the case when E is a weakly compactly generated
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Frechet space. Also, some consequences are obtained. All locally convex spaces

are taken over the field of real numbers. By a Frechet space we mean a Haus-

dorff, metrizable, complete locally convex space; we use the notations of [4]

for locally convex spaces. E’ will always denote the topological dual of a

locally convex space E. A locally convex space is said to be weakly compactly

generated if there exists an increasing sequence of G(E,E’ )-compact subsets of

E whose union is dense in E.

THEOREM 1. Let E be a weakly compactly generated Frechet space. Then

(E,G(E,E’)) is a Lindelf space and E is a Borel subset of (En,G(Em,E’)), Em

being the bidual of E.

PROOF. Let [Vn] be a sequence of O-nbd. base having the properties"

(i) each V is absolutely convex and closed,
n

(ii) (n+l)Vn+1 cVn, for every n.

We take [An] for an increasing sequence of weakly compact, absolutely convex

subsets of E such that J A =H is dense in E. We identify (E,G(E,E’)) as
n=l n

E’
a subspace of R with product topology. R

E’
is a subset of the compact Haus-

dorff space where R= [-,]. For an x6R
E’

and y6n’, x+y6n’ has

the natural meaning. For a compact set AcRE’
and a compact set BCE’, A+B

is compact. Thus & + is a compact subset of ’ for each k and n, V
K n n

being the closure of V in We claim that 6 (H+Vn) E. Since H is
n n=l

dense in E and V is a O-nbd., H+V D E for every n and so
n n

(g+Vn) 3 E. Conversely, take an x 6 [ (H+V). This means there exists a
n=l n=l n

sequence [hn] c H and a sequence [zn] with Zn6Vn for each n, such that

=h + z for each n. Fix n_ 6N and e >0. Choose an n_ > max(n^,) andX
n n I

1 1 o
take an n>n1. Since Vn0D nVn, If(zn)l < II < e, for every f6Vn0 the

o
polar of Vno ([4]). Thus f(x-hn)--+O, uniformly for f6 Vno. From this it

follows that [hn] is Cauchy in E which is complete. If hn--*y in E it
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is easy to verify that, as elements of E x=y. This proves the claim.

Thus, in weak topology, E= (Ak+Vn) is analytic and so is Lindelf
n=l k=l

([6]). Also (E,O(E,E)) can be considered as a subspace of REs. Since

(Ak+Vn) is compact in R (+Vn)NE is closed in (E,o(E,ES)) and so

(H+Vn) E is Borel in (E, (E,E ). Since E
n=-I H+vn E’’ it follows

that E is Borel in (Eu,O(E,E’)).

REMARK. Similar results for Banach spaces are proved in [2, Cor. 3.2].

In the following result, some results and notations of ([3]) are used. Let

(X,/,) be a finite measure space, E a Hausdorff locally convex space. A

function f X--E is called weakly measurable if h o f is -measurable for

every h6E. It is proved in ([2]) that if f X--*E is weakly measurable

that the image measure -R, )(B) (f-l(B)), is a Baire measure on

(E,((E,E’)), S being the class of all Baire subsets of (E’,G(E,E)) ([2],

[8]). Two weakly measurable functions f. X--E, i 1,2 are said to be weakly
1

equivalent if ho fl =h f2 a.e. [la], for every hE If E is Prechet then

f" X-*E is called strongly measurable if there exists a sequence [fn] of

l-simple functions, f X--*E, such that f -- f, pointwise a.e. [].
n n

COROLLARY 2. Let (X,/,) be a finite measure space, E a weakly corn-

pactly generated Frechet space, and f :X-- E a weakly measurable function.

Then f is weakly equivalent to a strongly measurable function.

PROOF. By ([3], Cot. 5) it is enough to show that image Baire measure on

(E,O(E,E)) is tight (cf. [2]). Since (E,o(E,E )) is Lindelf, Baire mea-

sures are T-additive (normal in the terminology of [5],[8]). By ([5], Theorems

3.3, 3.4) every Frechet space is universally measurable and so every T-smooth

measure is tight. This proves the result.

REMARK. In case E is a Banach space, this result is implicit in ([2], p.

88(4), Theorem 5.4); if in addition f is bounded this is proved in ([i], p. 88).
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