INTEGRABILITY AND L^{1}-CONVERGENCE OF REES-STANOJEVIĆ SUMS WITH GENERALIZED SEMICONVEX COEFFICIENTS

KULWINDER KAUR and S. S. BHATIA

Received 24 April 2001 and in revised form 25 October 2001

Abstract

Integrability and L^{1}-convergence of modified cosine sums introduced by Rees and Stanojević (1973) under a class of generalized semiconvex null coefficients are studied, using Cesaro means of integral order.

2000 Mathematics Subject Classification: 42C10, 40G05.

1. Introduction. Let

$$
\begin{align*}
g(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x \tag{1.1}\\
g_{n}(x) & =\frac{1}{2} \sum_{k=0}^{n} \Delta a_{k}+\sum_{k=1}^{n} \sum_{j=k}^{n}\left(\Delta a_{j}\right) \cos k x . \tag{1.2}
\end{align*}
$$

The problem of L^{1}-convergence of the Fourier cosine series (1.1) has been settled for various special classes of coefficients. Young [6] found that $a_{n} \log n=o(1), n \rightarrow \infty$ is a necessary and sufficient condition for cosine series with convex ($\Delta^{2} a_{n} \geq 0$) coefficients, and Kolmogorov [5] extended this result to the cosine series with quasi-convex ($\left.\sum_{n=1}^{\infty} n\left|\Delta^{2} a_{n-1}\right|<\infty\right)$ coefficients. Later, Garrett and Stanojević [3] using modified cosine sums (1.2), proved the following theorem.

Theorem 1.1. Let $\left\{a_{n}\right\}$ be a null sequence of bounded variation. Then the sequence of modified cosine sums

$$
\begin{equation*}
g_{n}(x)=S_{n}(x)-a_{n+1} D_{n}(x), \tag{1.3}
\end{equation*}
$$

where $S_{n}(x)$ are the partial sums of the cosine series (1.1) and $D_{n}(x)$ is the Dirichlet kernel, converges in L^{1}-norm to $g(x)$, the pointwise sum of the cosine series, if and only if for every $\epsilon>0$, there exists $\delta(\epsilon)>0$, independent of n, such that

$$
\begin{equation*}
\int_{0}^{\delta}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)\right| d x<\epsilon, \quad \text { for every } n . \tag{1.4}
\end{equation*}
$$

This result contains as a special case a number of classical and neo-classical results. In particular, in [3] the following corollary to Theorem 1.1 is proved.

THEOREM 1.2. Let $\left\{a_{n}\right\}$ be a null sequence of bounded variation satisfying condition (1.4). Then the cosine series is the Fourier series of its sum $g(x)$ and $\left\|S_{n}(g)-g\right\|=o(1)$, $n \rightarrow \infty$ is equivalent to $a_{n} \log n=o(1), n \rightarrow \infty$.

In [2] Garrett and Stanojević proved the following theorem.
Theorem 1.3. If $\left\{a_{n}\right\}$ is a null quasi-convex sequence, then $g_{n}(x)$ converges to $g(x)$ in the L^{1}-norm.

Definition 1.4 (see [4]). A sequence $\left\{a_{n}\right\}$ is said to be semiconvex if $\left\{a_{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$, and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} a_{n-1}+\Delta^{2} a_{n}\right|<\infty, \quad\left(a_{0}=0\right) \tag{1.5}
\end{equation*}
$$

where $\Delta^{2} a_{n}=\Delta a_{n}-\Delta a_{n+1}, \Delta a_{n}=a_{n}-a_{n+1}$.
It may be remarked here that every quasi-convex null sequence is semi-convex. We generalize semiconvexity of null sequences in the following way: a null sequence $\left\{a_{n}\right\}$ is said to be generalized semiconvex, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\alpha}\left|\Delta^{\alpha+1} a_{n-1}+\Delta^{\alpha+1} a_{n}\right|<\infty, \quad \text { for } \alpha>0\left(a_{0}=0\right) \tag{1.6}
\end{equation*}
$$

For $\alpha=1$, this class reduces to the class defined in [4]. The object of this paper is to show that Theorem 1.3 of Garrett and Stanojević [2] holds good for cosine sums (1.2) with generalized semi-convex null coefficients.
2. Notation and formulae. In what follows, we use the following notions [7]:

$$
\begin{align*}
& S_{n}^{0}=S_{n}=a_{0}+a_{1}+\cdots+a_{n} ; \\
& S_{n}^{k}=S_{0}^{k-1}+S_{1}^{k-1}+\cdots+S_{n}^{k-1}, \quad k=1,2, \ldots, n=0,1,2, \ldots \tag{2.1}\\
& A_{n}^{0}=1, \quad A_{n}^{k}=A_{0}^{k-1}+A_{1}^{k-1}+\cdots+A_{n}^{k-1} \quad k=1,2, \ldots, n=0,1,2, \ldots
\end{align*}
$$

The A_{n} 's are called the binomial coefficients and are given by the following relation:

$$
\begin{equation*}
\sum_{k=0}^{\infty} A_{k}^{\alpha} x^{k}=(1-x)^{(-\alpha-1)} \tag{2.2}
\end{equation*}
$$

whereas S_{n} 's are given by

$$
\begin{equation*}
\sum_{k=0}^{\infty} S_{k}^{\alpha} x^{k}=(1-x)^{-\alpha} \sum_{k=0}^{\infty} S_{k} x^{k} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
& A_{n}^{\alpha}=\sum_{v=0}^{n} A_{v}^{\alpha-1}, \quad A_{n}^{\alpha}-A_{n-1}^{\alpha}=A_{n}^{\alpha-1}, \tag{2.4}\\
& A_{n}^{\alpha}=\left(\frac{n+\alpha}{n}\right) \cong \frac{n^{\alpha}}{\Gamma(\alpha+1)} \quad(\alpha \neq-1,-2, \ldots) .
\end{align*}
$$

The Cesaro means T_{k}^{α} of order α is denoted by $T_{k}^{\alpha}=S_{k}^{\alpha} / A_{k}^{\alpha}$.

Also for $0<x \leq \pi$, let

$$
\begin{align*}
\bar{D}_{0}(x) & =-\frac{1}{2} \cot \frac{x}{2} \\
\bar{S}_{n}(x) & =\bar{D}_{0}(x)+\sin x+\sin 2 x+\cdots+\sin n x \\
\bar{S}_{n}^{1}(x) & =\bar{S}_{0}(x)+\bar{S}_{1}(x)+\bar{S}_{2}(x)+\cdots+\bar{S}_{n}(x) \\
\bar{S}_{n}^{2}(x) & =\bar{S}_{0}^{1}(x)+\bar{S}_{1}^{1}(x)+\bar{S}_{2}^{1}(x)+\cdots+\bar{S}_{n}^{1}(x), \tag{2.5}\\
& \vdots \\
\bar{S}_{n}^{k}(x) & =\bar{S}_{0}^{k-1}(x)+\bar{S}_{1}^{k-1}(x)+\bar{S}_{2}^{k-1}(x)+\cdots+\bar{S}_{n}^{k-1}(x) .
\end{align*}
$$

The conjugate Cesaro means \bar{T}_{k}^{α} of order α is denoted by $\bar{T}_{k}^{\alpha}=\bar{S}_{k}^{\alpha} / A_{k}^{\alpha}$. We use the following lemma for the proof of our result.

Lemma 2.1 (see [1]). If $\alpha \geq 0, p \geq 0$,

$$
\begin{gather*}
\epsilon_{n}=o\left(n^{-p}\right), \\
\sum_{n=0}^{\infty} A_{n}^{\alpha+p}\left|\Delta^{\alpha+1} \epsilon_{n}\right|<\infty, \tag{2.6}
\end{gather*}
$$

then

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}^{\lambda+p}\left|\Delta^{\lambda+1} \epsilon_{n}\right|<\infty \quad \text { for }-1 \leq \lambda \leq \alpha \tag{2.7}
\end{equation*}
$$

$A_{n}^{\lambda+p} \Delta^{\lambda} \epsilon_{n}$ is of bounded variation for $0 \leq \lambda \leq \alpha$ and tends to zero as $n \rightarrow \infty$.
3. Main result. The main result of this paper is the following theorem.

Theorem 3.1. If $\left\{a_{n}\right\}$ is a generalized semiconvex null sequence, then $g_{n}(x)$ converges to $g(x)$ in L^{1}-metric if and only if $\lim _{n \rightarrow \infty} \Delta a_{n} \log n=o(1)$, as $n \rightarrow \infty$.

Proof. We have

$$
\begin{align*}
g_{n}(x) & =\frac{1}{2} \sum_{k=0}^{n} \Delta a_{k}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a_{j} \cos k x \\
& =\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \cos k x-a_{n+1} D_{n}(x) \\
& =\sum_{k=1}^{n} a_{k} \cos k x-a_{n+1} D_{n}(x) \quad\left(a_{0}=0\right) \tag{3.1}\\
& =\sum_{k=1}^{n-1}\left(a_{k-1}-a_{k+1}\right) \frac{\sin k x}{2 \sin x}+a_{n-1} \frac{\sin n x}{2 \sin x}+a_{n} \frac{\sin (n+1) x}{2 \sin x}-a_{n+1} D_{n}(x),
\end{align*}
$$

where

$$
\begin{align*}
D_{n}(x)= & \frac{\sin n x+\sin (n+1) x}{2 \sin x}, \\
g_{n}(x)= & \sum_{k=1}^{n-1}\left(a_{k-1}-a_{k+1}\right) \frac{\sin k x}{2 \sin x}+a_{n-1} \frac{\sin n x}{2 \sin x}+a_{n} \frac{\sin (n+1) x}{2 \sin x} \\
& -a_{n+1} \frac{\sin n x}{2 \sin x}-a_{n+1} \frac{\sin (n+1) x}{2 \sin x} \tag{3.2}\\
= & \frac{1}{2 \sin x} \sum_{k=1}^{n}\left(\Delta a_{k-1}+\Delta a_{k}\right) \sin k x+\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x} .
\end{align*}
$$

Applying Abel's transformation, we have

$$
\begin{align*}
g_{n}(x)= & \frac{1}{2 \sin x} \sum_{k=1}^{n-1}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) \sum_{v=1}^{k} \sin v x+\left(\Delta a_{n-1}+\Delta a_{n}\right) \sum_{v=1}^{n} \sin v x \\
& +\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x} \\
= & \frac{1}{2 \sin x}\left[\sum_{k=1}^{n-1}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right)\left(\bar{S}_{k}^{0}(x)-\bar{S}_{0}(x)\right)+\left(\Delta a_{n-1}+\Delta a_{n}\right)\left(\bar{S}_{n}^{0}(x)-\bar{S}_{0}(x)\right)\right] \\
& +\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x} \\
= & \frac{1}{2 \sin x}\left[\sum_{k=1}^{n-1}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) \bar{S}_{k}^{0}(x)-\sum_{k=1}^{n-1}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) \bar{S}_{0}(x)\right] \\
& +\frac{1}{2 \sin x}\left[\left(\Delta a_{n-1}+\Delta a_{n}\right) \bar{S}_{n}^{0}(x)-\left(\Delta a_{n-1}+\Delta a_{n}\right) \bar{S}_{0}(x)\right]+\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x} \\
= & \frac{1}{2 \sin x}\left[\sum_{k=1}^{n-1}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right)\left(\bar{S}_{k}^{0}(x)\right)-\left(\Delta a_{n-1}+\Delta a_{n}\right) \bar{S}_{n}^{0}(x)+a_{2} \bar{S}_{0}(x)\right] \\
& +\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x} . \tag{3.3}
\end{align*}
$$

If we use Abel's transformation α times, we have similarly,

$$
\begin{align*}
g_{n}(x)= & \frac{1}{2 \sin x}\left[\sum_{k=1}^{n-\alpha}\left(\Delta^{\alpha+1} a_{k-1}+\Delta^{\alpha+1} a_{k}\right) \bar{S}_{k}^{\alpha-1}(x)+\sum_{k=1}^{\alpha} \Delta^{k} a_{n-k} \bar{S}_{n-k+1}^{k-1}(x)\right] \tag{3.4}\\
& +\frac{1}{2 \sin x}\left[\sum_{k=1}^{\alpha} \Delta^{k} a_{n-k+1} \bar{S}_{n-k+1}^{k-1}(x)+a_{2} \bar{S}_{0}(x)\right]+\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x} .
\end{align*}
$$

Since $\bar{S}_{n}(x)$ and $\bar{T}_{n}(x)$ are uniformly bounded on every segment $[\epsilon, \pi-\epsilon], \epsilon>0$.

$$
\begin{align*}
g(x) & =\lim _{n \rightarrow \infty} g_{n}(x) \\
& =\frac{1}{2 \sin x}\left[\sum_{k=1}^{\infty}\left(\Delta^{\alpha+1} a_{k-1}+\Delta^{\alpha+1} a_{k}\right) \bar{S}_{k}^{\alpha-1}(x)+a_{2} \bar{S}_{0}(x)\right] . \tag{3.5}
\end{align*}
$$

Thus

$$
\begin{align*}
g(x)-g_{n}(x)= & \frac{1}{2 \sin x}\left[\sum_{k=n-\alpha+1}^{\infty}\left(\Delta^{\alpha+1} a_{k-1}+\Delta^{\alpha+1} a_{k}\right) \bar{S}_{k}^{\alpha-1}(x)-\sum_{k=1}^{\alpha} \Delta^{k} a_{n-k} \bar{S}_{n-k+1}^{k-1}(x)\right] \\
& -\frac{1}{2 \sin x}\left[\sum_{k=1}^{\alpha} \Delta^{k} a_{n-k+1} \bar{S}_{n-k+1}^{k-1}(x)\right]-\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x}, \\
\left\|g(x)-g_{n}(x)\right\| \leq & C\left[\int_{0}^{\pi}\left|\sum_{k=n-\alpha+1}^{\infty}\left(\Delta^{\alpha+1} a_{k-1}+\Delta^{\alpha+1} a_{k}\right) \bar{S}_{k}^{\alpha-1}(x)\right| d x\right] \\
& +C\left[\int_{0}^{\pi}\left|\sum_{k=1}^{\alpha} \Delta^{k} a_{n-k} \bar{S}_{n-k+1}^{k-1}(x)\right| d x+\int_{0}^{\pi}\left|\sum_{k=1}^{\alpha} \Delta^{k} a_{n-k+1} \bar{S}_{n-k+1}^{k-1}(x)\right| d x\right] \\
& +\int_{0}^{\pi}\left|\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x}\right| d x, \\
& +C\left[\sum_{k=1}^{\alpha}\left|\Delta^{k} a_{n-k}\right| \int_{0}^{\pi}\left|\bar{S}_{n-k+1}^{k-1}(x)\right| d x+\sum_{k=1}^{\alpha}\left|\Delta^{k} a_{n-k+1}\right| \int_{0}^{\pi} \mid \bar{S}_{n}^{k-1}(x) \| \leq\right. \\
& C\left[\sum_{k=n-\alpha+1}^{\infty}|(x)| d x\right] \\
& +\int_{0}^{\pi}\left|\Delta a_{n}^{\alpha+1} \frac{\sin (n+1) x}{2 \sin x}\right| d x \\
\leq & C\left[\sum_{k=n-\alpha+1}^{\infty} A_{k}^{\alpha}\left|\left(\Delta^{\alpha+1} a_{k-1}+\Delta^{\alpha+1} a_{k}\right)\right| \int_{0}^{\pi}\left|\bar{S}_{k}^{\alpha-1}(x)\right| d x\right] \\
& +C\left[\sum_{k=1}^{\alpha} A_{n-k+1}^{k}\left|\Delta^{k} a_{n-k}\right| \int_{0}^{\pi}\left|\bar{T}_{n-k+1}^{k}(x)\right| d x\right] \\
& +C\left[\sum_{k=1}^{\pi}\left|\bar{T}_{k}^{\alpha}(x)\right| d x\right] \\
& +\int_{0}^{\pi}\left|\Delta a_{n}^{k+1} \frac{\sin (n+1) x}{2 \sin x}\right| d x . \tag{3.6}
\end{align*}
$$

The first three terms of the above inequality are of $o(1)$ by Lemma 2.1 and the hypothesis of Theorem 3.1.

Moreover, since

$$
\begin{equation*}
\int_{0}^{\pi}\left|\frac{\sin (n+1) x}{2 \sin x}\right| d x \leq C \log n, \quad n \geq 2 \tag{3.7}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\int_{0}^{\pi}\left|\Delta a_{n} \frac{\sin (n+1) x}{2 \sin x}\right| d x \sim \Delta a_{n} \log n . \tag{3.8}
\end{equation*}
$$

It follows that $\int_{0}^{\pi}\left|g(x)-g_{n}(x)\right| d x \rightarrow 0$, if and only if $\Delta a_{n} \log n \rightarrow o(1)$ as $n \rightarrow \infty$. This completes the proof of the theorem.

Acknowledgment. The authors are thankful to the referees for their wise comments, which have definitely improved the representation of the paper.

References

[1] L. S. Bosanquet, Note on convergence and summability factors. III, Proc. London Math. Soc. 50 (1949), 482-496.
[2] J. W. Garrett and Č. V. Stanojević, On integrability and L^{1} convergence of certain cosine sums, Notices Amer. Math. Soc. (1975), no. 22(A-166).
[3] , On L ${ }^{1}$ convergence of certain cosine sums, Proc. Amer. Math. Soc. 54 (1976), 101105.
[4] T. Kano, Coefficients of some trigonometric series, J. Fac. Sci. Shinshu Univ. 3 (1968), 153162.
[5] A. N. Kolmogorov, Sur l'ordre de grandeur des coefficients de la series de Fourier-Lebesgue, Bull. Polon. Sci. Ser. Sci. Math. Astronom. Phys. (1923), 83-86.
[6] W. H. Young, On Fourier series of bounded function, Proc. London Math. Soc. 12 (1913), no. 2, 41-70.
[7] A. Zygmund, Trigonometric Series, vol. 1, Cambridge University Press, 1968.
Kulwinder Kaur: School of Basic and Applied Sciences, Thapar Institute of Engineering and Technology, P.O. Box 32, Patiala 147004, India

E-mail address: mathkk@hotmail.com
S. S. Bhatia: School of Basic and Applied Sciences, Thapar Institute of Engineering and Technology, P.O. Box 32, Patiala 147004, India

E-mail address: ssbhatia63@yahoo.com

