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We derive explicit stability conditions for delay difference equations in Cn (the set of n
complex vectors) and estimates for the size of the solutions are derived. Applications to
partial difference equations, which model diffusion and reaction processes, are given.
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1. Introduction. Stability of systems of difference equations with delays has been

discussed by many authors, for example, see GiL’ and Cheng [7], Zhang [11], Elaydi

and Zhang [5], Pituk [10], Agarwal [1], and the references therein.

In the stability literature, we can find two major trends: stability using the first

approximation Lyapunov method and the direct Lyapunov functional method. For

this latter trend, see Zhang and Chen [12], Crisci et al. [4], Lakshmikantham and

Trigiante [8], and Agarwal and Wong [2]. By this method many very strong results

are obtained. But finding Lyapunov’s functionals is usually difficult.

In this paper, we consider a class of perturbed difference equations with several

delays and, by means of a Gronwall inequality and the recent estimates for the powers

Ak of a constant matrix A established in [6, Theorem 1.2.1] we derive explicit stability

conditions. Further, we apply our main result to an abstract partial difference equation

which models reaction and diffusion processes.

2. Preliminary facts. Let Cn be the set of n complex vectors endowed with a norm

‖·‖. Let A be an n×n-complex matrix.

Consider in Cn the equation

uj+1 =Auj+fj
(
uj−σ1 , . . . ,uj−σp

)
, j = 0,1, . . . , (2.1)

where p ≥ 1, and σ1,σ2, . . . ,σp are nonnegative integers such that 0= σ1 <σ2 < ···<
σp , σi ∈ Z+, and Z+ is the set of nonnegative integers, fj maps Cnp into Cn, for

j = 0,1,2, . . . .
We consider (2.1) subject to the initial conditions

uj = τj, j =−σp,−σp+1, . . . ,0. (2.2)

It is assumed that there are nonnegative sequences ql (l= 1,2,3, . . . ,p) such that

∥∥fj(uj−σ1 , . . . ,uj−σp
)∥∥≤ p∑

l=1

ql(j)
∥∥uj−σl∥∥m, j = 0,1, . . . (2.3)

and m is a fixed positive real number.
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Unlike differential equations, discrete equations with the given initial conditions

always have a solution.

In order to establish our main result, we use the following discrete Gronwall type

inequality.

Theorem 2.1 (see [9]). Assume that

z(k)≤ C+
k−1∑
i=0

p∑
j=1

aj(i)z
(
i−σj

)m, k∈ Z+, (2.4)

where m > 0, 0 = σ1 < σ2 < ··· < σp , p ≥ 1, C > 0, aj(k) ≥ 0 for j = 1,2, . . . ,p and

k∈ Z+, and z(k)≤ C for k=−σp , −σp+1, . . . ,0.

(a) If 0<m< 1 and C ≤ 1, then

z(k)≤ Cmk
k−1∏
i=0

[
1+

p∑
j=1

aj(i)
]
, k∈ Z+. (2.5)

(b) If m= 1, then

z(k)≤ C
k−1∏
i=0

[
1+

p∑
j=1

aj(i)
]
, k∈ Z+. (2.6)

(c) If m> 1, then

z(k)≤ C{
1−(m−1)Cm−1 ·∑k−1

i=0

∑p
j=1aj(i)

}1/(m−1) , k∈ Z+, (2.7)

provided that

1−(m−1)Cm−1
k−1∑
i=0

p∑
j=1

aj(i) > 0, k∈ Z+. (2.8)

Let λ1(A), . . . ,λn(A) be the eigenvalues of A, including their multiplicities. We will

make use of the following quantity hereafter (see [6, Chapter 1]):

g(A)=
{
N2(A)−

n∑
i=1

∣∣λi(A)∣∣2

}1/2

, (2.9)

where N(A) is the Frobenius (Hilbert-Schmidt) norm of A, that is, N2(A)= Trace(AA∗).
There are a number of properties of g(A) which are useful (see [6]). Here, we note

that if A is normal, that is, AA∗ = A∗A, then g(A) = 0. If A = (aij) is a triangular

matrix such that aij = 0 for 1≤ j < i≤n, then

g2(A)=
∑

1≤i<j≤n

∣∣aij∣∣2. (2.10)

To facilitate the description of our main result, we adopt the convention that 0!= 1,

00 = 1, and that empty sums are zero. Further, the binomial coefficient Cij is given by

Cij =
i!

j!(i−j)! , 0≤ j ≤ i. (2.11)
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As normal, but we also adopt the convention that Cij = 0 when j < 0 or j > i. We

define

γn,i =




√√√√ Cn−1
i

(n−1)i
, i= 0,1,2, . . . ,n−1,

0, if i < 0 or i > n−1.

(2.12)

Note that

γ2
n,i =

(n−2)(n−3)···(n−i)
(n−1)i−1i!

≤ 1
i!
. (2.13)

Finally, we denoteM = supm≥0

∑n−1
k=0 C

m
k ρm−k(A)gk(A)γn,k, where ρ(A) is the spec-

tral radius of A.

3. Main result. Now, we are in a position to establish our main result pertaining

to the boundedness and convergence to zero of the solutions of (2.1) subject to the

initial conditions (2.2).

Theorem 3.1. Assume that

(i) there are nonnegative sequences ql (l= 1,2, . . . ,p) such that

∥∥fj(uj−σ1 , . . . ,uj−σp
)∥∥≤ p∑

l=1

ql(j)
∥∥uj−σl∥∥m, j = 0,1, . . . (3.1)

for p ≥ 1 and m a fixed positive real number,

(ii)
∑∞
k=0

∑p
l=1ql(k) <∞,

(iii) v0 = g(A) <∞.

Then,

(a) if 0<m≤ 1 and L=M‖τ0‖ ≤ 1, with

M = sup
m≥0

n−1∑
k=0

Cmk ρ
m−k(A)gk(A)γn,k, (3.2)

every solutionuj of (2.1) and (2.2), such that ‖uj‖ ≤ L for j =−σp,−σp+1, . . . ,0,

is bounded, and limj→∞‖uj‖ = 0 whenever ‖τ0‖< δ, for δ > 0 small enough;

(b) if m> 1 and

∥∥τ0

∥∥≤
{

r
(m−1)Mm

∑∞
k=0

∑p
l=1ql(k)

}1/(m−1)

, (3.3)

for an arbitrary real number r ∈ (0,1), every solution uj of (2.1) and (2.2),

satisfying ‖uj‖ ≤ L for j =−σp,−σp+1, . . . ,0, is bounded.

Proof. Note first that by inductive arguments, we can prove that the unique solu-

tion {uj}∞j=−σp of (2.1), subject to given initial values: u0 = τ0, u−1, . . . ,u−σp , satisfies

uj =Ajτ0+
j−1∑
k=0

Aj−k−1fk
(
uk−σ1 , . . . ,uk−σp

)
, j = 0,1,2, . . . . (3.4)
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Hence,

∥∥uj∥∥≤ ∥∥Aj∥∥∥∥τ0

∥∥+ j−1∑
k=0

∥∥Aj−k−1
∥∥∥∥fk(uk−σ1 , . . . ,uk−σp

)∥∥

≤ ∥∥Aj∥∥∥∥τ0

∥∥+ j−1∑
k=0

∥∥Aj−k−1
∥∥ p∑
l=1

ql(k)
∥∥uk−σl∥∥m.

(3.5)

Denote Γ = supj≥0‖Aj‖. Thus, we have

∥∥uj∥∥≤ Γ∥∥τ0

∥∥+ j−1∑
k=0

p∑
l=1

sup
j≥k≥0

∥∥Aj−k−1
∥∥ql(k)∥∥uk−σl∥∥m

≤ Γ∥∥τ0

∥∥+Γ j−1∑
k=0

p∑
l=1

ql(k)
∥∥uk−σl∥∥m.

(3.6)

We now recall from [6] that

∥∥Aj∥∥≤ min{j,n−1}∑
k=0

Cjkρ
j−k(A)gk(A)γn,k (3.7)

which implies that

Γ = sup
j≥0

∥∥Aj∥∥≤ sup
j≥0

n−1∑
k=0

Cjkρ
j−k(A)gk(A)γn,k =M. (3.8)

Thus, it follows that

∥∥uj∥∥≤M∥∥τ0

∥∥+M j−1∑
k=0

p∑
l=1

ql(k)
∥∥uk−σl∥∥m. (3.9)

Put v(j)= ‖uj‖ for j = 0,1,2, . . . , hence

v(j)≤ L+M
j−1∑
k=0

p∑
l=1

ql(k)v
(
k−σl

)m, (3.10)

where L=M‖τ0‖ and v(j)≤ L for j =−σp,−σp+1, . . . ,0.

Case 1. If 0<m≤ 1 and L≤ 1, then by (2.4) and Theorem 2.1(a) we have

v(j)≤ Lmj
j−1∏
k=0

[
1+

p∑
l=1

ql(k)
]
≤ Lmj

exp

(
M

∞∑
k=0

p∑
l=1

ql(k)
)
. (3.11)

Thus, establishing that the solution uj is bounded for j = −σp,−σp+1, . . . ,0, and

limj→∞‖uj‖ = 0 whenever ‖u0‖< δ, for δ > 0 small enough.

Case 2. If m> 1, then proceeding in a similar way to Case 1, we arrive at inequal-

ity (3.10).
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Hence, by Theorem 2.1(b), it follows that

v(j)≤ L{
1−(m−1)Lm−1

∑j−1
k=0

∑p
l=1ql(k)

}1/(m−1) (3.12)

provided that

1−(m−1)Lm−1
j−1∑
k=0

p∑
l=1

ql(k) > 0. (3.13)

Let r ∈ (0,1) be an arbitrary real number. We prove that condition (3.13) holds for

all τ satisfying

‖τ‖ ≤
{

r
(m−1)Mmγ

}1/(m−1)

=: R, (3.14)

where

γ =
∞∑
k=0

p∑
l=1

ql(k) <∞. (3.15)

Indeed, for all such a τ0, we have

(m−1)Mm−1
∥∥τ0

∥∥m−1
j−1∑
k=0

p∑
l=1

ql(k)

≤ (m−1)Mm−1
∥∥τ0

∥∥m−1
∞∑
k=0

p∑
l=1

ql(k)≤ r .
(3.16)

Thus,

1−(m−1)MmLm−1
j−1∑
k=0

p∑
l=1

ql(k)≥ 1−r > 0. (3.17)

Consequently, for all τ such that ‖τ0‖ ≤ R, we have

∥∥uj∥∥≤ M
∥∥τ0

∥∥{
1−(m−1)Lm−1

∑j−1
k=0

∑p
l=1Mql(k)

}1/(m−1)

≤ M
(1−r)1/(m−1)

∥∥τ0

∥∥, j = 0,1,2, . . . .

(3.18)

Therefore, we have the boundedness of the solution uj of (2.1), subject to the initial

conditions (2.2), concluding the proof.

4. Application. In this section, we illustrate our main result by considering an ab-

stract partial difference equation, which models reaction and diffusion processes (see

Cheng and Medina [3]).
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Consider a simple three-level discrete reaction-diffusion equation of the form

ui,j+1 = aui−1,j+bui,j+cui+1,j+
p∑
l̄=1

ql(j)ui,j−σl , (4.1)

defined on the set

Ω = {(i,j) | i= 0,1, . . . ,n+1, j = 0,1, . . .
}
, (4.2)

where ql (l= 1,2, . . . ,p) are nonnegative real sequences; ui,j are complex sequences,

p ≥ 1; a, b, c are real numbers; and 0= σ1 <σ2 < ···<σp , σi ∈ Z+.

For the sake of simplicity, Dirichlet boundary conditions of the form

u0,j = 0=un+1,j , j = 0,1, . . . (4.3)

will be imposed.

Given an arbitrary set of initial values ui,j , −σp ≤ j ≤ 0, 1≤ i≤n, namely

ui,j = τi,j , −σp ≤ j ≤ 0, 1≤ i≤n. (4.4)

We can successively calculate u1,1,u2,1, . . . ,un,1; u1,2, . . . ,un,2; . . . , according to (4.1)

in a unique manner. Such a double sequence:u={ui,j | i=0,1, . . . ,n+1, j=−σp,−σp+
1, . . .} is called a solution of (4.1) subject to conditions (4.3) and (4.4). An existence and

uniqueness theorem for (4.1) can thus be formulated and proved in a straightforward

manner.

By designating col(u1,j ,u2,j , . . . ,un,j) as the Cn-vector uj , we see that a solution

of (4.1), (4.3), and (4.4) can also be regarded as a vector sequence {uj}∞j=−σp . Further-

more, such a sequence satisfies the delay vector recurrence relation

uj+1 =Auj+
p∑
l̄=1

ql(j)uj−σl , (4.5)

subject to the initial conditions

uj = τj, j =−σp,−σp+1, . . . ,0, (4.6)

where τj = col(τ1,j ,τ2,j , . . . ,τn,j), and

A=




b c 0 0 ··· 0

a b c 0 ··· 0

0 a b c ··· 0

0 0 a b ··· 0
...

...
...

...
...

...

0 0 ··· ··· a b



, (4.7)

In particular, (4.5) is of the form (2.1), where

fj
(
uj−σ1 , . . . ,uj−σp

)= p∑
l̄=1

ql(j)ui,j−σl , j = 0,1,2, . . . . (4.8)
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Theorem 4.1. Let conditions (ii) and (iii) of Theorem 3.1 hold. Further, assume that

∥∥fj(uj−σ1 , . . . ,uj−σp
)∥∥≤ p∑

l=1

ql(j)
∥∥uj−σl∥∥, j = 0,1, . . . . (4.9)

Then, if L = M‖τ0‖ ≤ 1, with M = supj≥0

∑n−1
k=0 C

j
kρj−k(A)gk(A)γn,k, every solution

uj of (4.5) and (4.6), such that ‖uj‖ ≤ L, for j = −σp,−σp+1, . . . ,0, is bounded, and

limj→∞‖uj‖ = 0 whenever ‖τ0‖< δ, for δ > 0 small enough.

Proof. The proof is a direct consequence of Theorem 3.1.
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