AN $n \times n$ MATRIX OF LINEAR FUNCTIONALS OF C^{*}-ALGEBRAS

W. T. SULAIMAN

Received 7 March 2001

We show that any bounded matrix of linear functionals $\left[f_{i j}\right]: M_{n}(A) \rightarrow M_{n}(\mathbb{C})$ has a representation $f_{i j}(a)=\left\langle T \pi(a) x_{j}, x_{i}\right\rangle, a \in A, i, j=1,2, \ldots, n$, for some representation π on a Hilbert space K and an n vectors $x_{1}, x_{2}, \ldots, x_{n}$ in K.

2000 Mathematics Subject Classification: 47B65.

1. Introduction. Let M_{n} be the C^{*}-algebras of complex $n \times n$ matrices generated as a linear space by the matrix units $E_{i j}(i, j=1,2, \ldots, n)$ and let $B(H)$ denotes the algebra of all bounded linear operators on a Hilbert space H. Let A and B denote C^{*}-algebras and $L: A \rightarrow B$ be a bounded linear map. The map L is positive provided $L(a)$ is positive whenever a is positive. The map L is said to be completely positive if $L \otimes I_{n}: A \otimes M_{n} \rightarrow B \otimes M_{n}$ defined by $L \otimes I_{n}(a \otimes b)=L(a) \otimes b$ is positive for all n. The map L is said to be completely bounded if $\sup _{n}\left\|L \otimes I_{n}\right\|$ is finite. We set $\|L\|_{c b}=$ $\sup _{n}\left\|L \otimes I_{n}\right\|, L^{*}(a)=L(a)^{*}$. Given $S \subseteq B(H)$, and let S^{\prime} denote its commutant. An $n \times n$ matrix $\left[f_{i j}\right]$ of linear functionals on a C^{*}-algebra A is positive if $\left[f_{i j}\left(a_{i j}\right)\right]$ is positive whenever [$a_{i j}$] is positive in $A \otimes M_{n}$.
2. A positive matrix of linear functionals. The following result [7, Corollary 2.3] is well known.

Theorem 2.1. Let F be a linear map from a C^{*}-algebra A to M_{n} and let the functional $f: A \otimes M_{n} \rightarrow C$ be defined by $f\left(a \otimes E_{i j}\right)=[F(a)]_{i j}$. If f is positive, then F is completely positive.

Depending on the previous result, Suen [8] proved the following theorem.
Theorem 2.2. Let $F=\left[f_{i j}\right]: A \otimes M_{n} \rightarrow M_{n}(\mathbb{C})$ be a positive $n \times n$ matrix of linear functionals on A, then F is completely positive.

In what follows we give a new proof to this result.
Proof. Define $L:\left(M_{n}(A)\right) \otimes M_{n} \rightarrow C$ by

$$
\begin{equation*}
L\left(\left[a_{k l}\right] \otimes E_{i j}\right)=\left(F\left[a_{k l}\right]\right)_{i j}=f_{i j}\left(a_{i j}\right), \tag{2.1}
\end{equation*}
$$

and a complete positive map $\delta: M_{n}(A) \rightarrow A$ by $\delta\left[a_{i j}\right]=\sum_{i, j} a_{i j}$ and put

$$
E=\left(\begin{array}{ccc}
E_{11} & & 0 \tag{2.2}\\
& \ddots & \\
0 & & E_{n n}
\end{array}\right)
$$

Let $\left[a_{k l}^{i j}\right]_{i j k l}$ be a positive element in $M_{n}(A) \otimes M_{n}$ we have

$$
\begin{align*}
L\left[a_{k l}^{i j}\right]_{i j k l} & =L\left(\sum_{i j}\left[a_{k l}\right] \otimes E_{i j}\right)=\sum_{i j} L\left(\left[a_{k l}\right] \otimes E_{i j}\right) \tag{2.3}\\
& =\sum_{i j} f_{i j}\left(a_{i j}\right)=\delta \circ F\left[a_{i j}\right] \geq 0
\end{align*}
$$

as $\left[a_{i j}\right] \equiv\left[a_{i j}^{i j}\right]$ is positive via its identification with $E\left[a_{k l}^{i j}\right]_{j k l} E$ which is positive. Another method, let

$$
\begin{equation*}
\Phi=\delta \circ F: M_{n}(A) \longrightarrow M_{n}(\mathbb{C}) \longrightarrow \mathbb{C} . \tag{2.4}
\end{equation*}
$$

As F, δ are positive maps, then Φ is positive. Since \mathbb{C} is commutative, then by [2] Φ is completely positive. The complete positivity of Φ and δ insures the complete positivity of F.

Choi [2] showed that any n-positive map from a C^{*}-algebra A to M_{n} is completely positive. The following is a generalization of a special case.
Theorem 2.3. Via the linear functionals $F=\left[f_{i j}\right]: M_{n}(A) \rightarrow M_{n}(\mathbb{C})$, any positive $\operatorname{map} \Psi: A \rightarrow M_{n}(\mathbb{C})$ is completely positive.

Proof. Define a map $\gamma: A \rightarrow M_{n}(A)$ by

$$
\gamma(a)=\left(\begin{array}{ccc}
a & \cdots & a \tag{2.5}\\
\vdots & \ddots & \vdots \\
a & \cdots & a
\end{array}\right)
$$

then γ is completely positive. Write $\Psi=F \circ \gamma: A \rightarrow M_{n}(\mathbb{C})$. The positivity of Ψ and γ insures the positivity of F, in fact $F=\Psi \circ \gamma^{-1}$, and

$$
\gamma^{-1}=\left.\frac{1}{n^{2}} \delta\right|_{\left(\begin{array}{ccc}
a & \cdots & a \tag{2.6}\\
\vdots & \ddots & \vdots \\
a & \cdots & a
\end{array}\right) .} .
$$

Therefore, F is completely positive by Theorem 2.2, which in return gives that Ψ is completely positive.
Lemma 2.4. (a) (See [3].) Let $R, S, T \in B(H)$ with T being positive and invertible. Then

$$
\left(\begin{array}{cc}
T & S \tag{2.7}\\
S^{*} & R
\end{array}\right) \geq 0 \Leftrightarrow R \geq S^{*} T^{-1} S .
$$

(b) Let $T \in B(H)$, then

$$
\left(\begin{array}{cc}
I & S \tag{2.8}\\
T^{*} & I
\end{array}\right) \geq 0 \Longleftrightarrow\|T\| \leq 1
$$

Proof. (a) This follows from the identity

$$
\left\langle\left(\begin{array}{cc}
T & S \tag{2.9}\\
S^{*} & R
\end{array}\right)\binom{x}{y},\binom{x}{y}\right\rangle=\left\|T^{1 / 2} x+T^{-1 / 2} S y\right\|^{2}+\left\langle\left(R-S^{*} T^{-1} S\right) y, y\right\rangle
$$

$$
\begin{align*}
R-S^{*} T^{-1} S \geq 0 & \Rightarrow\left\|T^{1 / 2} x+T^{-1 / 2} S y\right\|^{2}+\left\langle\left(R-S^{*} T^{-1} S\right) y, y\right\rangle \geq 0 \\
& \Rightarrow\left(\begin{array}{cc}
T & S \\
S^{*} & R
\end{array}\right) \geq 0, \tag{2.10}
\end{align*}
$$

and if

$$
\left(\begin{array}{cc}
T & S \tag{2.11}\\
S^{*} & R
\end{array}\right) \geq 0,
$$

choose $T^{1 / 2} x+T^{-1 / 2} S y=0$ which gives that $\left\langle\left(R-S^{*} T^{-1} S\right) y, y\right\rangle \geq 0$, that is, $R \geq$ $S^{*} T^{-1} S$.
(b) Follows from the following two identities:

$$
\begin{align*}
\left\langle\left(\begin{array}{cc}
I & T \\
T^{*} & I
\end{array}\right)\binom{x}{y},\binom{x}{y}\right\rangle & =\|x+T y\|^{2}+\|y\|^{2}-\|T y\|^{2}, \\
\left\langle\left(\begin{array}{cc}
I & T \\
T^{*} & I
\end{array}\right)\binom{-T x}{x},\binom{-T x}{x}\right\rangle & =\|x\|^{2}-\|T x\|^{2} . \tag{2.12}
\end{align*}
$$

Theorem 2.5. Let $F: M_{n}(A) \rightarrow M_{n}(\mathbb{C})$. If F is bounded then it is completely bounded.
Proof. Without loss of generality, assume that $\|F\| \leq 1$. Therefore, by Lemma 2.4(b),

$$
\left(\begin{array}{cc}
I_{n} & F \tag{2.13}\\
F^{*} & I_{n}
\end{array}\right) \geq 0,
$$

this also follows from Lemma 2.4(a) by noticing that $\|F\| \leq 1 \Rightarrow\|F\|^{2} \leq 1 \Rightarrow\left\|F^{*} F\right\| \leq$ $1 \Rightarrow F^{*} F \leq I_{n} \Rightarrow\left(\begin{array}{cc}I_{n} & F \\ F^{*} & I_{n}\end{array}\right) \geq 0$. Let $\Phi=\left[\phi_{i j}\right]: M_{n}(A) \rightarrow M_{n}(\mathbb{C})$ be defined by

$$
\phi_{i j}= \begin{cases}0, & i \neq j, \tag{2.14}\\ \alpha\|a\|, & i=j, \alpha>0 \text { is large enough. }\end{cases}
$$

Clearly, $\Phi-I_{n} \geq 0$, so that

$$
\left(\begin{array}{cc}
\Phi-I_{n} & 0 \tag{2.15}\\
0 & \Phi-I_{n}
\end{array}\right) \geq 0,
$$

which implies that

$$
\left(\begin{array}{cc}
\Phi-I_{n} & 0 \tag{2.16}\\
0 & \Phi-I_{n}
\end{array}\right)+\left(\begin{array}{cc}
I_{n} & F \\
F^{*} & I_{n}
\end{array}\right)=\left(\begin{array}{cc}
\Phi & F \\
F^{*} & \Phi
\end{array}\right) \geq 0 .
$$

By Theorem 2.3,

$$
\left(\begin{array}{cc}
\Phi & F \tag{2.17}\\
F^{*} & \Phi
\end{array}\right): M_{2 n}(A) \longrightarrow M_{2 n}(\mathbb{C})
$$

is completely positive and hence completely bounded. Therefore F is completely bounded.

THEOREM 2.6. Let $G: A \rightarrow M_{n}(\mathbb{C})$ be a bounded map defined by $G(a)=\left[g_{i j}(a)\right]_{i j}$. Then there is a representation π of A, a Hilbert space K, an isometry $V: H \rightarrow K$, and an operator $U_{i j} \in \pi(A)^{\prime}$ such that $[\pi(a) V H]$ is dense in K and $g_{i j}(\cdot)=V^{*} U_{i j} \pi(\cdot) V$ with $\left\|U_{i j}\right\| \leq 2$.

Proof. Since G is bounded, then by [5, Lemma 6] G is completely bounded. By [6, Theorem 2.5] there exist completely positive maps $\phi=\left[\phi_{i j}\right], \varphi=\left[\varphi_{i j}\right]: A \rightarrow M_{n}(A)$ such that the map $\Psi: M_{2}(A) \rightarrow M_{2 n}(\mathbb{C})$, defined by

$$
\Psi\left(\begin{array}{ll}
a & b \tag{2.18}\\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\phi(a) & G(b) \\
G^{*}(c) & \varphi(d)
\end{array}\right)
$$

is completely positive. Define matrices $M_{i j} \in M_{2 n}(\mathbb{C})$ by

$$
M_{i j}=\left[r_{k l}\right]: r_{i j}= \begin{cases}1, & i=j \tag{2.19}\\ 0, & \text { otherwise }\end{cases}
$$

The map

$$
\left(\begin{array}{cc}
\phi_{i i} & f_{i j} \tag{2.20}\\
f_{j i} & \varphi_{j j}
\end{array}\right), \quad f_{j i}=f_{i j}^{*}
$$

is completely positive, as it is identified with the map $M_{i j} \Psi M_{i j}$, which is completely positive as

$$
\begin{equation*}
\left(M_{i j} \Psi M_{i j}\right) \otimes M_{r}=\sum_{k, l=1}^{r}\left(M_{i j} \Psi M_{i j}\right) \otimes E_{k l}=M_{i j}\left(\sum_{k, l=1}^{r} \Psi \otimes E_{k l}\right) M_{i j} \geq 0 . \tag{2.21}
\end{equation*}
$$

Therefore,

$$
\binom{1}{\lambda}^{*}\left(\begin{array}{cc}
\phi_{i i} & f_{i j} \tag{2.22}\\
f_{j i} & \varphi_{j j}
\end{array}\right)\binom{1}{\lambda}=\phi_{i i}+\varphi_{j j}+\lambda f_{i j}+\lambda^{*} f_{j i}
$$

is completely positive. By setting $\Phi_{i j}=\left(\phi_{i i}+\varphi_{j j}\right) / 2$, we have for any λ for which $|\lambda|=1, \Phi_{i j}+\operatorname{Re}\left(\lambda f_{i j}\right)$ is completely positive. In particular, $\Phi_{i j} \pm \operatorname{Re}\left(f_{i j}\right)$ and $\Phi_{i j} \pm$ $\operatorname{Im}\left(f_{i j}\right)$ are completely positive. If $\Phi=\sum_{i=1}^{n} \Phi_{i i}, \Phi \geq \Phi_{i j}$, and the maps $\Phi \pm \operatorname{Re}\left(f_{i j}\right)$ and $\Phi \pm \operatorname{Im}\left(f_{i j}\right)$ are completely positive. Let (π, V, K) be the minimal Stinespring representation of Φ, that is, K is a Hilbert space, $V: H \rightarrow K$ is an isometry, $\pi: A \rightarrow$ $B(K)$ is a unital $*$-representation with $[\pi(A) V H]$ dense in K and $\Phi(a)=V^{*} \pi(a) V$. Since $\Phi-\left(\Phi+\operatorname{Re}\left(f_{i j}\right)\right) / 2$ is completely positive, that is, $\Phi \geq\left(\Phi+\operatorname{Re}\left(f_{i j}\right)\right) / 2$ by [1, Theorem 1.4.2], then there exists a unique positive $Q_{i j}$ in $\pi(A)^{\prime}, Q_{i j} \leq I$ such that
$V^{*} Q_{i j} \pi V=\left(V^{*} \pi V+\operatorname{Re}\left(f_{i j}\right)\right) / 2$. Therefore, $\operatorname{Re}\left(f_{i j}\right)=V^{*}\left(2 Q_{i j}-I\right) \pi V . \operatorname{Also} \operatorname{Im}\left(f_{i j}\right)=$ $V^{*}\left(2 R_{i j}-I\right) \pi V$, for a unique positive $R_{i j} \in \pi(A)^{\prime}, R_{i j} \leq I$. Write $S_{i j}=2 Q_{i j}-I$, $T_{i j}=2 R_{i j}-I, U_{i j}=S_{i j}+i T_{i j}, S_{i j}=S_{i j}^{*}, T_{i j}=T_{i j}^{*},\left\|S_{i j}\right\| \leq 1,\left\|T_{i j}\right\| \leq 1$, we have $f_{i j}=V^{*} U_{i j} \pi V, U_{i j} \in \pi(A)^{\prime},\left\|U_{i j}\right\| \leq 2$.

The following theorem generalizes [4, Proposition 2.4].
Theorem 2.7. Let $F=\left[f_{i j}\right]: M_{n}(A) \rightarrow M_{n}(\mathbb{C})$ be bounded. Then there is a representation π of A on a Hilbert space K and n vectors $x_{1}, x_{2}, \ldots, x_{n}$ in K, an operator $T \in \pi(A)^{\prime},\|T\| \leq 2$ such that $f_{i j}(a)=\left\langle T \pi(a) x_{j}, x_{i}\right\rangle, a \in A, i, j=1,2, \ldots, n$.

Proof. By [8, Theorem 2.2], F is completely bounded, and by [6, Theorem 2.5] there exist completely positive maps $\phi=\left[\phi_{i j}\right]$ and $\varphi=\left[\varphi_{i j}\right]: M_{n}(A) \rightarrow M_{n}(\mathbb{C})$ such that the map

$$
\Psi=\left(\begin{array}{cc}
\phi & F \tag{2.23}\\
F^{*} & \varphi
\end{array}\right): M_{2 n}(A) \rightarrow M_{2 n}(\mathbb{C})
$$

is completely positive. For $|\lambda|=1$, the map

$$
\binom{I_{n}}{\lambda I_{n}}^{*} \Psi\left(\begin{array}{cc}
B & B \tag{2.24}\\
B & B
\end{array}\right)\binom{I_{n}}{\lambda I_{n}}=\phi(B)+\varphi(B)+\lambda F(B)+(\lambda F)^{*}(B),
$$

$B \in M_{n}(A)$, is completely positive. By setting $\Phi=\phi+\varphi=\left[\Phi_{i j}\right]$, the maps $\Phi \pm \operatorname{Re}(F)$ and $\Phi \pm \operatorname{Im}(F)$ are completely positive. Since $\Phi \geq(\Phi+\operatorname{Re}(F)) / 2$, then by [4, Theorem 2.1] let π be the representation engendered by Φ on a Hilbert space K such that $\Phi_{i j}(a)=\left\langle\pi(a) x_{j}, x_{i}\right\rangle$, for some generating set of vectors $x_{1}, x_{2}, \ldots, x_{n}$ for $\pi(A)$. By [4, Proposition 2.4], there is a positive operator H in the unit ball of $\pi(A)^{\prime}$ such that $(\Phi+\operatorname{Re}(F)) / 2=\left[\left\langle H \pi(\cdot) x_{j}, x_{i}\right\rangle\right]_{i j}$ with

$$
\begin{equation*}
\operatorname{Re}(F)=2\left[\left\langle H \pi(\cdot) x_{j}, x_{i}\right\rangle\right]_{i j}-\left[\left\langle\pi(\cdot) x_{j}, x_{i}\right\rangle\right]=\left[\left\langle(2 H-I) \pi(\cdot) x_{j}, x_{i}\right\rangle\right] . \tag{2.25}
\end{equation*}
$$

Let $R=2 H-I$, then $R \in \pi(A)^{\prime}, R=R^{*},\|R\| \leq I$, and $\operatorname{Re}(F)=\left[\left\langle S \pi(\cdot) x_{j}, x_{i}\right\rangle\right]$. Similarly, there exists $R \in \pi(A)^{\prime}, R=R^{*},\|R\| \leq I$ such that $\operatorname{Im}(F)=\left[\left\langle R \pi(\cdot) x_{j}, x_{i}\right\rangle\right]$. Write $T=$ $S+i R$, we have $F(\cdot)=\left[\left\langle T \pi(\cdot) x_{j}, x_{i}\right\rangle\right]$. Therefore, $f_{i j}(a)=\left\langle T \pi(a) x_{j}, x_{i}\right\rangle, T \in \pi(A)^{\prime}$, $\|T\| \leq 2$.

The following is a generalization of [8, Proposition 2.7].
Theorem 2.8. If the map $\left[f_{i j}\right]: A \otimes M_{n} \rightarrow B(H) \otimes M_{n}$, defined by $\left[f_{i j}\right]\left(\left[a_{i j}\right]\right)=$ $\left[f_{i j}\left(a_{i j}\right)\right]$, is completely bounded, then there is a representation π of A on a Hilbert space K, an isometry $V: H \rightarrow K$, and an operator $T_{i j} \in \pi(A)^{\prime}$ such that $[\pi(A) V H]$ is dense in K and $f_{i j}(\cdot)=V^{*} T_{i j} \pi(\cdot) V$ with $\left\|T_{i j}\right\| \leq 2$.

Proof. The proof it follows by the same technique used in the proof of Theorem 2.6.

The following generalizes [7, Proposition 4.2] for a special case.
Theorem 2.9. Via all linear functionals $F=\left[f_{i j}\right]: M_{n}(A) \rightarrow M_{n}(\mathbb{C})$, any positive map $\phi: M_{n}(\mathbb{C}) \rightarrow M_{p}(\mathbb{C})$ is completely positive.

Proof. By the following diagram

$$
\begin{equation*}
A \xrightarrow{\gamma} M_{n}(A) \xrightarrow{F} M_{n}(\mathbb{C}) \xrightarrow{\phi} M_{n}(p), \tag{2.26}
\end{equation*}
$$

$\Psi=\phi \circ F \circ \gamma: A \rightarrow M_{n}(p)$. The positivity of ϕ, F, and γ implies the positivity of Ψ. By Theorem 2.3, Ψ is completely positive. The complete positivity of Ψ, F, and γ insures the complete positivity of ϕ.

Theorem 2.10. There is a one-to-one correspondence between the set of all bounded linear functionals $f=\left[f_{i j}\right]$ of a C^{*}-algebra A and the set of all bounded maps $F: A \rightarrow$ $M_{n}(\mathbb{C})$ given by $F_{f}(a)=\left[f_{i j}(a)\right]$.
Proof. The map f is completely bounded, by [8, Theorem 2.2]. By [6, Theorem 2.5], there exist completely positive maps $\phi, \varphi: M_{n}(A) \rightarrow M_{n}(\mathbb{C})$ defined by $\phi\left[a_{i j}\right]=$ $\left[\phi_{i j}\left(a_{i j}\right)\right]$ and $\varphi\left[a_{i j}\right]=\left[\varphi_{i j}\left(a_{i j}\right)\right]$ such that the map $\Phi: M_{2 n}(A) \rightarrow M_{2 n}(\mathbb{C})$, defined by

$$
\Phi\left(\begin{array}{ll}
B_{1} & B_{2} \tag{2.27}\\
B_{3} & B_{4}
\end{array}\right)=\left(\begin{array}{cc}
\phi\left(B_{1}\right) & F\left(B_{2}\right) \\
F^{*}\left(B_{3}\right) & \varphi\left(B_{4}\right)
\end{array}\right), \quad B_{i} \in M_{n}(A),
$$

is completely positive. If we set $\Phi_{i j}=\phi_{i j}, f_{i j}=\Phi_{i, j+n}, \varphi_{i j}=\Phi_{i+n, j+n}, i, j=1,2, \ldots, n$, we have $\Phi=\left[\Phi_{k l}\right], k, l=1,2, \ldots, 2 n$. The map $\Psi_{\Phi}: M_{2}(A) \rightarrow M_{2 n}(\mathbb{C})$, defined by

$$
\Psi_{\Phi}\left(\begin{array}{ll}
a & b \tag{2.28}\\
c & d
\end{array}\right)=\left(\begin{array}{cc}
{\left[\phi_{i j}(a)\right]} & {\left[f_{i j}(b)\right]} \\
{\left[f_{j i}^{*}(c)\right]} & {\left[\varphi_{i j}(d)\right]}
\end{array}\right),
$$

is positive as

$$
\Psi_{\Phi}\left(\begin{array}{ll}
a & b \tag{2.29}\\
c & d
\end{array}\right)=\Phi\left(\begin{array}{ll}
E \gamma & \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{array} E^{*}\right)
$$

where $\gamma: M_{2}(A) \rightarrow M_{2 n}(A)$ is defined by

$$
\begin{gather*}
\gamma\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \otimes M_{n},
\end{gather*} E_{2 n \times 2 n}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \tag{2.30}\\
0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

By [8, Theorem 2.2], Ψ_{Φ} is completely positive. By [4, Proposition 2.6], there is a one-to-one correspondence between Ψ_{Φ} and Φ. By putting $a=c=d=0$, we obtain a one-to-one correspondence between F_{f} and F.

References

[1] W. B. Arveson, Subalgebras of C^{*}-algebras, Acta Math. 123 (1969), 141-224.
[2] M. D. Choi, Positive linear maps on C^{*}-algebras, Canad. J. Math. 24 (1972), 520-529.
[3] , Some assorted inequalities for positive linear maps on C^{*}-algebras, J. Operator Theory 4 (1980), no. 2, 271-285.
[4] A. Kaplan, Multi-states on C^{*}-algebras, Proc. Amer. Math. Soc. 106 (1989), no. 2, 437-446.
[5] R. I. Loebl, Contractive linear maps on C^{*}-algebras, Michigan Math. J. 22 (1975), no. 4, 361-366.
[6] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), no. 1, 1-17.
[7] R. R. Smith and J. D. Ward, Matrix ranges for Hilbert space operators, Amer. J. Math. 102 (1980), no. 6, 1031-1081.
[8] C. Y. Suen, An $n \times n$ matrix of linear maps of a C^{*}-algebra, Proc. Amer. Math. Soc. 112 (1991), no. 3, 709-712.
W. T. Sulaiman: Ajman University, P.O. Box 346, Ajman, United Arab Emirates

