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We consider finding asymptotic solutions of the singularly perturbed linear Volterra in-
tegral equations with weakly singular kernels. An interesting aspect of these problems is
that the discontinuity of the kernel causes layer solutions to decay algebraically rather
than exponentially within the initial (boundary) layer. To analyse this phenomenon, the
paper demonstrates the similarity that these solutions have to a special function called
the Mittag-Leffler function.
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1. Introduction. This paper considers the weakly singular scalar Volterra integral

equation of the second kind

εu(t)= f(t)+ 1
Γ(β)

∫ t
0

k(t,s)
(t−s)1−β u(s)ds, 0≤ t ≤ T , (1.1)

where 0 < ε � 1 and 0 < β < 1. The functions f(t) and k(t,s) are continuous and

k(t,t) = −1. Problem (1.1) exhibits an initial layer at t = 0 like the equations with

continuous kernels, but with a narrower initial layer width of order O(ε1/β) as ε→ 0.

The study on problems of type (1.1) is motivated by considering various physical

problems associated with the Volterra operator including a problem on the determi-

nation of the temperature in a radiating semi-infinite solid material. For a detailed

discussions on these physical problems, see Gripenberg et al. [6].

The weakly singular equation (1.1) has a solution u(t;ε) in C[0,T ] for all ε > 0. For

ε = 0, (1.1) reduces to the Abel integral equation

0= f(t)+ 1
Γ(β)

∫ t
0

k(t,s)
(t−s)1−β v(s)ds, 0≤ t ≤ T . (1.2)

It certainly does not have a continuous solution if f(0) ≠ 0. The forcing function

f(t) must be smoother than the desired solution. Even if (1.2) has a solution v(t) in

C0[0,T ] it may not approximate u(t;ε) uniformly for t in [0,T ] as ε→ 0.

Asymptotic solutions of singularly perturbed integral equations have been previ-

ously considered by Angell and Olmstead [1, 11], Lange and Smith [8, 9], and Chen [3].

But in all these, the analysis on the behaviour of formal solutions to problems with

weakly singular kernels is not there. Angell and Olmstead [1] included problems with

weakly singular kernels in their analysis but the way they treated this, together with
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problems of continuous kernels is not clear because as we will see, problems of type

(1.1) include fractional powers in the formal series expansion.

The aim is to outline the main points underlying the processes of finding an asymp-

totic approximation;

u(t;ε)=y(t;ε)+ϕ(ε)z
(
t
µ(ε)

;ε
)
, (1.3)

which are uniformly close on [0,T ] to u(t;ε) as ε→ 0. The functions y and z in (1.3)

are respectively, the outer and inner solutions, whereasϕ and µ describe respectively,

the magnitude and width respectively, of the layer region. It is stipulated that µ(ε)→ 0,

ε → 0. The similarity that the inner solution has to the Mittag-Leffler function is the

main interest of this work and is outlined carefully.

The method of additive decomposition which works for ordinary differential equa-

tions and integral equations with continuous kernel (cf. [1, 9, 12, 13, 16]) is used

here. Problems of the type (1.1) do not exhibit an exponential decay in the initial

layer and therefore, the methodology developed by Angell and Olmostead, and Lange

and Smith, can be improved. To emphasize the fundamental ideas and illustrate the

technical difficulties, we only find the leading order term U0(t;ε) of the asymptotic

solution. It is proved that |u(t;ε)−U0(t;ε)| =O(ε) as ε→ 0, on 0≤ t ≤ T . An example

from the model on thermal convection considered in [1] is solved to demonstrate the

developed methodology.

In Section 2, we review some of the results which are applied later in the preced-

ing sections. These include the hypotheses imposed on the data, solutions of Abel

equations, and the Mittag-Leffler function and its asymptotic expansion.

In Section 3, we describe how the additive decomposition technique can be applied

to integral equations of the type (1.1) and derive the formal solution. We only consider

the leading order approximation.

In Section 4, we show that the coefficients in the formal solution derived elucidate

some of their properties. We also show that if the formal solution satisfies (1.1) approx-

imately with a residual ρ0(t;ε), then ρ0(t;ε) =O(ε) uniformly as ε→ 0, on 0 ≤ t ≤ T
which implies the same condition for the formal solution U0(t;ε). Finally in Section 5,

we demonstrate this methodology on the heat radiation equation (having the exact

solution) modelled for a solid material with a higher thermal loss and then comment

on the derivation of the first-order solution.

2. Mathematical preliminaries. The following are the hypotheses used:

(H1) 0< β< 1;

(H2) k(t,s) is a C2 function, if an equation like (1.1) is encountered with k(0,0) < 0,

a simple rescaling of ε leads to k(0,0) = −1. If k(t,t) < 0, the equation for

t� k(t,t)u(t) has the form of (1.1), on �T with k(t,t)=−1, where

�T = 0≤ s ≤ t ≤ T ; (2.1)

(H3) the function f(t) is C2 on [0,T ] with f(0)≠ 0.
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2.1. Solution of Abel equations. Let 0< β< 1 and define the operator

(
Dβχ

)
(t) := 1

Γ(1−β)
d
dt

∫ t
0

1
(t−s)β χ(s)ds. (2.2)

It is a classical result of Abel’s that, for 0< β< 1, the equation

1
Γ(β)

∫ t
0

1
(t−s)1−β y(s)ds =φ(t) (2.3)

has the solution

y(t)= (Dβφ)(t). (2.4)

This relies on the useful formula

∫ t
0

1
(t−s)1−βsβ ds = Γ(β)Γ(1−β). (2.5)

The following proposition follows from [10, Part II].

Proposition 2.1. If χ is continuous on [0,T ] and differentiable on (0,T ] with

χ(0)= 0, then Dβχ is also continuous on [0,T ] and is given by

(
Dβχ

)
(t)= 1

Γ(1−β)
d
dt

∫ t
0

1
(t−s)β χ

′(s)ds. (2.6)

Tonelli proved that (2.3) has a solution in L1[0,T ] if φ is absolutely continuous

on [0,T ]. In this section, we consider the more general Abel equation

1
Γ(β)

∫ t
0

k(t,s)
(t−s)1−β y(s)ds =φ(t). (2.7)

Gorenflo and Vessella [5] gave several existence and uniqueness for (2.7). We state

here a special case of [5, Theorem 5.1.4].

Theorem 2.2. Suppose that (H1) and (H2) hold. Let Dβφ be continuous on [0,T ].
Then (2.7) has a unique solution y in C[0,T ] and

‖y‖C1 ≤ C∥∥Dβφ
∥∥ (2.8)

for some constant C > 0 depending on T and ‖k‖C1(∆T ).

Later, we will require the knowledge of the asymptotic behaviour of solutions y(t)
of (2.7) for small t. The following result is [5, Theorem 5.1.5] and comes from [2].

Theorem 2.3. Suppose that (H1) and (H2) hold. Suppose that there is a function

φ̃(t) in C1 such that φ(t)= tµφ̃(t), with 1−β+µ > 0. Then (2.7) has a unique solution

y(t), and this solution can be expressed as

y(t)= tµ−βỹ(t), (2.9)
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where ỹ(t) = ν+ ty∗(t) with ν constant and y∗ continuous. Moreover, ν = 0 if and

only if φ̃(0)= 0, and there is a constant c > 0 such that

∥∥ỹ∥∥C ≤ c
∥∥φ̃∥∥C1 . (2.10)

2.2. The Mittag-Leffler function and its asymptotic expansion. We present here

some of the properties of the Mittag-Leffler function, Eµ : C → C. In particular, we

state formulae for Eµ(z) for large z ∈ C. For each µ > 0, the Mittag-Leffler function is

defined by

Eµ(z)=
∞∑
n=0

1
Γ(µn+1)

zn. (2.11)

Eµ is entire, and

E1(z)= ez, E2(z)= coshz, E1/2
(
z1/2)= 2π−1/2e−z erfc

(−z1/2). (2.12)

An interesting property proved by Pollard [15] is that, t� Eµ(−t) is completely mono-

tonic on [0,∞) if 0≤ µ ≤ 1. Thus for µ in this parameter range, (−1)nE(n)µ (−t)≥ 0 for

t ≥ 0, where

Enµ (z)=
dnEµ
dzn

(z). (2.13)

A detailed discussion on the properties of the Mittag-Leffler function can be found in

Erdélyi et al. [4, Chapter 18] or Paris and Kaminski [14, Chapter 5].

We are interested in the asymptotic expansion of Eµ(z) only in case where 0 <
µ < 1. However, the asymptotic expansions formulae below are for all 0 < µ < 2.

These expansions are derived from the representation

Eµ(z)= 1
2πi

∫ c+i∞
c−i∞

e(s)z−sds (2.14)

for some 0< c < 1 where

e(s)= π cosπs
Γ(1−µs)sinπs

, (2.15)

(2.14) is derived from the formula for inverting a Mellin transform. We decompose the

path in (2.14) into a contour C′ which is closed to the left. It is shown in Figure 2.1.

Now e(s)z−s has simple poles at s = 0,−1,−2, . . . . Let an be the residue of s � e(s)z−s

at −n. Then

an = zn

Γ(1+µn) . (2.16)

To check that e(s) above is the proper choice in (2.14),

1
2πi

∫
C′
e(s)z−sds =

∞∑
n=0

an =
∞∑
n=0

zn

Γ(µn+1)
= Eµ(z). (2.17)
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Figure 2.1. The contour of integration for the Mittag-Leffler function Eµ(z).

Using the integral representation in (2.14), it is shown in [4, 14] that for 0 < µ < 2,

the controlling factor of the leading behaviour of Eµ(z) is ez1/µ
as z → ∞. Stokes

lines occur at Rez1/µ = 0 or argz =±πµ and anti-Stokes lines occur at Imz1/µ = 0 or

argz =±(π/2)µ.

It is shown in [4, 14] that the expansion of Eµ(z) when µ < 2 is given by

Eµ(z)∼ 1
µ
ez

1/µ −
∞∑
k=1

z−k

Γ(1−µk) , |argz|< 3πµ
2
, (2.18a)

Eµ(z)∼−
∞∑
k=1

z−k

Γ(1−µk) ,
∣∣arg(−z)∣∣< π

2
(2−µ). (2.18b)

It should be noted that (2.18) is a valid asymptotic expansion in the Poincaré sense.

The discussion in [14, Section 5.1] elucidates what is happening for 0< µ < 1. The ex-

pansions have a common sectors πµ/2< |argz|< 3πµ/2. In the sector |argz|<πµ,

expansion (2.18a) is valid. However, the exponential term is decaying for πµ/2 <
|argz|<πµ since the anti-Stokes lines at argz =±πµ/2 have been crossed. Eµ(z) is

exponentially large as |z| → ∞ for |argz| < πµ/2. As argz crosses the Stokes lines

argz = ±πµ, the exponential term disappears from the leading order term and be-

comes subdominant. It reemerges as argz crosses ±2πµ, but it is exponentially de-

caying. At argz = 3πµ/2, expansion (2.18a) is no longer valid. Expansion (2.18b) holds

for |arg(−z)|<πµ/2. Since we are interested in the asymptotic expansion on the neg-

ative real axis, this sector particularly concerns us. The conclusion is that we obtain

the composite expansion

Eµ(z)∼ 1
µ
ez

1/µ −
∞∑
k=1

z−k

Γ(1−µk) , |argz|<πµ, (2.19a)

Eµ(z)∼−
∞∑
k=1

z−k

Γ(1−µk) ,
∣∣arg(−z)∣∣<π(1−µ). (2.19b)

We illustrate this in Figures 2.2 and 2.3.
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2.3. Solution of a simple class of Abel-Volterra equations. The Abel-Volterra equa-

tion

z(τ)=ψ(τ)+ ν
Γ(β)

∫ τ
0

1
(τ−σ)1−β z(σ)dσ, τ ≥ 0, (2.20)

has an explicit solution in terms of the Mittag-Leffler function Eβ.
The following existence and uniqueness result, which is attributed to Hille and

Tamarkin [7], is given in Geronflo and Vessella [5].

Theorem 2.4. Let 0 < β < 1, ν any real number, and let ψ(τ) be continuous on

[0,∞). Then (2.20) has the continuous solution z(τ) given by

z(τ)= d
dτ

∫ τ
0
Eβ
(
ν(τ−σ)β)ψ(σ)dσ, τ ≥ 0. (2.21)

The function z is unique in the class L∞loc(R+).

3. Heuristic analysis and formal solution. The analysis of the additive decompo-

sition shows that we should introduce the new time scale τ = t/µ(ε), we call this

the inner variable and seek an asymptotic solution u(t;ε) in the form of (1.3). The

functionϕ(ε) describes the magnitude of the initial layer, whereas µ(ε) describes the

width. Using the dominant balancing technique, it is easily found that if f(0)≠ 0 then

the magnitude of the boundary layer is ε−1 and the width is εγ . We, therefore, seek an

asymptotic solution u(t;ε) in the form

u(t;ε)=y(t;ε)+ 1
ε
z
(
t
εγ

;ε
)
, (3.1)

and require that

lim
τ→∞z(τ ;ε)= 0. (3.2)

The function z(t/εγ ;ε) corrects the nonuniformity in the initial layer. Substituting

(3.1) into (1.1) gives

εy(t;ε)+z
(
t
εγ

;ε
)
= f(t)+ 1

Γ(β)

∫ t
0

k(t,s)
(t−s)1−β y(s;ε)ds

+ 1
Γ(β)ε

∫ t
0

k(t,s)
(t−s)1−β z

(
s
εγ

;ε
)
ds.

(3.3)

It is assumed that y(t;ε) and z(τ ;ε) have asymptotic expansions of the form

y(t;ε)∼
∞∑
n=0

εnyn(t), z(τ ;ε)∼
∞∑
n=0

εnγzn(τ), (3.4)

as ε→ 0, so that

u(t;ε)∼
∞∑
n=0

εnyn(t)+
∞∑
n=0

εnγ−1zn
(
t
εγ

)
. (3.5)
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Figure 2.2. The Stokes lines are shown for the exponential term in (2.19a)
corresponding to µ = 1/3. Also shown is the sector E where the exponential
term in (2.19a) dominates and the sectorAwhere the algebraic term in (2.19)

dominates.
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Figure 2.3. The Stokes lines are shown for the exponential term in (2.19a)
corresponding to µ = 1/4. Also shown is the sector E where the exponential
term in (2.19a) dominates and the sectorAwhere the algebraic term in (2.19)

dominates.
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Moreover, we require that for all n≥ 0,

lim
τ→∞zn(τ)= 0. (3.6)

Firstly, we restrict attention to

U0(t;ε)=y0(t)+ 1
ε
z0

(
t
εγ

)
, (3.7)

assuming that

z0(τ) �→ f(0)
Γ(1−β)τβ as τ �→∞. (3.8)

Suppose that U0(t;ε) satisfies (1.1) approximately, with a residual ρ0(t;ε), then

ρ0(t;ε)+εy0(t)+z0

(
t
εγ

)
= f(t)+ 1

Γ(β)

∫ t
0

k(t,s)
(t−s)1−β y0(s)ds

+ 1
εΓ(β)

∫ t
0

k(t,s)
(t−s)1−β z0

(
s
εγ

)
ds.

(3.9)

By expressing this in terms of τ = t/εγ ,

ρ0
(
εγτ ;ε

)+z0(τ)+εy0
(
εγτ

)= f (εγτ)+ 1
Γ(β)

∫ τ
0

k
(
εγτ,εγσ

)
(τ−σ)1−β z0(σ)dσ

+ε
∫ τ

0

k
(
εγτ,εγσ

)
(τ−σ)1−β y0

(
εγσ

)
dσ.

(3.10)

This can be rearranged as

ρ0
(
εγτ ;ε

)+εy0
(
εγτ

)= (f(0)+ 1
Γ(β)

∫ τ
0

k(0,0)
(τ−σ)1−β z0(σ)dσ −z0(τ)

)

+f (εγτ)−f(0)+ 1
Γ(β)

∫ τ
0

k
(
εγτ,εγσ

)−k(0,0)
(τ−σ)1−β z0(σ)dσ

+ ε
Γ(β)

∫ τ
0

k
(
εγτ,εγσ

)
(τ−σ)1−β y0

(
εγσ

)
dσ,

(3.11)

and hence

ρ0
(
εγτ ;ε

)= (f(0)+ 1
Γ(β)

∫ τ
0

k(0,0)
(τ−σ)1−β z0(σ)dσ −z0(τ)

)
+O(ε)+O(εγ). (3.12)

We see that if ρ0(εγτ ;ε)= o(1) as ε→ 0 for fixed τ > 0, then

z0(τ)= f(0)− 1
Γ(β)

∫ τ
0

1
(τ−σ)1−β z0(σ)dσ, τ ≥ 0. (3.13)

To derive the leading order outer solution, we express (3.13) in terms of t = εγτ and

substitute into (3.9), giving

ρ0(t;ε)+εy0(t)= f(t)−f(0)+ 1
Γ(β)

∫ t
0

k(t,s)
(t−s)1−β y0(s)ds

+ 1
εΓ(β)

∫ t
0

k(t,s)−k(0,0)
(t−s)1−β z0

(
s
εγ

)
ds.

(3.14)
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It follows from (3.8) and the dominated convergence theorem that

1
ε

∫ t
0

{
k(t,s)−k(0,0)}
(t−s)1−β z0

(
s
εγ

)
ds �→ f(0)

Γ(1−β)
∫ t

0

{
k(t,s)−k(0,0)}
(t−s)1−βsβ ds, (3.15)

as ε→ 0. If ρ(t;ε) = o(1) as ε→ 0, we deduce from (3.9) that the leading order outer

solution y0(t) satisfies

0= f(t)−f(0)+ f(0)
Γ(β)Γ(1−β)

∫ t
0

k(t,s)−k(0,0)
(t−s)1−βsβ ds+ 1

Γ(β)

∫ t
0

k(t,s)
(t−s)1−β y0(s)ds.

(3.16)

If y0(t) satisfies (3.16) and z0(τ) obeys (3.13), it follows from (3.14) that

ρ0(t;ε)=−εy0(t)+ 1
εΓ(β)

∫ t
0

k(t,s)−k(0,0)
(t−s)1−β

(
z0

(
s
εγ

)
− f(0)ε
Γ(1−β)sβ

)
ds. (3.17)

4. Properties of the formal solution. We show here that solutions of equations for

y0(t) and z0(τ) exist and satisfy the assumed properties.

Equation (3.16) for the outer solution can be rewritten as

0=φ(t)+
∫ t

0

k(t,s)
(t−s)1−β y0(s)ds, 0≤ t ≤ T , (4.1)

where

φ(t)= f(t)−f(0)+ f(0)
Γ(β)Γ(1−β)

∫ t
0

k(t,s)−k(0,0)
(t−s)1−βsβ ds. (4.2)

Note that

∣∣∣∣∣ f(0)
Γ(β)Γ(1−β)

∫ t
0

{
k(t,s)−k(0,0)}
(t−s)1−βsβ ds

∣∣∣∣∣≤ f(0) sup
0≤s≤t

∣∣k(t,s)−k(0,0)∣∣ �→ 0 (4.3)

as t→ 0. This and (H3) imply that φ(0)= 0. Also

1
t

∫ t
0

k(t,s)−k(0,0)
(t−s)1−βsβ ds = 1

t

∫ 1

0

{
k(t,tθ)−k(0,0)}
(1−θ)1−βθβ dθ

�→ ∂1k(0,0)
∫ 1

0

1
(1−θ)1−βθβ dθ+∂2k(0,0)

∫ 1

0

θ(1−β)

(1−θ)1−β dθ
(4.4)

as t → 0, where ∂1 and ∂2 are the operators of partial differentiation. Hence, we can

write

φ(t)= tφ̃(t) (4.5)

and show that φ̃(t) is C1. Using Theorem 2.3, we can establish from (4.1) and (4.5) the

following proposition.
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Proposition 4.1. Suppose that (H1), (H2), and (H3) hold. Then (3.16) has a unique

continuous solution y0(t) which satisfies

y0(t)= t1−βỹ0(t), (4.6)

where ỹ0 is continuous on [0,T ].

It is a simple corollary of Theorem 2.4 and (2.19b) that the following result is true.

Proposition 4.2. Suppose that (H1), (H2), and (H3) hold. Then (3.13) has the con-

tinuous solution

z0(τ)= f(0)Eβ
(−τβ), (4.7)

for τ ≥ 0, which satisfies

z0(τ)∼ f(0)
∞∑
j=1

(−1)j+1 τ−βj

Γ(1−βj) as τ �→∞. (4.8)

Remark 4.3. This results vindicates assumption (3.8) made in the derivation of

(3.16) and (3.13) or y0(t) and z0(τ).

Next, we prove that if ρ0(t;ε) satisfies (3.17), then there exists a positive constant C̃
independent of ε such that

∣∣(Dβρ0
)
(t;ε)

∣∣≤ C̃ε, ε �→ 0, (4.9)

on 0≤ t ≤ T .

If we apply the operator Dβ into (3.17), we get

(
Dβρ0

)
(x;ε)=−ε(Dβy0

)
(x)

+ 1
εΓ(β)Γ(1−β)

d
dx

∫ x
0
(x−t)−β

∫ t
0

k(t,s)−k(0,0)
(t−s)1−β z0

(
s
εγ

)
dsdt

− f(0)
Γ(β)Γ(1−β)2

d
dx

∫ x
0
(x−t)−β

∫ t
0

k(t,s)−k(0,0)
(t−s)1−βsβ dsdt.

(4.10)

A similar argument used in (3.15) implies that when ε is sufficiently small,

∣∣(Dβρ0
)
(t;ε)

∣∣≤ ε∣∣(Dβy0
)
(t)
∣∣, 0≤ t ≤ T . (4.11)

Propositions 2.1 and 4.1 imply that (Dβy0)(t) is continuous and, therefore, there

exists a constant C̃ such that (4.9) is satisfied.

Let R0(t;ε)=u(t;ε)−U0(t;ε). Then R0(t;ε) satisfies

εR0(t;ε)= ρ0(t;ε)+ 1
Γ(β)

∫ t
0

k(t,s)
(t−s)1−β R0(s;ε)ds. (4.12)

The existence theorems on Volterra integral equations guarantee the existence of a

unique continuous function, R0(t;ε), ε > 0 on [0,T ] which solves this equation.
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To prove that |R0(t;ε)| =O(ε), as ε→ 0, let h(t,s)= k(t,s)−k(0,0), then the above

equation is equivalent to

1
Γ(β)

∫ t
0

R0(s;ε)
(t−s)1−β ds =−εR0(t;ε)+ρ0(t;ε)+ 1

Γ(β)

∫ t
0

h(t,s)
(t−s)1−β R0(s;ε)ds. (4.13)

Applying the operator Dβ to (4.13), we get

R0(x;ε)=−ε(DβR0
)
(x;ε)+(Dβρ0

)
(x;ε)+

∫ x
0
Lh(x,s)R0(s;ε)ds, (4.14)

where

Lh(x,s)= 1
Γ(β)Γ(1−β)

∫ x
s

∂
∂t

(
h(t,s)
(t−s)1−β

)
dt

(x−t)β (4.15)

is continuous as long as h is continuous. It then follows that

∣∣R0(t;ε)
∣∣= ε∣∣(DβR0

)
(t;ε)

∣∣+∣∣(Dβρ0
)
(t;ε)

∣∣+
∫ t

0

∣∣Lh(t,s)∣∣∣∣R0(s;ε)
∣∣ds. (4.16)

Since R0(0;ε)= ρ0(0;ε)= 0, Proposition 2.1 implies that DβR0 is continuous on [0,T ]
and

ε
∣∣(DβR0

)
(t;ε)

∣∣≤ ∣∣(Dβρ0
)
(t;ε)

∣∣+
∫ t

0

∣∣Lk(t,s)∣∣∣∣R0(s;ε)
∣∣ds. (4.17)

Substituting (4.17) into (4.16) yields

∣∣R0(t;ε)
∣∣≤ 2

∣∣(Dβρ0
)
(t;ε)

∣∣+
∫ t

0

{∣∣Lh(t,s)∣∣+∣∣Lk(t,s)∣∣}∣∣R0(s;ε)
∣∣ds. (4.18)

Then the usual Gronwall’s inequality and (4.9) imply that there exists a constant C0 > 0

which does not depend on ε such that

∣∣R0(t;ε)
∣∣≤ εC0, ε �→ 0 (4.19)

on [0,T ].

5. A demonstrated example. Angell and Olmstead in [1] consider the following

weakly singular linear singularly perturbed Volterra equation which follows from ther-

mal convection:

εu(t)= f(t)− 1
π1/2

∫ t
0

u(s)
(t−s)1/2ds, (5.1)

where

f(t)= 1
π1/2

∫ t
0

h(s)
(t−s)1/2ds, (5.2)

and h(t) is C2 with h(0) ≠ 0. Since Γ(1/2) = π1/2, this corresponds to (1.1) with

k(t,s)=−1 and β= 1/2. Therefore γ = 2. The exact solution of (5.1) can be obtained

by Laplace transforms or read directly from (2.12) and (2.21). It is given by

u(t;ε)= f(t)
ε

− 1
ε2

∫ t
0
e(t−s)/ε

2
erfc

(
(t−s)1/2

ε

)
h(s)ds. (5.3)
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Since f(ε2τ) = 2εh(0)τ1/2/π1/2+O(ε2), we look for an asymptotic solution of the

form

u(t;ε)=
∞∑
j=0

(
εjyj(t)+ε2jzj

(
t
ε2

))
. (5.4)

Following the formal method of Section 3, it is found that the leading order outer

solution y0(t) obeys

0=
∫ t

0

h(s)−y0(s)
(t−s)1/2 ds, t ≥ 0, (5.5)

and hence y0(t)= h(t).
The inner correction term z0(τ) is a solution of

z0(τ)=−y0(0)+ 2τ1/2

π1/2

(
h(0)−y0(0)

)− 1
π1/2

∫ τ
0

1
(τ−σ)1/2 z0(σ)dσ

=−h(0)− 1
π1/2

∫ τ
0

1
(τ−σ)1/2 z0(σ)dσ.

(5.6)

By (2.12) and (2.21),

z0(τ)=−h(0)eτ erfc
(
τ1/2), τ ≥ 0. (5.7)

The asymptotic expansion of the integral

erfc
√
τ = 2√

π

∫∞
√
τ
e−t

2
dt ∼ e−τ√

πτ

{
1− 1

2τ
+ 3

4τ2
+···

}
as τ �→∞ (5.8)

implies that

z0(τ)∼− h(0)√
πτ

{
1− 1

2τ
+ 3

4τ2
+···

}
(5.9)

so that z0(τ)→ 0 as τ →∞, but only algebraically.

Therefore, up to the leading order, the formal solution of (5.1) is given by

U0(t;ε)= h(t)−h(0)et/ε2
erfc

(
t
ε2

)
. (5.10)

To show directly that U0(t;ε) approximates the solution of (5.3) to within O(ε), con-

sider the difference

u(t;ε)−U0(t;ε)= 1
ε

∫ t
0

h(s)
π1/2(t−s)1/2ds

− 1
ε2

∫ t
0
e(t−s)/ε

2
erfc

(
(t−s)1/2

ε

)
h(s)ds

−h(t)+h(0)et/ε2
erfc

(
t1/2

ε

)
.

(5.11)
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Integrating by parts

1
ε2

∫ t
0
e(t−s)/ε

2
erfc

(√
t−s
ε

)
h(s)ds

= h(0)et/ε2
erfc

√
t
ε
−h(t)+ 1

ε

∫ t
0

h(s)√
π(t−s)ds+ε

2h′(0)et/ε
2
erfc

√
t
ε
−ε2h′(t)

−ε
∫ t

0

[
π(t−s)]−1/2h′(s)ds

−ε2
∫ t

0

{
e(t−s)/ε

2
erfc

√
t−s
ε

− 2ε
√
t−s√
π

}
h′′(s)ds.

(5.12)

Substituting this into (5.11), we get

u(t;ε)−U0(t;ε)=−ε
∫ t

0

[
π(t−s)]−1/2h′(s)ds−ε2h′(t)+ε2et/ε

2
erfc

√
t
ε
h′(0)

−ε2
∫ t

0

{
e(t−s)/ε

2
erfc

√
(t−s)
ε

− 2ε
√
(t−s)√
π

}
h′′(s)ds.

(5.13)

This implies that

∣∣u(t;ε)−U0(t;ε)
∣∣=O(ε) (5.14)

as ε→ 0 uniformly on 0≤ t ≤ T .

We now examine the exact solution (5.3) with the view of directly determining a valid

asymptotic solution for u(t;ε). Suppose now that h(t) is C∞. For the outer expansion,

we fix t > 0 in (5.3) and let ε→ 0. Then

u(t;ε)∼
∞∑
n=0

εnvn(t) as ε �→ 0. (5.15)

The integration by parts in (5.12) gives

v0(t)= h(t), v1(t)= h(0)
(πt)1/2

−
∫ t

0

1
π1/2(t−s)1/2h

′(s)ds, . . . , (5.16)

where the first term in v1 follows from the first term in (5.12) and the asymptotic

expansion (5.8). To get the inner expansion, we express (5.3) in terms of the inner

variable τ = t/ε2 to get

u
(
ε2τ ;ε

)
:=w(τ ;ε)=

∫ τ
0

{
1

π1/2(τ−σ)1/2 −e
τ−σ erfc(τ−σ)1/2

}
h
(
ε2σ

)
dσ. (5.17)

This suggests that the inner expansion has the form

w(τ ;ε)=
∞∑
n=0

ε2nwn(τ) as ε �→ 0. (5.18)
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Equating the coefficients of like powers of ε, we get

wn(τ)= h
(n)(0)
n!

∫ τ
0

{
1

π1/2(τ−σ)1/2 −e
τ−σ erfc(τ−σ)1/2

}
σndσ. (5.19)

The leading order term in (5.18) is given by

w0(τ)= h(0)
∫ τ

0

{
1

π1/2(τ−σ)1/2 −e
τ−σ erfc(τ−σ)1/2

}
dσ, (5.20)

equivalently,

w0(τ)= h(0)−h(0)eτ erfc
√
τ. (5.21)

The first-order term w1(τ) is given by

w1(τ)= h′(0)
∫ τ

0

{
1

π1/2(τ−σ)1/2 −e
τ−σ erfc(τ−σ)1/2

}
σ dσ, (5.22)

which on integration by parts is

w1(τ)= h′(0)τ−h′(0)
∫ τ

0
eσ erfc

√
σdσ. (5.23)

We then see that the leading order term in the outer expansion and the leading order

term in the inner expansion form a composite expansion which is the uniformly valid

asymptotic solution U0(t;ε) obtained by the methodology developed.

Remark 5.1. It is important to establish the asymptotic behaviour of y0(t) as t ↓ 0

and z0(τ) as τ →∞. If we define w(τ ;ε) := εu(εγτ ;ε), then

w(τ ;ε)= f (εγτ)+
∫ τ

0

k
(
εγτ,εγσ

)
(τ−σ)1−β w(σ ;ε)dσ. (5.24)

Therefore, we expect the inner expansion to be

w(τ ;ε)∼
∞∑
j=0

εjγwj(τ) as ε �→ 0. (5.25)

Comparing this to (3.5) we see that

w0(τ)+εγw1(τ)+··· ∼ z0(τ)+εy0
(
εγτ

)+··· . (5.26)

Since (4.6) implies that εy0(εγτ) = εγτ1−βỹ0(εγτ), the apparent anomaly of a O(ε)
term balancing with an O(εγ) term does not arise. In fact the equation for z1(τ) can

be found to be

z1(τ)=ψ1(τ)+ 1
Γ(β)

∫ τ
0

k(0,0)
(τ−σ)1−β z1(σ)dσ, (5.27)

whereψ1 is continuous. The required asymptotic expansion for large τ is established

with the assumption that ψ1(τ) assumes a power series expansion in τ .
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However, for the outer solution, the abnormality ofO(ε) term balancing withO(εγ)
term is there. Thus the equation for y1(t) depends on the actual value of γ.
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