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ABSTRACT. 1In this paper we obtain an integral characterization of a
two-sided upper function for Brownian motion in a real separable Banach
space. This characterization generalizes that of Jain and Taylor [2]
where B = R”.  The integral test obtained involves the index of a mean
zero Gaussian measure on the Banach space, which is due to Kuelbs [3] .
The special case that when B is itself a real separable Hilbert space
is also illustrated.
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1. INTRODUCTION

Let B be a real separable Banach space with norm [ | and let B*
be the topological dual of B. If p is a mean zero Gaussian measure on

B then it is well known from [1] that B contains a Hilbert space Hu

with norm Iu such that | | is a measurable norm on Hu in the sense

of [1]. As a consequence, the B norm | | is weaker than | -![u. Thus
through a restriction map we have the relation that B* € H* = H € B.
Furthermore, it is also shown in [1] that y is the extension of the

canonical normal distribution on Hu to B and we shall say that u is

(8

generated by Hu. If K denotes the unit ball of H]J in the norm | "

let T = sup ||x||. The definition of index of u, n,, is due to
xeK
Kuelbs [3], where

n, = sup {kzafl, e .., fLE B*; f

1 £ orthogonal in HU;

1o By

16 [lge = 1 oand [l 1], =T Q<3 <0}

It is known from [3] that n, exists and is finite and if B itself is a

1

Hilbert space then n, on B equals the multiplicity of the maximal eigenvalue

1

of the covariance operator for . Let {W(t): 0 < t < ©} denote p-Brownian
motion in B. Let Qe denote the class of functions from (0,e) to [0,®) such

1/2

that ¢(t)t> as t+0 and t~ “¢(t)¥0 as t+0.

DEFINITION 1. A function ¢e¢€ is called an upper function for {W(t): t > 0}

|, if given t > 0, there exists a § > 0

/

with respect to the norm |
1/2 1/2

such that P(||W(t+v) - W(t-u)|| < 27" “(utv) "' “¢(utv) T for all u, v > 0

with 0 < utv < §) = 1. In this case, we say ¢€U. ¢ed% is called a

I

lower function for {W(t): t 3.0} with respect to the norm |

denoted by ¢€L, if ¢4U.
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In the case that B = m@, a d-dimensional Euclidean space, Jain and Taylor

[2] have shown that ¢e®€ is an upper function for d-dimension standard Brownian

motion {W(t): O < t < ©} with respect to the Euclidean norm | '2 if and only

if ;0+ [Q(§2|d+2 e—¢2(t)/2 dt < », This integral test for two-sided growth iniRd
is the same as that for one-sided growth in.m§+2. In the case that B is an
infinite dimensional real separable Banach space, Kuelbs [3] has shown that

¢(t), a nonnegative, non-decreasing continuous function defined for large values
of t, is a one-sided upper function for u-Brownian motion {W(t): 0 < t < ©}

with respect to some equivalent norm ||'[I1 on B if and only if

1 lﬂiillzl-e-¢2(t)/2 dt < © where the ¢ is called one-sided upper function with
tl/

2¢(t)T for only a bounded set of t's) = 1.

respect to | if P (||W(t)||1 >

l
Based on the results of Jain-Taylor and Kuelbs, it is very natural to conjecture

that ¢€<I>e is in U (Definition 1) for {W(t): 0 < t < =} with respect to some

nj+2  _
[1 on B if and only if ;0+;9iill_l__.e 92(8)/2 dt < ©, The

main purpose of this note is to verify this conjecture. Throughout this note c

equivalent norm |

will stand for a positive number whose value may change from line to line. The

lim a(h) _
notation a(h)~ b(h) means 150 b(h) 1.

2. MAIN RESULTS
The following useful estimates have been used repeatedly in [3] and they can

be verified by the argument similar to that in d-dimensional Euclidean space
d
R[4, p. 222].

LEMMA 2. Let {W(t): 0 < t < » be Brownian motion in a real separable

Banach space B having norm I ]. Then for all A, h > 0

P ( _ 1/2
0 <sﬁp <t < h ||W(%2 w(tl)H > AT < (€H)
152
2P ( su [lw 1/2 1/2
P @I > "% <ap (||lwm)|[>an’?.
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We have the following integral test for a two-sided upper function
for {W(t): 0 < t < «}:

THEOREM 3. Let {W(t):0 <t <o} be p-Brownian motion in a real

|, and assume ¢6®€. Let n,

denote the index of u. Then there is an equivalent norm ||°||1 on B

if and only if

lh

such that sup ||x ‘!1 =
xeK
s _191521______ -6%(e)/2 -
o+ dt < .
PROOF. -Hl is due to [3],

which is defined to be

[lx[]; = max {THMH Ilax| |},
where
s
m(x) =L e,(x)e, (xeB)
§=1 h| h
and
Q(x) = x - (%), ej(°) denotes the linear function fj(')/F.

a
Consider the sequence a_ = e—m/log m, m> 2. Then = .1+ (log m).1
m - a 4

i
. = . = < < .
as m, Let un’i Tog n as vn’1 (1 - Tog n) a s 0<1i<logn
Note that for each i, u + v =a ., If u,v > 0 are sufficiently
n,i n,i n -

small we can choose an n sufficiently large such that a1 < utv < a .
Assume that the integral (2) diverges. Define

) - W(t-u

1
]

{w: ||W(t+vn 21/2an1/2¢(an)r} and

,1 n,i)||1

1/2 1/2

L]
]

{w: ||w(t+vn,i) - W(t-un’i)||u ICI

(2)
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Since

{mW(t):0 < t <=} is standard ny dimensional Brownian motion in

mB = ﬂHu divergence of the integral (2) implies that

b
log n
LI F(F
n=2 i=0

) = © and infinitely many of F occur.

n,i n,1i

Consequently infinitely many of En 4 occurr with probability one. Thus ¢€L.
’

Now assume that the integral (2) converges. Let us choose a suitable

< <u< <
i < log n such that i SuSu g and v S Va,i-1

Then

p (| [H(er) - w(e-w) ||, > 22 @ Zp(unn)

1/2 1/2

< (| W) - W(t-w) [, > LICHRRIY)
sup 1/2.1/2
SPloce <ty <u b [Im@cey) - we) |l > 27 % L) oa )))
sup 1/2 1/2
*+ Ry ¢ G <ty Su b oty - we) || > 277 %a 17 ¢ O

Since {mW(t): 0 < t < =} is standard n dimensional Brownian motion in

m = ﬂHu, by the same argument as those in Theorem 3.1 [2], we conclude

that the first term in the right hand side of the above inequality being

zero for infinitely many n and i. As for the second term in the above

inequality, we have

POoce <o ¥ llawice,) - w(e || > 24/%al/2
0<t <ty Su 441 Vn,1-1 | 2 :

‘l ll a +1 1/2
< 4P (] |QW(D) >( ) ¢ (a_,)D)
n i+1 n,i-1 nt+l
2a
< Cexplee — 2L 42 (o ¥,

n,itl 'n,i-1

da_,)T) ZP(A_

9
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Where
€ < 1/2 sup IB Ai(x)uq(dx), {Aj } is a sequence in B* such that
[ AjllB* =1 and ||x|] = s%p | A j(x) | for every xeB.
J

The last inequality comes from [ 3, p. 253].

Since u = (1 + 2/1og n)a ~ (1 + 3/1og n)a if

i+1 n,i-1 n+l’

we choose 8§ be such that € = (1 + §)/2T we have

P(An,i) < C exp {-§ ¢2(an+1)} exp {-¢2(an+l)}
2
< Cexp {-¢ (an+1) }
Thus
o logn ©
z T ( ) < ¢ I (logn) exp {- ¢ (an+l )}
n=2 i=0 n=2

<e L 6a I exp {-67(a_, )}

n=2

< o, since the integral (2) converges
(see Lemma 2.12 of [2]).
From Lemma 2.15 (i) of [2] we conclude that P(An,i’ i.o.) = 0.
Thus

sup
P( ,1/2 1/2
tmu Sty et _1| |W(t2) W(tl)Hl <2

¢ (@D =1
for all i and n sufficiently large. Thus ¢€U.

In case that B is a real separable Hilbert space, then n, equals

1
the multiplicity of the maximal eigenvalue of the covariance operator
for u. We have the same result as those of Theorem 3.

THEOREM 4. Let {W(t): 0 < t < =} be y-Brownian motion in a real

], and suppose ¢E®€. Then ¢
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[ (t2]n1+2
Tot t (/2 4 ¢ o, 3)

Where n, denotes the multiplicity of the maximal eigenvalue of the
covariance operator for u.

PROOF. Let sequence {a_}, {u _} and {v_ ,} be the same as those in
n n,i n’i

the proof of Theorem 3. If u,v > 0 are sufficiently small we choose

n sufficiently large such that a < utv < a, and then fix i < log n

n+l

<uc< < .
such that un,i <u —-un,i+1 and v —-Vn,i-l If the integral (3) diverges,

then we proceed as those in Theorem 3 and conclude that ¢eL. Now if

the integral (3) converges define

B_ . = {uw: sup 1/2,1/2
n,i Eu g SE St ||W(t2) W(t )|| >27"%a ] o(a T
Then
2an 1/2
P8 ;) < 4w ] > G ¢ (@ D)
n,i+l 'n,i-1
2 2
n=2 a ¢ T
n+1 (an+1)

< cléta )]

exp (- )
(1414, 1-107
n-2

clota )1 exp {-0%(a_, )}

IA

Where X is the maximal eigenvalue of the covarience of W and it is known
that A = F2 [3]. The last inequality comes from [3] and the fact that

a
n+l

[ A o ~ —
n,i+l 'n,i-1 1+3(log n) 1

Thus
I log n o log n n1—2 2
D) ) L) SC I T [6a ) exp {-¢"(a_ )}
n=2 i=0 n=2 i=0

- "1 2 .
=C Z [¢(an+l)] exp {-¢ (an+l)} < © gince
n=2

the integral (3) converges. From Lemma 2.15 (i) we have P(B i.o.) = 0.

n,i’
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That is P(B; i) = 1 for sufficiently large i and n. Thus ¢€U.
b
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