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ON SOME TRIGONOMETRIC POWER SUMS
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Using the generating function method, the closed formulas for various power sums of
trigonometric functions are established. The computer algebra system Maple is used to
carry out the complex calculations.
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In [1], we established the trigonometric identity

n−1∑
k=0

1
1−2x cos(2kπ/n)+x2

= n
(
1+xn)(

1−xn)(1−x2
) , (1)

and reproduced the following elegant formulas [2, 4]:

n−1∑
k=1

csc2
(
kπ
n

)
= (n−1)(n+1)

3
,

n−1∑
k=1

tan2
(
kπ
n

)
=n(n−1), if n is odd.

(2)

In contrast to Fourier series, these finite power sums are over the angles equally di-

viding the upper-half plane. Moreover, these beautiful and somewhat surprising sums

often arise in analysis. In this note, we extend the above results to the power sums

as shown in identities (17), (19), (25), (26), (32), (33), (34), (35), and (36) and in the

appendix. The method is based on the generating functions.

To begin, we establish two auxiliary trigonometric identities, derived from the

Chebyshev polynomial of the second kind.

Let Un(x) be the Chebyshev polynomial of the second kind [3, pages 7–10]

Un(x)= 1

2i
√

1−x2

[(
x+i

√
1−x2

)n+1−
(
x−i

√
1−x2

)n+1
]

=
[n/2]∑
k=0

(−1)k
(
n−k
k

)
(2x)n−2k.

(3)

Setting x = cosθ and appealing to De Moivre’s theorem, we deduce that

Un(cosθ)= sin(n+1)θ
sinθ

. (4)
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Thus, Un−1(x) has n−1 distinct roots cos(kπ/n), k = 1,2, . . . ,n−1. Since Un−1(x)
has leading coefficient 2n−1, by factorization we have

n−1∏
k=1

(
cosθ−cos

(
kπ
n

))
= 2n−1Un−1(cosθ)= 2n−1 sinnθ

sinθ
. (5)

Differentiating (5) logarithmically, we have

n−1∑
k=1

sinθ
cosθ−cos(kπ/n)

=−ncotnθ+cotθ. (6)

Replacing θ by π−θ, we find

n−1∑
k=1

sinθ
cosθ+cos(kπ/n)

=−ncotnθ+cotθ. (7)

Adding (6) and (7), we obtain

n−1∑
k=1

sinθcosθ
cos2θ−cos2(kπ/n)

=−ncotnθ+cotθ (8)

or

n−1∑
k=0

cosθ
cos2θ−cos2(kπ/n)

=−ncotnθcscθ. (9)

Finally, using the trigonometric identity cos2x = 1−sin2x in (9), we get

n−1∑
k=0

cosθ
sin2(kπ/n)−sin2θ

=−ncotnθcscθ. (10)

We now show how to use identities (9) and (10) to establish the closed formulas for

various power sums. We start with the evaluation of the power sums for the secant

function. Let p be a positive integer. Set

Sp(n)=
n−1∑
k=0

sec2p
(
kπ
n

)
. (11)

We separate the derivation into two cases.

Case 1. Letn be an odd positive integer. In order to construct a generating function

for Sp(n), which has the form

G(n,t)=
∞∑
p=1

Sp(n)t2p, (12)

we rewrite (9) as

ncotnθcotθ =
n−1∑
k=0

−cos2θ
cos2θ−cos2(kπ/n)

. (13)
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By expanding the summand as a geometric series, we have

ncotnθcotθ =
n−1∑
k=0

[
cosθ/cos(kπ/n)

]2

1−[cosθ/cos(kπ/n)
]2 =

∞∑
p=1


n−1∑
k=0

sec2p
(
kπ
n

)cos2p θ, (14)

where the last summation order has been changed. Thus, comparing (14) to (12) with

t = cosθ, we find the generating function for Sp(n)

G(n,t)=ncotnθcotθ = nt√
1−t2

cot(narccost)= nt√
1−t2

tan(narcsint), (15)

where we have used the fact that n is odd and the relation arccosθ = π/2−arcsinθ.

Therefore,

Sp(n)=
n−1∑
k=1

sec2p
(
kπ
n

)
= G

(2p)(n,0)
(2p)!

, (16)

where G(2p) indicates the 2pth derivative of G with respect to t.
For p = 1, performing the indicated derivative directly, we find

n−1∑
k=0

sec2
(
kπ
n

)
= G

′′(n,0)
2!

=n2. (17)

However, for p ≥ 2, the expansion of G(2p)(n,t) is very complicated and inconvenient

for the calculation. So, we now demonstrate a derivation carried out with the help of

the computer algebra system Maple rather than one done by hand. For example, in

Maple, identity (17) is reproduced with the following commands:

> assume(n, integer):

> G := t−>n∗t∗ tan(n∗arcsin(t))/sqrt(1−t2):
> subs(t = 0,diff(G(t),t$2)):
> Sum(sec2(k∗Pi/n),k= 0..n−1)= simplify(%/2!);

n−1∑
k=0

sec2
(
kπ
n

)
=n2. (18)

Moreover, we find

> subs(t = 0,diff(G(t),t$4)):
> Sum(sec4(k∗Pi/n),k= 0..n−1)= factor(simplify(%/4!));

n−1∑
k=0

sec4
(
kπ
n

)
= n

2

3

(
n2+2

)
. (19)

Here we have used Maple V Release 5, but the computations could also be repro-

duced with, for example, Mathematica, Mathcad, or any other computer algebra sys-

tem. The further results obtained by Maple will be listed in the appendix.

Case 2. Letn be an even positive integer. Deleting the term for k=n/2 from Sp(n),
we reset

�p(n)=
n−1∑

k=0,k≠n/2
sec2p

(
kπ
n

)
. (20)
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Similarly, on separating off the term for k=n/2 from (13), we have

1+ncotnθcotθ =
n−1∑

k=0,k≠n/2

−cos2θ
cos2θ−cos2(kπ/n)

. (21)

In analogy to (14), we find that the generating function of �p(n) has the form

�(n,t)= 1+ncotnθcotθ, (22)

where t = cosθ. Thus, explicitly, we have

�(n,t)= 1− nt√
1−t2

cot(narcsint), (23)

where the fact thatn is even and the relation arccosθ =π/2−arcsinθ have been used.

Therefore,

�p(n)=
n−1∑

k=0,k≠n/2
sec2p

(
kπ
n

)
= lim
t �→0

�(2p)(n,t)
(2p)!

. (24)

As we have done in Case 1, the following Maple commands display

> assume(n, integer ):

> g := t−> 1−n∗t∗cot(n∗arcsin(t))/sqrt(1−t2):
> limit(diff(g(t),t$2),t = 0):
> Sum(sec2(k∗Pi/n),k= 0..n−1)= factor(simplify(%/2!));

n−1∑
k=0,k≠n/2

sec2
(
kπ
n

)
= 1

3

(
n2−1

)
, (25)

and

> limit(diff(g(t),t$4),t = 0):
> Sum(sec4(k∗Pi/n),k= 0..n−1)= factor (simplify(%/4!));

n−1∑
k=0,k≠n/2

sec4
(
kπ
n

)
= 1

45

(
n2−1

)(
n2+11

)
. (26)

Next, we evaluate the power sums for the cosecant function. Let p and n be positive

integers. Set

Cp(n)=
n−1∑
k=1

csc2p
(
kπ
n

)
. (27)

On separating off the term for k = 0 from (10), and multiplying the remaining sums

by tanθ sinθ, we find

1−ncotnθ tanθ =
n−1∑
k=1

sin2θ
sin2(kπ/n)−sin2θ

=
n−1∑
k=1

[
sinθ/sin(kπ/n)

]2

1−[sinθ/sin(kπ/n)
]2 =

∞∑
p=1


n−1∑
k=1

csc2p
(
kπ
n

)sin2p θ.

(28)
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In analogy to (14), this implies that a generating function of Cp(n) has the form

�(n,t)= 1−ncotnθ tanθ, (29)

where t = sinθ. Explicitly, we have

�(n,t)= 1− nt√
1−t2

cot(narcsint). (30)

Moreover, we find

Cp(n)=�(2p)(n,0)/(2p)!=�p(n). (31)

Therefore, in view of (25) and (26), we find

n−1∑
k=1

csc2
(
kπ
n

)
=

n−1∑
k=0,k≠n/2

sec2
(
kπ
n

)
= 1

3

(
n2−1

)
,

n−1∑
k=1

csc4
(
kπ
n

)
=

n−1∑
k=0,k≠n/2

sec4
(
kπ
n

)
= 1

45

(
n2−1

)(
n2+11

)
.

(32)

Finally, using the trigonometric identity cot2θ = csc2θ−1, we transform the above

identities as follows:

n−1∑
k=1

cot2
(
kπ
n

)
= (n−1)(n−2)

3
,

n−1∑
k=1

cot4
(
kπ
n

)
= (n−1)(n−2)

45

(
n2+3n−13

)
.

(33)

Using the trigonometric identity tan2θ = sec2θ−1 in (17) and (19) yields

n−1∑
k=1

tan2
(
kπ
n

)
=n(n−1),

n−1∑
k=1

tan4
(
kπ
n

)
= n(n−1)

3

(
n2+n−3

)
;

(34)

in (25) and (26) the transformation produces

n−1∑
k=1,k≠n/2

tan2
(
kπ
n

)
= (n−1)(n−2)

3
, (35)

n−1∑
k=1,k≠n/2

tan4
(
kπ
n

)
= (n−1)(n−2)

45

(
n2+3n−13

)
. (36)

We have established a variety of power sum identities. It is interesting to see how

Maple appeared in the derivations. For completeness, we provide additional power

sum identities, which are produced by Maple, in the appendix.
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Appendix

A. A table of more power sums

A.1. Power sum of secant. When n is odd

n−1∑
k=0

sec6
(
kπ
n

)
= n

2

15

(
2n4+5n2+8

)
,

n−1∑
k=0

sec8
(
kπ
n

)
= n2

315

(
17n6+56n4+98n2+144

)
,

n−1∑
k=0

sec10
(
kπ
n

)
= n2

2835

(
62n8+255n6+546n4+820n2+1152

)
.

(A.1)

When n is even

n−1∑
k=0,k≠n/2

sec6
(
kπ
n

)
=
(
n2−1

)
945

(
2n4+23n2+191

)
,

n−1∑
k=0,k≠n/2

sec8
(
kπ
n

)
=
(
n2−1

)
14175

(
3n6+43n4+337n2+2497

)
,

n−1∑
k=0,k≠n/2

sec10
(
kπ
n

)
=
(
n2−1

)
93555

(
2n8+35n6+321n4+2125n2+14797

)
.

(A.2)

A.2. Power sum of cosecant.

n−1∑
k=1

csc6
(
kπ
n

)
=
(
n2−1

)
945

(
2n4+23n2+191

)
,

n−1∑
k=1

csc8
(
kπ
n

)
=
(
n2−1

)
14175

(
3n6+43n4+337n2+2497

)
,

n−1∑
k=1

csc10
(
kπ
n

)
=
(
n2−1

)
93555

(
2n8+35n6+321n4+2125n2+14797

)
.

(A.3)

A.3. Power sum of tangent. When n is odd

n−1∑
k=1

tan6
(
kπ
n

)
= n(n−1)

15

(
2n4+2n3−8n2−8n+15

)
,

n−1∑
k=1

tan8
(
kπ
n

)
= n(n−1)

315

(
17n6+17n5−95n4−95n3+213n2+213n−315

)
,

n−1∑
k=1

tan10
(
kπ
n

)
= n(n−1)

2385

(
62n8+62n7−448n6−48n5+1358n4

+1358n3−2232n2−2232n+2835
)
.

(A.4)
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When n is even

n−1∑
k=1,k≠n/2

tan6
(
kπ
n

)
= (n−1)(n−2)

945

(
2n4+6n3−28n2−96n+251

)
,

n−1∑
k=1,k≠n/2

tan8
(
kπ
n

)
= (n−1)(n−2)

14175

(
3n6+9n5−59n4−195n3

+457n2+1761n−3551
)
,

n−1∑
k=1,k≠n/2

tan10
(
kπ
n

)
= (n−1)(n−2)

93555

(
2n8+6n7−52n6−168n5+546n4

+1974n3−3068n2−13152n+22417
)
.

(A.5)

A.4. Power sum of cotangent.

n−1∑
k=1

cot6
(
kπ
n

)
= (n−1)(n−2)

945

(
2n4+6n3−28n2−96n+251

)
,

n−1∑
k=1

cot8
(
kπ
n

)
= (n−1)(n−2)

14175

(
3n6+9n5−59n4−195n3

+475n2+1761n−3551
)
,

n−1∑
k=1

cot10
(
kπ
n

)
= (n−1)(n−2)

93555

(
2n8+6n7−52n6−168n5+546n4

+1974n3−3068n2−13152n+22417
)
.

(A.6)
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