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1. Introduction. Let

g(x)= a0

2
+

∞∑
n=1

an cosnx, (1.1)

gn(x)= 1
2

n∑
k=0

∆ak+
n∑
k=1

n∑
j=k

(
∆aj

)
coskx. (1.2)

The problem of L1-convergence of the Fourier cosine series (1.1) has been settled

for various special classes of coefficients. Young [6] found that an logn= o(1), n→∞
is a necessary and sufficient condition for cosine series with convex (∆2an ≥ 0) coeffi-

cients, and Kolmogorov [5] extended this result to the cosine series with quasi-convex

(
∑∞
n=1n|∆2an−1| < ∞) coefficients. Later, Garrett and Stanojević [3] using modified

cosine sums (1.2), proved the following theorem.

Theorem 1.1. Let {an} be a null sequence of bounded variation. Then the sequence

of modified cosine sums

gn(x)= Sn(x)−an+1Dn(x), (1.3)

where Sn(x) are the partial sums of the cosine series (1.1) and Dn(x) is the Dirichlet

kernel, converges in L1-norm to g(x), the pointwise sum of the cosine series, if and only

if for every ε > 0, there exists δ(ε) > 0, independent of n, such that

∫ δ
0

∣∣∣∣∣
∞∑

k=n+1

∆akDk(x)

∣∣∣∣∣dx < ε, for every n. (1.4)

This result contains as a special case a number of classical and neo-classical results.

In particular, in [3] the following corollary to Theorem 1.1 is proved.
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Theorem 1.2. Let {an} be a null sequence of bounded variation satisfying condition

(1.4). Then the cosine series is the Fourier series of its sum g(x) and ‖Sn(g)−g‖ = o(1),
n→∞ is equivalent to an logn= o(1), n→∞.

In [2] Garrett and Stanojević proved the following theorem.

Theorem 1.3. If {an} is a null quasi-convex sequence, then gn(x) converges to

g(x) in the L1-norm.

Definition 1.4 (see [4]). A sequence {an} is said to be semiconvex if {an} → 0 as

n→∞, and
∞∑
n=1

n
∣∣∆2an−1+∆2an

∣∣<∞, (
a0 = 0

)
, (1.5)

where ∆2an =∆an−∆an+1, ∆an = an−an+1.

It may be remarked here that every quasi-convex null sequence is semi-convex. We

generalize semiconvexity of null sequences in the following way: a null sequence {an}
is said to be generalized semiconvex, if

∞∑
n=1

nα
∣∣∆α+1an−1+∆α+1an

∣∣<∞, for α> 0
(
a0 = 0

)
. (1.6)

For α = 1, this class reduces to the class defined in [4]. The object of this paper is

to show that Theorem 1.3 of Garrett and Stanojević [2] holds good for cosine sums

(1.2) with generalized semi-convex null coefficients.

2. Notation and formulae. In what follows, we use the following notions [7]:

S0
n = Sn = a0+a1+···+an;

Skn = Sk−1
0 +Sk−1

1 +···+Sk−1
n , k= 1,2, . . . , n= 0,1,2, . . . ;

A0
n = 1, Akn =Ak−1

0 +Ak−1
1 +···+Ak−1

n k= 1,2, . . . , n= 0,1,2, . . . .

(2.1)

The An’s are called the binomial coefficients and are given by the following relation:

∞∑
k=0

Aαkx
k = (1−x)(−α−1), (2.2)

whereas Sn’s are given by

∞∑
k=0

Sαk x
k = (1−x)−α

∞∑
k=0

Skxk, (2.3)

and

Aαn =
n∑
v=0

Aα−1
v , Aαn−Aαn−1 =Aα−1

n ,

Aαn =
(
n+α
n

)
� nα

Γ(α+1)
(α≠−1,−2, . . .).

(2.4)

The Cesaro means Tαk of order α is denoted by Tαk = Sαk /Aαk .
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Also for 0<x ≤π , let

D̄0(x)=−1
2

cot
x
2
,

S̄n(x)= D̄0(x)+sinx+sin2x+···+sinnx,

S̄1
n(x)= S̄0(x)+ S̄1(x)+ S̄2(x)+···+ S̄n(x),
S̄2
n(x)= S̄1

0(x)+ S̄1
1(x)+ S̄1

2(x)+···+ S̄1
n(x),

...

S̄kn(x)= S̄k−1
0 (x)+ S̄k−1

1 (x)+ S̄k−1
2 (x)+···+ S̄k−1

n (x).

(2.5)

The conjugate Cesaro means T̄ αk of order α is denoted by T̄ αk = S̄αk /Aαk .

We use the following lemma for the proof of our result.

Lemma 2.1 (see [1]). If α≥ 0, p ≥ 0,

εn = o
(
n−p

)
,

∞∑
n=0

Aα+pn
∣∣∆α+1εn

∣∣<∞, (2.6)

then

∞∑
n=0

Aλ+pn
∣∣∆λ+1εn

∣∣<∞ for −1≤ λ≤α,

Aλ+pn ∆λεn is of bounded variation for 0≤ λ≤α and tends to zero as n �→∞.
(2.7)

3. Main result. The main result of this paper is the following theorem.

Theorem 3.1. If {an} is a generalized semiconvex null sequence, then gn(x) con-

verges to g(x) in L1-metric if and only if limn→∞∆an logn= o(1), as n→∞.

Proof. We have

gn(x)= 1
2

n∑
k=0

∆ak+
n∑
k=1

n∑
j=k
∆aj coskx

= a0

2
+

n∑
k=1

ak coskx−an+1Dn(x)

=
n∑
k=1

ak coskx−an+1Dn(x)
(
a0 = 0

)

=
n−1∑
k=1

(
ak−1−ak+1

) sinkx
2sinx

+an−1
sinnx
2sinx

+an sin(n+1)x
2sinx

−an+1Dn(x),

(3.1)
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where

Dn(x)= sinnx+sin(n+1)x
2sinx

,

gn(x)=
n−1∑
k=1

(
ak−1−ak+1

) sinkx
2sinx

+an−1
sinnx
2sinx

+an sin(n+1)x
2sinx

−an+1
sinnx
2sinx

−an+1
sin(n+1)x

2sinx

= 1
2sinx

n∑
k=1

(
∆ak−1+∆ak

)
sinkx+∆an sin(n+1)x

2sinx
.

(3.2)

Applying Abel’s transformation, we have

gn(x)= 1
2sinx

n−1∑
k=1

(
∆2ak−1+∆2ak

) k∑
v=1

sinvx+(∆an−1+∆an
) n∑
v=1

sinvx

+∆an sin(n+1)x
2sinx

= 1
2sinx

[n−1∑
k=1

(
∆2ak−1+∆2ak

)(
S̄0
k(x)− S̄0(x)

)+(∆an−1+∆an
)(
S̄0
n(x)− S̄0(x)

)]

+∆an sin(n+1)x
2sinx

= 1
2sinx

[n−1∑
k=1

(
∆2ak−1+∆2ak

)
S̄0
k(x)−

n−1∑
k=1

(
∆2ak−1+∆2ak

)
S̄0(x)

]

+ 1
2sinx

[(
∆an−1+∆an

)
S̄0
n(x)−

(
∆an−1+∆an

)
S̄0(x)

]+∆an sin(n+1)x
2sinx

= 1
2sinx

[n−1∑
k=1

(
∆2ak−1+∆2ak

)(
S̄0
k(x)

)−(∆an−1+∆an
)
S̄0
n(x)+a2S̄0(x)

]

+∆an sin(n+1)x
2sinx

.

(3.3)

If we use Abel’s transformation α times, we have similarly,

gn(x)= 1
2sinx

[n−α∑
k=1

(
∆α+1ak−1+∆α+1ak

)
S̄α−1
k (x)+

α∑
k=1

∆kan−kS̄k−1
n−k+1(x)

]

+ 1
2sinx

[ α∑
k=1

∆kan−k+1S̄k−1
n−k+1(x)+a2S̄0(x)

]
+∆an sin(n+1)x

2sinx
.

(3.4)

Since S̄n(x) and T̄n(x) are uniformly bounded on every segment [ε,π−ε], ε > 0.

g(x)= lim
n→∞gn(x)

= 1
2sinx

[ ∞∑
k=1

(
∆α+1ak−1+∆α+1ak

)
S̄α−1
k (x)+a2S̄0(x)

]
.

(3.5)
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Thus

g(x)−gn(x)= 1
2sinx

[ ∞∑
k=n−α+1

(
∆α+1ak−1+∆α+1ak

)
S̄α−1
k (x)−

α∑
k=1

∆kan−kS̄k−1
n−k+1(x)

]

− 1
2sinx

[ α∑
k=1

∆kan−k+1S̄k−1
n−k+1(x)

]
−∆an sin(n+1)x

2sinx
,

∥∥g(x)−gn(x)∥∥≤ C
[∫ π

0

∣∣∣∣∣
∞∑

k=n−α+1

(
∆α+1ak−1+∆α+1ak

)
S̄α−1
k (x)

∣∣∣∣∣dx
]

+C
[∫ π

0

∣∣∣∣∣
α∑
k=1

∆kan−kS̄k−1
n−k+1(x)

∣∣∣∣∣dx+
∫ π

0

∣∣∣∣∣
α∑
k=1

∆kan−k+1S̄k−1
n−k+1(x)

∣∣∣∣∣dx
]

+
∫ π

0

∣∣∣∣∆an sin(n+1)x
2sinx

∣∣∣∣dx,
∥∥g(x)−gn(x)∥∥≤ C

[ ∞∑
k=n−α+1

∣∣(∆α+1ak−1+∆α+1ak
)∣∣∫ π

0

∣∣S̄α−1
k (x)

∣∣dx
]

+C
[ α∑
k=1

∣∣∆kan−k∣∣
∫ π

0

∣∣S̄k−1
n−k+1(x)

∣∣dx+α∑
k=1

∣∣∆kan−k+1

∣∣∫ π
0

∣∣S̄k−1
n−k+1(x)

∣∣dx
]

+
∫ π

0

∣∣∣∣∆an sin(n+1)x
2sinx

∣∣∣∣dx

≤ C
[ ∞∑
k=n−α+1

Aαk
∣∣(∆α+1ak−1+∆α+1ak

)∣∣∫ π
0

∣∣T̄ αk (x)∣∣dx
]

+C
[ α∑
k=1

Akn−k+1

∣∣∆kan−k∣∣
∫ π

0

∣∣T̄ kn−k+1(x)
∣∣dx

]

+C
[ α∑
k=1

Akn−k+1

∣∣∆kan−k+1

∣∣∫ π
0

∣∣T̄ kn−k+1(x)
∣∣dx

]

+
∫ π

0

∣∣∣∣∆an sin(n+1)x
2sinx

∣∣∣∣dx.
(3.6)

The first three terms of the above inequality are of o(1) by Lemma 2.1 and the

hypothesis of Theorem 3.1.

Moreover, since

∫ π
0

∣∣∣∣sin(n+1)x
2sinx

∣∣∣∣dx ≤ C logn, n≥ 2, (3.7)

therefore

∫ π
0

∣∣∣∣∆an sin(n+1)x
2sinx

∣∣∣∣dx ∼∆an logn. (3.8)
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It follows that
∫π
0 |g(x)−gn(x)|dx→ 0, if and only if ∆an logn→ o(1) as n→∞. This

completes the proof of the theorem.
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