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In 1941, F. B. Jones introduced aposyndesis, which generalizes the concept of semi-local
connectedness defined earlier by G. T. Whyburn (1942), in the study of continuum the-
ory. Using Jones’s idea, D. A. John (1993) defined abcohesiveness as a generalization of
aposyndesis and studied the A-sets in abcohesive spaces. In this paper, some properties of
abcohesive spaces are studied and a number of results by B. Lehman (1976) and Whyburn
(1942, 1968) are generalized; sufficient conditions for the existence of two nodal sets are
established as well.
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1. Aposyndetic and abcohesive spaces

Definition 1.1. A space M is aposyndetic at a point p with respect to a point q if

and only if there exists a closed connected setH such thatp ∈ int(H) andH ⊆M−{q}.
The spaceM is aposyndetic at a point p if and only if it is aposyndetic at p with respect

to q for each q in M−{p}. The space is aposyndetic if and only if it is aposyndetic at

p for each p in M .

A space M is abcohesive at a point p with respect to a point q if and only if there

exists an open connected set U such that p ∈ U and U ⊆ M −{q}. The space M is

abcohesive at a point p if and only if it is abcohesive at p with respect to q for each

q in M−{p}. The space is abcohesive if and only if it is abcohesive at p for each p
in M .

John [2] showed that aposyndesis implies abcohesiveness and hence abcohesivness

is also a generalization of semi-local connectedness. Besides the properties discussed

in [2], the next three theorems show some additional properties of abcohesive spaces.

All spaces in this paper are assumed to be topological.

Theorem 1.2. (a) Every quasicomponent of an abcohesive space is open and is also

a component of the space.

(b) If the sets H and K are abcohesive at p, then H∪K is abcohesive at p.

(c) IfM is a Hausdorff space, S is an open subset ofM such that S is abcohesive, then

S is abcohesive at every point p ∈ S with respect to every point q ∈ S−S.

Proof. (a) Let Q be a quasicomponent of the abcohesive space M . If M is con-

nected, then M is the only component of the space so Q = M . If M is disconnected,

let C be a component in M such that C∩Q≠∅. Since C ≠M , let p ∈M−C . Then C is
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a component of M−{p} and hence C is open by [2, Theorem 1]. Since C is both open

and closed, Q⊆ C . But, C is a subset of a quasicomponent of M , therefore C =Q.

(b) For each q ∈ H∪K−{p}, q ∈ H−{p} or q ∈ K−{p} so there exist open and

connected sets U and V such that q ∈ U ⊂H−{p} or q ∈ V ⊂ K−{p}. Thus H∪K is

abcohesive.

(c) Let p ∈ S and q ∈ S−S. Since M is Hausdroff, there exist disjoint open sets Up
and Vq such that p ∈ Up and q ∈ Vq. Since q ∈ S −S, there exists q∗ ∈ S such that

q∗ ∈ Vq. Since S is open and abcohesive, there exists an open connected set U of

M such that p ∈ U , U ⊂ S−q∗, and q ∉ U because q ∈ S−S. Therefore, p ∈ U and

U ⊂ S−{q,q∗} ⊂ S−{q}.
The next theorem is a characterization of abcohesive spaces.

Theorem 1.3. A space is abcohesive if and only if each of its quasicomponents is

open and abcohesive.

Proof. LetQ be a quasicomponent of the abcohesive spaceM . By Theorem 1.2(a),

it suffices to show that Q is abcohesive. For each p ∈Q and q ∈Q−{p}, there exists

an open connected set U such that p ∈ U and U ⊆M−{q} because M is abcohesive.

Since p ∈ U and U is connected, by Theorem 1.2(a) U ⊂ Q and hence U is an open

connected set in Q−{q}. Therefore, Q is abcohesive.

Conversely, assume that every quasicomponent of M is open and abcohesive. For

each p ∈ M and q ∈ M −{p}, let Q be the quasicomponent of M containing p and

assume thatM ≠Q. Let q ∉Q. Since p ∈Q,Q⊂M−{q}, andQ is open and connected

by Theorem 1.2(a), M is abcohesive at p with respect to q. Let q ∈ Q. Since Q is

abcohesive there exists an open connected subset U of Q containing p such that

U ⊂ Q−{q} ⊂ M −{q}. Since Q is open in M and U is open in Q, U is open in M .

Thus, U is an open connected set in M containing p such that U ⊂ M−{q} so M is

abcohesive at p with respect to q for each q ∈ Q−{p} and p ∈ Q. Therefore, M is

abcohesive.

Definition 1.4. Let M be a connected space. A point p is a cut point of M if and

only ifM−{p} is disconnected. A point p is an end point ofM if and only if each open

set containing p contains an open set containing p whose boundary is degenerate.

Two points a, b in a space M are conjugate in M if no point of M separate a and b.

Definition 1.5. An A-set A of a space M is a closed subset of M such that M−A
is the union of a collection of open sets each bounded by a single point of A.

Definition 1.6. Let a and b be points of a space M . Then C(a,b) denotes the

intersection of all A-sets of M , which contain both a and b, and the set C(a,b) is

called the cyclic chain in M from a to b.

Theorem 1.7. If a and b are two distinct conjugate points of an abcohesive con-

nected space M and C(a,b) ≠ ∅, then C(a,b) = {x ∈ M : x is conjugate to both a
and b}.

Proof. Let x be conjugate to both a and b and assume a ∉ A for some A-set

A of M containing a and b. Let K be the component of M − A containing x. By
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[2, Theorem 12], K is open, ∂K = {p} for some p in A, and K is a component of

M−{p}. Now,M−{p} =K∪[(M−{p})−K] where K and (M−{p})−K are separated

with x ∈K and {a,b}∩[(M−{p})−K]≠∅. Thus, x is not conjugate to a or b, which

is a contradiction.

Let x ∈ A for all A-sets A of M containing a and b. Suppose x is not conjugate to

a. Then there exists p ∈M such that M−{p} =Mx∪Ma where Mx and Ma separated

with x ∈Mx and a ∈Ma. Let K∗ be the component of M−{p} containing a. If b ≠ p
and b ∈ Mx , then it contradicts the fact that a and b are distinct conjugate points

of M . If b = p or b ∈ Ma, then K∗ ∪{p} is an A-set of M containing both a and b
according to [2, Theorem 14], so x ∈K∗∪{p}, which is a contradiction.

The proof of the next theorem is similar to Theorem 1.3 and hence is omitted.

Theorem 1.8. Every quasicomponent of an aposyndetic space is aposyndetic.

Theorem 1.9. If M is a Hausdorff aposyndetic continuum and A is an A-set of M ,

then A is an aposyndetic continuum.

Proof. The fact that A is a continuum follows from [2, Theorem 15]. For each

p ∈A and q ∈A−{p}, since M is aposyndetic, there exists a closed connected set H
such that p ∈H and H ⊂M−{q}. By [2, Theorem 15], H∩A is closed and connected

and int(H)∩A is open in A containing p so the result follows.

Definition 1.10. A simple chain is a finite collection {U1, . . . ,Un} of point sets

such that Ui∩Uj ≠∅ if and only if |i−j| ≤ 1.

Definition 1.11. For any two points a and b of a connected spaceM , let E(a,b)=
{x ∈M : x separates a from b in M}. The interval ab of M , denoted by Iab, is the set

E(a,b)∪{a,b}.
It is known that every interval in a connected semi-locally connected space is closed.

The following theorem shows that the result holds in a connected aposyndetic space.

Theorem 1.12. Every interval of a connected aposyndetic Hausdorff space is closed.

Proof. Let Iab be an interval of a connected aposyndetic Hausdorff space M . As-

sume p is a limit point of Iab such that p ∉ Iab. Let C be the component in M−{p}
containing a. Since p ∉ Iab, b must be in C . That is, {a,b} ⊂ C . Suppose there exists

an x ∈ Iab such that x ∉ C . Let M −{x} = A∪B, where A and B are separated with

a ∈ A and b ∈ B. Since {a,b} ⊂ C ⊆ M −{x} = A∪B, C ⊆ A or C ⊆ B. This implies

{a,b} ⊂ A or {a,b} ⊂ B, which yields a contradiction. Thus if x ∈ Iab, then x ∈ C .

For each x ∈ C , there exists a closed connected set Hx such that x ∈ int(Hx) and

p ∉Hx so {int(Hx) : x ∈ C} is an open cover of C . By [1, Theorem 3.4], there exists a

simple chain {int(Hx1), int(Hx2), . . . , int(Hxn)} from a to b. Suppose for some x ∈ Iab,

x ∉ ∪ni=1 int(Hxi). Let M−{x} = A∪B, where A and B are separated with a ∈ A and

b ∈ B. Since∪ni=1Hxi is connected,∪ni=1Hxi ⊆A or∪ni=1Hxi ⊆ B. This implies {a,b} ⊂A
or {a,b} ⊂ B, which is a contradiction. Hence Iab ⊆∪ni=1Hxi and p ∉∪ni=1Hxi . The fact

that∪ni=1Hxi is closed implies p is not a limit point of Iab. This contradicts the original

assumption, hence Iab is closed.
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Theorem 1.13. Let a, b, and p be three distinct points in M such that p ∉ Iab. If M
is Hausdorff, connected, and aposyndetic at each point in M−{p}, then there exists a

closed connected subset N of M with {a,b} ⊂N ⊂M−{p}.

Proof. Since p ∉ Iab, there exists a component C of M −{p} containing {a,b}.
Since M is aposyndetic at each point in M−{p}, for each x ∈ C , there exists a closed

connected set Kx such that x ∈ int(Kx) ⊂ Kx ⊂ M −{p} so C ⊂ ∪x∈C int(Kx). By [1,

Theorem 3.4], there is a simple chain {Kx1 , . . . ,Kxn} from a to b and p ∈∪ni=1Kxi . The

result follows by letting N =∪ni=1Kxi .

Corollary 1.14. If M is Hausdorff, connected, and aposyndetic at each point in

M−{p}, where p is a noncut point of M , then for each pair of points a, b in M−{p},
there exists a closed connected subset N of M with {a,b} ⊂N ⊂M−{p}.

Definition 1.15. A subset E of a space M is an E0-set of M if and only if E is

nondegenerate, connected, has no cut point of itself, and is maximal with respect to

these properties.

Definition 1.16. Let R be a relation on the nondegenerate connected space M
defined by xRy if and only if no point of M separates x from y in M . Thus R is

reflexive and symmetric on M . For each point x of M which is neither a cut point nor

an end pointM , then the set of all points y ofM such that xRy is called a simple link

of M .

Definition 1.17. A space M is paraseparable if and only if M does not contain

uncountably many disjoint open sets.

The next lemma is known and can be found in [4].

Lemma 1.18. If Y is an uncountable set of cut points of the paraseparable connected

set M , then some two points of Y are separated in M by a third point of Y .

Lemma 1.19. Every E0-set of a paraseparable connected set M contains at most

countably many cut points of M .

Proof. Suppose that there exists an E0-set E ofM such that the set Y , which is the

set of points in E that are also cut points of M , is uncountable. By Lemma 1.18, some

two points a, b of Y are separated in M by a third point x of Y . Let M−{x} = A∪B,

where A and B are separated with a ∈ A and b ∈ B. Then E ⊂ A∪{x} or E ⊂ B∪{x},
which implies {a,b} ⊂ A or {a,b} ⊂ B. This contradicts the statement that a, b are

separated by x in M .

Theorem 1.20. LetM be a connected, locally compact, paraseparable, and aposyn-

detic space. If L is a nondegenerate subset of M , then L is a simple link ofM if and only

if L is an E0-set of M .

Proof. Let Lp be a simple link containing p in M . Suppose that Lp has a cut point

x. Then Lp −{x} = A∪B, where A and B are separated in Lp with a ∈ A, b ∈ B for

some a, b in Lp . Since x cannot separate a and b inM , by Theorem 1.13, there exists a

continuum N such that {a,b} ⊂N ⊂M−{x}. Without loss of generality, assume that
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N is irreducible between a and b. Since N ⊂M−{x} and Lp contains all irreducible

continua containing a and b by [6, Chapter IV, Theorem 1.3], N ⊂ Lp −{x} implies

N ⊂A or N ⊂ B, which contradicts {a,b} ⊂N. Therefore, Lp has no cut point.

Suppose that there is a connected set C such that Lp ⊂ C and C has no cut point.

Let x ∈ C−Lp . Then there exists y ∈M such that M−{y} =Mx∪Mp , where Mx and

Mp are separated with x ∈Mx and p ∈Mp . Since C has no cut point of itself, y ∉ C .

Then {x,p} ⊂ C ⊂M−{y} implies x ∉Mx or p ∉Mp , which leads to a contradiction.

Therefore, Lp is an E0-set.

Conversely, let E be an E0-set. Since E is closed andM is locally compact, E is locally

compact and hence is uncountable because no locally compact connected set is the

union of a nondegenerate countable collection of disjoint compact sets. Since E is an

E0-set and E contains at most countably many cut points ofM , there exists p ∈ E such

that p is neither a cut point nor an end point ofM by Lemma 1.19. Let Lp be the simple

link containing p. Suppose E 	⊆ Lp . Let q ∈ E−Lp . Then there exists x ∈M such that

M−{x} =Mp∪Mq, where Mp and Mq are separated with p ∈Mp and q ∈Mq. If x ∉ E,

then E ⊂Mp or E ⊂Mq. This implies {p,q} ⊂Mp or {p,q} ⊂Mq, which contradicts the

fact that p and q are separated by x inM . If x ∈ E, then E−{x} = (E∩Mp)∪(E∩Mq).
This implies that x is a cut point of E, which contradicts the fact that E is an E0-set.

Therefore, E ⊆ Lp . Since it has been proved that every simple link is an E0-set in a

locally compact, paraseparable, aposyndetic space, Lp = E.

2. Semi-locally connected spaces

Definition 2.1. A space M is semi-locally connected at a point p of M if and only

if each open set containing p contains an open set V containing p such that M −V
has at most a finite number of components. The space M is semi-locally connected if

and only if it is semi-locally connected at each point p of M .

Theorem 2.2. Every quasicomponent of a semi-locally connected space is semi-

locally connected.

Proof. LetQ be a quasicomponent of a semi-locally connected spaceM andp ∈Q.

Since Q is an open subset of M containing p and M is semi-locally connected, there

is an open set V in M containing p such that p ∈ V and M−V = ∪ni=1Ki, where Ki is

a component of M−V . Now Q−V =Q∩(M−V) =Q∩(∪ni=1Ki), let F = {j : Kj∩Q ≠
∅, j = 1,2, . . . ,n}. Then for each j ∈ F , Kj ⊂ Q because Q is a component of M by

Theorem 1.2(a), and Kj is a component of Q−V . Therefore, Q−V = ∪j∈FKi, which

implies that Q is semi-locally connected.

Definition 2.3. A cyclic element of a connected space M is a subset of M which

either consists of a single cut point or end point of M or is an E0-set of M .

Theorem 2.4. (a) If M is a paraseparable semi-locally connected continuum and A
is a closed set in M , then A is an A-set in M if and only if for each cyclic element E of

M such that A∩E is nondegenerate, E ⊂A.

(b) If M is a paraseparable semi-locally connected continuum and A is a nondegen-

erate subcontinuum in M , then A is an A-set in M if and only if A is the union of cyclic

elements of M .
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(c) If M is a paraseparable semi-locally connected continuum, then every cyclic ele-

ment of M is an A-set of M .

Proof. (a) Let A be an A-set ofM and let E be a cyclic element ofM such that A∩E
is nondegenerate. Let p and q be distinct points of A∩E. Assume there exists a point

x in E−A. Let K be the component of M−A containing x and let ∂K = {y}. Since E is

connected and it intersects both K and M−K, y ∈ E. But then y is a cut point of E.

Now, either p or q is in A∩E−{y}. Therefore, E ⊂A.

Conversely, suppose that, for each cyclic element E of M such that A∩E is non-

degenerate, E ⊂ A. Then the result follows from [6, Chapter IV, Theorem 3.3] and [2,

Theorem 12].

(b) The result follows from [6, Chapter IV, Theorem 3.3] and [2, Theorem 12].

(c) Let E be a cyclic element of M and let p ∈ E. Then either {p} = E, or there is a

cyclic element, namely E, of M such that p ∈ E and E ⊂ E. By part (a), E is an A-set

of M .

Theorem 2.5. If M is a paraseparable semi-locally connected continuum, then the

intersection of a collection of A-sets of M is itself an A-set of M .

Proof. Let � be a collection of A-sets of M , and let A = ∩�. If A ≠ ∅ and is

degenerate, then A is an A-set of M . Let a ∈ A, and for each x in A−{a}, let Nx be

the irreducible subcontinuum of M from a to x. By [2, Theorem 18], for every G ∈ �,

Nx ⊂ G, so that Nx ⊂ A. Hence A is a continuum. Suppose p ∈ A and {p} ≠ A. If p
is a cut point or an end point of M , then {p} is a degenerate cyclic elements of M
and {p} ⊂ A. If p is a non-cut point and a non-end point of M , then p belongs to a

nondegenerate cyclic element E of M . By Theorem 2.4(a), E ⊂G for each G ∈ �. Then

E ⊂A, and hence, again by Theorem 2.4(a), A is an A-set.

Definition 2.6. If � is a covering of a space M , then a subset E of M is said to be

of diameter less than � if some element of � contains E. Let � be a family of subsets

of a spaceM . Then � is called a null family if and only if for every open cover � ofM ,

all but a finite number of members of � have diameter less than �.

The following theorem established by Simone [5] is useful in proving the result: in

a semi-locally connected space, the set of all components of the complement of an

A-set is a null family.

Theorem 2.7. Let � be a family of subsets of the compact spaceM . Then � is a null

family if and only if for any two disjoint closed sets A and B, at most a finite number

of members of � intersect both A and B.

Theorem 2.8. If M is a semi-locally connected continuum and A is an A-set, then

the set of all components of M−A is a null family.

Proof. LetH andK be two disjoint closed subsets ofM . Let {Ci : i∈ I} be the set of

components ofM−A that intersect both H and K. Assume I is infinite. For each i∈ I,
let ∂Ci = {pi}. If {pi : i ∈ I} is finite, then for some point p ∈ A, pi = p for infinitely

many Ci. If {pi : i ∈ I} is infinite, then let p be a limit point of {pi : i ∈ I}. Since A
is closed, p ∈ A. One of the sets H or K, say K, does not contain p. Let U = M −K.
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Then K ⊂ M−U and (M−U)∩Ci ≠∅ for infinitely many i ∈ I. But this contradicts

the fact that M is semi-locally connected. Hence I is finite. By Theorem 2.7, the set of

all components of M−A is a null family.

3. Concerning nodal sets

Definition 3.1. A space M is said to be strongly connected if and only if for each

two points a and b in M , there exists a continuum L in M such that L contains a and

b. A subset N of a connected space M is called a nodal set of M if and only if N is

closed and ∂N is degenerate.

Note that N is an A-set and is connected.

Definition 3.2. A spaceM is connected im kleinen at the point p ofM if and only

if each open set U containing p contains an open set V containing p such that each

point of V belongs to a connected set containing p and lying in U .

Theorem 3.3. If M is a nondegenerate paraseparable connected space and U is an

open subset ofM such that U is locally compact and each nondegenerate continuum in

U contains uncountably many cut points of M , then there exist two points a and b in

M that are separated in M by uncountably many points of M .

Proof. Let p ∈ U . There exists an open set V such that p ∈ V , V ⊂ U , and V is

compact. Assume M is not connected im kleinen at p. There exists a continuum of

convergence K in V such that p ∈ K. Then K contains uncountably many cut points

of M . By Lemma 1.18, some two points in K are separated in M by a third point of

K. But this is impossible, since K is a continuum of convergence in M . Hence M is

connected im kleinen at p. Then U is connected im kleinen at p, and therefore, U is

locally connected.

Let W be an open connected set such that W ⊂ U . Since W is locally compact, W is

strongly connected. Let a and b be two points in W , L be an irreducible continuum in

W from a to b, and let T be the set of all points of L that separates a from b in M .

Assume T is countable. Let S = (L−{a,b})−T . Then S contains uncountably many

cut points of M . Hence, by Lemma 1.18, some two points of S are separated in M by

a third point x of S. By the irreducibility of L, x separates a from b in M . But x ∉ T ,

and this is a contradiction. Hence T is uncountable.

Theorem 3.4. If M is a connected space, a and b are points of M , and L is an

irreducible continuum in M from a to b, then L−{a,b} contains no end point of M .

Proof. Let L be an irreducible continuum in M from a to b. Assume L contains

an end point p of M . Let U be an open set containing p such that a and b are not

in U . There exists an open set V such that p ∈ V , V ⊂ U , and ∂V is degenerate. Let

∂V = {q}. Then L∩U is separated from L∩(M−V), and so q is a cut point of L. Now

L∩[(M−V)∪{q}] is a proper subcontinuum of L from a to b. This is a contradiction.

Hence L contains no end point of M .

Theorem 3.5. If M is a nondegenerate paraseparable connected space and U is an

open subset of M such that U is locally compact and U contains at most a countable



724 D. A. JOHN AND S. S. SO

number of non-cut points ofM that are non-end points ofM , then there exist two points

a and b in M that are separated in M by uncountably many points of M .

Proof. Let U be as described in the hypothesis. Let K be a nondegenerate con-

tinuum in U . Then K is uncountable, and K contains at most a countable number of

non-cut points of M that are non-end points of M . Let x and y be distinct points

of K, and let L be an irreducible subcontinuum of K from x to y . By Theorem 3.4,

L−{x,y} contains no end point ofM , and so L contains uncountably many cut points

of M . Then by Theorem 3.3, there exist two points a and b in M that are separated in

M by uncountably many points of M .

The following lemma is known and can be found in [4].

Lemma 3.6. If a and b are points of the paraseparable connected space M and H
is an uncountable subset of Iab, then there exists a countable subset K of H such that

if p is a point of H−K, then M−{p} is the union of two separated connected sets one

containing a and the other containing b.

Theorem 3.7. If M is a nondegenerate paraseparable connected space and U is an

open subset ofM such that U is locally compact and each nondegenerate continuum of

U contains uncountably many cut points of M , then there exist two disjoint nodal sets

H and K of M such that M−H and M−K are connected and H and K have nonempty

interiors.

Proof. By Theorem 3.4 and Lemma 3.6, there exists an uncountable subset T of U
such that each point of T separates M into two nonempty connected sets. Let q ∈ T ,

and let M−{q} = A∪B, where A and B are two nonempty separated connected sets.

Let p ∈ T ∩A. Then M −{p} = E ∪ F , where E and F are two nonempty separated

connected sets. Since E∪{p} is a closed connected subset of A∪B, E∪{p} ⊂A. Also

B∪{q} is a closed connected subset ofM . It is easy to see that E∪{p} and B∪{q} are

disjoint. Now let H = E∪{p} and K = B∪{q}. Then M−H = F and M−K = A, and F
and A are both connected. Since E and B are open, H and K are closed. Hence H and

K have nonempty interior and degenerate boundaries.

Lehman [3] stated the theorem: ifM is a connected space, p is a cut point ofM and

M −{p} = H∪K, then H∪{p} and K∪{p} are nodal sets. Whyburn [6] established

a similar theorem. These theorems follow immediately from the definition of nodal

sets. The following theorem provides sufficient conditions for the existence of two

nodal sets in nondegenerate locally compact paraseparable connected spaces; how-

ever, these nodal sets are disjoint and do not separate the space.

Theorem 3.8. If M is a nondegenerate locally compact paraseparable connected

space, then there exist two disjoint nodal sets H and K ofM such thatM−H andM−K
are connected.

Proof. If each point ofM is a cut point ofM , then the result follows from Theorem

3.7. If p and q are distinct non-cut points ofM , then let H = {p} and K = {q}. IfM has

exactly one non-cut point x, then U = M−{x}. Now U is locally compact, and each
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nondegenerate subcontinuum of U contains uncountably many cut points of M . The

results then follows from Theorem 3.7.
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