ON A SUBCLASS OF α-CONVEX λ-SPIRAL FUNCTIONS

F. M. AL-OBOUDI and M. M. HIDAN

Received 21 November 2000 and in revised form 22 February 2001

Let H denote the class of functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ which are analytic in the unit disc $\Delta=\{z:|z|<1\}$. In this paper, we introduce the class $M_{\alpha}^{\lambda}[A, B]$ of functions $f \in H$ with $f(z) f^{\prime}(z) / z \neq 0$, satisfying for $z \in \Delta:\left\{\left(e^{i \lambda}-\alpha \cos \lambda\right)\left(z f^{\prime}(z) / f(z)\right)+\alpha \cos \lambda(1+\right.$ $\left.\left.z f^{\prime \prime}(z) / f^{\prime}(z)\right)\right\} \prec \cos \lambda((1+A z) /(1+B z))+i \sin \lambda$, where \prec denotes subordination, α and λ are real numbers, $|\lambda|<\pi / 2$ and $-1 \leq B<A \leq 1$. Functions in $M_{\alpha}^{\lambda}[A, B]$ are shown to be λ-spiral-like and hence univalent. Integral representation, coefficients bounds, and other results are given.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let H denote the class of functions f analytic in the unit disc $\Delta=\{z:|z|<1\}$ and be given by $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$. Let $f \in H$ with $f(z) f^{\prime}(z) / z \neq 0$ in Δ and α be a real number. Then f is said to be α-convex λ-spiral function, if and only if it satisfies the inequality $\operatorname{Re}\left\{\left(e^{i \lambda}-\alpha \cos \lambda\right)\left(z f^{\prime}(z) / f(z)\right)+\alpha \cos \lambda(1+\right.$ $\left.\left.z f^{\prime \prime}(z) / f^{\prime}(z)\right)\right\}>0$ in Δ, for some $\lambda,|\lambda|<\pi / 2$. The class of these functions, which is denoted by $\mathrm{SC}(\alpha, \lambda)$ was defined and studied by Umarany [8].

In this paper, we introduce and study a subclass of $\operatorname{SC}(\alpha, \lambda)$ defined by using subordination to convex functions.

DEFINITION 1.1. Let $f \in H$ with $f(z) f^{\prime}(z) / z \neq 0$ in Δ. Then f is said to belong to the class $M S_{\alpha}^{\lambda}[A, B]$ if and only if for $z \in \Delta$,

$$
\begin{align*}
K(\alpha, \lambda, f(z)) & =\left\{\left(e^{i \lambda}-\alpha \cos \lambda\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha \cos \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\} \tag{1.1}\\
& \prec \cos \lambda \frac{1+A z}{1+B z}+i \sin \lambda
\end{align*}
$$

where \prec denotes subordination, α and λ are real numbers, $|\lambda|<\pi / 2$ and A and B are arbitrary fixed numbers such that $-1 \leq B<A \leq 1$.

It is clear from Definition 1.1 that a function $f \in M S_{\alpha}^{\lambda}[A, B]$ if and only if there exists a function $w(z)$ analytic in Δ and satisfying $w(0)=0$ and $|w(z)|<1, z \in \Delta$, such that

$$
\begin{equation*}
K(\alpha, \lambda, f(z))=\cos \lambda \frac{1+A w(z)}{1+B w(z)}+i \sin \lambda \tag{1.2}
\end{equation*}
$$

It is also clear from Definition 1.1 that $M_{\alpha}^{0}[A, B] \equiv M_{\alpha}[A, B]$, the subclass of α convex functions introduced by Kim and Jung [5] and $M_{0}^{\lambda}[A, B] \equiv \mathrm{Sp}^{\lambda}[A, B]$, the subclass of spiral-like functions introduced by Dashrath and Shukla [2].

In this paper, we show that functions in $M_{\alpha}^{\lambda}[A, B]$ are spiral-like and hence univalent in Δ. Integral representation, coefficient bounds, and other results are given.
2. Spiral-likeness. To derive our main result, we prove the following lemma.

Lemma 2.1. Let $f \in H$, then $f \in M S_{\alpha}^{\lambda}[A, B]$ if and only if

$$
\begin{equation*}
|K(\alpha, \lambda, f(z))-m|<M, \quad z \in \Delta, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
m=\cos \lambda \frac{1-A B}{1-B^{2}}+i \sin \lambda, \quad M=\frac{(A-B)}{1-B^{2}} \cos \lambda . \tag{2.2}
\end{equation*}
$$

Proof. Suppose that $f \in M S_{\alpha}^{\lambda}[A, B]$. Then from (1.2) we obtain

$$
\begin{align*}
K(\alpha, \lambda, f(z))-m & =\frac{e^{i \lambda}-m+\left[(A-B) \cos \lambda+B e^{i \lambda}-m B\right] w(z)}{1+B w(z)} \\
& =M \frac{B+w(z)}{1+B w(z)}, \quad B \neq-1, \tag{2.3}
\end{align*}
$$

using (2.2), hence

$$
\begin{equation*}
K(\alpha, \lambda, f(z))-m=M q(z) . \tag{2.4}
\end{equation*}
$$

It is clear that the function q satisfies $|q(z)|<1$. Hence (2.1) follows from (2.4).
Conversely, suppose that (2.1) holds. Then

$$
\begin{equation*}
\left|\frac{K(\alpha, \lambda, f(z))}{M}-\frac{m}{M}\right|<1, \quad B \neq-1 . \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{align*}
& g(z)=\frac{K(\alpha, \lambda, f(z))}{M}-\frac{m}{M}, \quad B \neq-1, \tag{2.6}\\
& w(z)=\frac{g(z)-g(0)}{1-g(z) g(0)}=\frac{K(\alpha, \lambda, f(z))-e^{i \lambda}}{(A-B) \cos \lambda+B e^{i \lambda}-B K(\alpha, \lambda, f(z))} . \tag{2.7}
\end{align*}
$$

Clearly $w(0)=0$ and $|w(z)|<1$. Rearranging (2.7) we get (1.2), hence $f \in M S_{\alpha}^{\lambda}[A, B]$. We note that condition (2.1) can be written as

$$
\begin{equation*}
\left|\frac{K(\alpha, \lambda, f(z))-i \sin \lambda-(1-A) /(1-B) \cos \lambda}{\cos \lambda-\cos \lambda(1-A) /(1-B)}-\frac{1}{1+B}\right|<\frac{1}{1+B}, \quad z \in \Delta . \tag{2.8}
\end{equation*}
$$

As $B \rightarrow-1$ and $A=1$, the above condition reduces to the necessary and sufficient condition for f to belong to $M S_{\alpha}^{\lambda}[1,-1]$ (see [8]).

The following lemma is due to Jack [3].

Lemma 2.2. Let w be a nonconstant and analytic function in $\Delta, w(0)=0$. Then if $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at z_{0} we can write

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=\phi w\left(z_{0}\right), \tag{2.9}
\end{equation*}
$$

where ϕ is a real number such that $\phi \geq 1$.
Remark 2.3. Throughout, $-1 \leq B<A \leq 1$, unless otherwise indicated, $|\lambda|<\pi / 2$.
THEOREM 2.4. If $f \in M S_{\alpha}^{\lambda}[A, B]$, then $f \in \operatorname{Sp}^{\lambda}[A, B]$ and hence univalent.
Proof. Let

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+\left[(A-B) \cos \lambda e^{-i \lambda}+B\right] w(z)}{1+B w(z)}=\frac{1+\eta w(z)}{1+B w(z)}, \tag{2.10}
\end{equation*}
$$

where $\eta=(A-B) \cos \lambda e^{-i \lambda}+B$. Differentiating (2.10) logarithmically, we get

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}=\frac{\eta z w^{\prime}(z)}{1+\eta w(z)}-\frac{B z w^{\prime}(z)}{1+B w(z)} . \tag{2.11}
\end{equation*}
$$

Multiplying both sides of (2.11) by $\alpha \cos \lambda$ and adding $e^{i \lambda}\left(z f^{\prime}(z) / f(z)\right)$ to both sides, we obtain

$$
\begin{align*}
\alpha \cos \lambda(1+ & \left.\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)+e^{i \lambda} \frac{z f^{\prime}(z)}{f(z)} \tag{2.12}\\
& =\left(\frac{\eta z w^{\prime}(z)}{1+\eta w(z)}-\frac{B z w^{\prime}(z)}{1+B w(z)}\right) \alpha \cos \lambda+e^{i \lambda} \frac{1+\eta w(z)}{1+B w(z)} .
\end{align*}
$$

Let r^{*} be the distance from the origin to the pole of w nearest to the origin. Then w is analytic in $|z|<r_{0}=\min \left\{r^{*}, 1\right\}$. By Lemma 2.2 for $|z| \leq r\left(r<r_{0}\right)$, there exists a point z_{0} such that

$$
\begin{equation*}
z_{0} w^{\prime}(z)=\phi w\left(z_{0}\right), \quad \phi \geq 1 . \tag{2.13}
\end{equation*}
$$

From (2.11) and (2.12), we obtain

$$
\begin{equation*}
K(\alpha, \lambda, f(z))-m=\frac{N\left(z_{0}\right)}{R\left(z_{0}\right)}, \quad B \neq-1, \tag{2.14}
\end{equation*}
$$

where

$$
\begin{align*}
N\left(z_{0}\right)= & e^{i \lambda}-m+\left[\left(\eta e^{i \lambda}-B m\right)+\left(e^{i \lambda}-m\right) \eta+\alpha \cos \lambda(\eta-B) \phi\right] w\left(z_{0}\right) \tag{2.15}\\
& +\left(\eta e^{i \lambda}-B m\right) \eta w^{2}\left(z_{0}\right), \\
R\left(z_{0}\right)= & 1+(B+\eta) w\left(z_{0}\right)+B \eta w^{2}\left(z_{0}\right) . \tag{2.16}
\end{align*}
$$

Now suppose that it was possible to have $\max _{|z|=r}|w(z)|=1$ for some $r, r<r_{0} \leq 1$. At the point z_{0} where this occurred, we would have $\left|w\left(z_{0}\right)\right|=1$. Then, by using the identities

$$
\begin{equation*}
e^{i \lambda}-m=B M, \quad \eta e^{i \lambda}-B m=M, \quad B \neq-1 \tag{2.17}
\end{equation*}
$$

in (2.15) we have

$$
\begin{equation*}
N\left(z_{0}\right)=B M+[\alpha \cos \lambda(\eta-B) \phi+\eta B M+M] w\left(z_{0}\right)+\eta M w^{2}\left(z_{0}\right) . \tag{2.18}
\end{equation*}
$$

From (2.16) and (2.18), we get

$$
\begin{equation*}
\left|N\left(z_{0}\right)\right|^{2}-M^{2}\left|R\left(z_{0}\right)\right|^{2}=\tilde{a}+2 \tilde{b} \operatorname{Re}\left\{w\left(z_{0}\right)\right\} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{a}=\alpha \cos \lambda(\eta-B) \phi\{\alpha \cos \lambda(\eta-B) \phi+2 M(1+B \eta)\}, \\
& \tilde{b}=\alpha \cos \lambda(\eta-B) \phi M(B+\eta) . \tag{2.20}
\end{align*}
$$

From (2.19), we have

$$
\begin{equation*}
\left|N\left(z_{0}\right)\right|^{2}-M^{2}\left|R\left(z_{0}\right)\right|^{2}>0, \quad \text { provided } \tilde{a} \pm 2 \tilde{b}>0 \tag{2.21}
\end{equation*}
$$

Now

$$
\begin{align*}
& \tilde{a}+\tilde{b}=\alpha \cos \lambda(\eta-B) \phi\{\alpha \cos \lambda(\eta-B) \phi+M(2+2 B \eta+B+\eta)\}>0, \\
& \tilde{a}-\tilde{b}=\alpha \cos \lambda(\eta-B) \phi\{\alpha \cos \lambda(\eta-B) \phi+M(2+2 B \eta-B-\eta)\}>0 . \tag{2.22}
\end{align*}
$$

Thus it follows from (2.14) and (2.21) that

$$
\begin{equation*}
|K(\alpha, \lambda, f(z))-m|>M . \tag{2.23}
\end{equation*}
$$

But in view of Lemma 2.1, this is contrary to our assumption $f \in M S_{\alpha}^{\lambda}[A, B]$. So we cannot have $\left|w\left(z_{0}\right)\right|=1$. Thus $|w(z)| \neq 1$ in $|z|<r_{0}$. Since $w(0)=0,|w(z)|$ is continuous and $\left|w\left(z_{0}\right)\right| \neq 1$ in $|z|<r_{0}, w$ cannot have a pole at $|z|=r_{0}$. Therefore, w is analytic in Δ and satisfies $|w(z)|<1$ for $z \in \Delta$. Hence $f \in \operatorname{Sp}^{\lambda}[A, B]$.

REMARK 2.5. When $A=1$ and $B=-1$, a result of Umarani [8] follows from Theorem 2.4.

3. Integral representation

Theorem 3.1. A necessary and sufficient condition for the function f to be in $M S_{\alpha}^{\lambda}[A, B], \alpha>0$, is that f has the integral representation

$$
\begin{equation*}
f(z)=\left[\frac{e^{i \lambda}}{\alpha \cos \lambda} \int_{0}^{z}(g(t))^{i \lambda / \alpha \cos \lambda} t^{-1} d t\right]^{\alpha e^{-i \lambda} \cos \lambda} \tag{3.1}
\end{equation*}
$$

for some $g \in \operatorname{Sp}^{\lambda}[A, B]$, where the powers are assumed to be principal values.

Proof. Let $f, g \in H$ and f be given as in (3.1). Differentiating both sides and simplifying we get

$$
\begin{equation*}
g(z)=f(z)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\alpha e^{-i \lambda} \cos \lambda} \tag{3.2}
\end{equation*}
$$

Differentiating (3.2) logarithmically and multiplying both sides by $z e^{i \lambda}$ we obtain

$$
\begin{equation*}
e^{i \lambda} \frac{z g^{\prime}(z)}{g(z)}=\left(e^{i \lambda}-\alpha \cos \lambda\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha \cos \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \tag{3.3}
\end{equation*}
$$

Hence $f \in M S_{\alpha}^{\lambda}[A, B]$ if and only if $g \in \operatorname{Sp}^{\lambda}[A, B]$.
Remark 3.2. Using the integral representation and the external function of the class $\mathrm{Sp}^{\lambda}[A, B]$ (see [2]) we get the external function of the class $M S_{\alpha}^{\lambda}[A, B]$ as

$$
f(z)= \begin{cases}\left(\frac{e^{i \lambda}}{\alpha \cos \lambda} \int_{0}^{z} e^{i \lambda / \alpha \cos \lambda-1}(1+B t)^{((A-B) / \alpha B)} d t\right)^{\alpha e^{-i \lambda \cos \lambda}} & \text { if } B \neq 0, \tag{3.4}\\ \left(\frac{e^{i \lambda}}{\alpha \cos \lambda} \int_{0}^{z} e^{i \lambda / \alpha \cos \lambda}\left(\exp \left(A t e^{-i \lambda} \cos \lambda\right)\right)^{e^{i \lambda / \alpha \cos \lambda}} d t\right)^{\alpha e^{-i \lambda} \cos \lambda} & \text { if } B=0 .\end{cases}
$$

4. Coefficients bounds. To derive our next result, we need the following lemma (see [4]).
LEMMA 4.1. Let $w(z)=c_{1} z+c_{2} z^{2}+\cdots$ be an analytic function with $|w(z)|<1$ in Δ. If v is any complex number, then

$$
\begin{equation*}
\left|c_{2}-v c_{1}^{2}\right| \leq \max \{1,|v|\} . \tag{4.1}
\end{equation*}
$$

The equality may be attained with the functions $w(z)=z^{2}$ and $w(z)=z$.
Theorem 4.2. Let $f \in M S_{\alpha}^{\lambda}[A, B]$ given by $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, and let μ be any complex number. Then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B) \cos \lambda}{2\left|e^{i \lambda}+2 \alpha \cos \lambda\right|} \max \{1,|v|\}, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
\nu= & \frac{2 \mu\left(e^{i \lambda}+2 \alpha \cos \lambda\right)(A-B) \cos \lambda-(A-B) \cos \lambda\left(e^{i \lambda}+3 \alpha \cos \lambda\right)}{\left(e^{i \lambda}+\alpha \cos \lambda\right)^{2}} \\
& +\frac{\left(e^{i \lambda}+\alpha \cos \lambda\right)^{2} B}{\left(e^{i \lambda}+\alpha \cos \lambda\right)^{2}} . \tag{4.3}
\end{align*}
$$

This result is sharp.
Proof. Let $f \in M S_{\alpha}^{\lambda}[A, B]$ and let $w(z)=c_{1} z+c_{2} z^{2}+\cdots$ be an analytic function with $|w(z)|<1$ in Δ. Then

$$
\begin{equation*}
\left(e^{i \lambda}-\alpha \cos \lambda\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha \cos \lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\frac{e^{i \lambda}+e^{i \lambda} \eta w(z)}{1+B w(z)} \tag{4.4}
\end{equation*}
$$

where $\eta=(A-B) \cos \lambda e^{-i \lambda}+B$, from (1.2). Equating the coefficients in both sides of (4.4) we get

$$
\begin{gather*}
c_{1}=\frac{e^{i \lambda}+\alpha \cos \lambda}{(A-B) \cos \lambda} a_{2} \tag{4.5}\\
c_{2}=\frac{2\left(e^{i \lambda}+2 \alpha \cos \lambda\right)}{(A-B) \cos \lambda} a_{3}-\frac{(A-B) \cos \lambda\left(e^{i \lambda}+3 \alpha \cos \lambda\right)-\left(e^{i \lambda}+\alpha \cos \lambda\right)^{2} B}{(A-B)^{2} \cos ^{2} \lambda} a_{2}^{2} \tag{4.6}
\end{gather*}
$$

From (4.5) and (4.6), we obtain

$$
\begin{equation*}
c_{2}-v c_{1}^{2}=\frac{2\left(e^{i \lambda}+2 \alpha \cos \lambda\right)}{(A-B) \cos \lambda}\left\{a_{3}-\mu a_{2}^{2}\right\} \tag{4.7}
\end{equation*}
$$

where

$$
\begin{align*}
\mu=\frac{(A-B) \cos \lambda}{2\left(e^{i \lambda}+2 \alpha \cos \lambda\right)}\{ & \left\{\frac{\left(e^{i \lambda}+3 \alpha \cos \lambda\right)(A-B) \cos \lambda-\left(e^{i \lambda}+\alpha \cos \lambda\right)^{2} B}{(A-B)^{2} \cos ^{2} \lambda}\right. \\
& \left.+v \frac{\left(e^{i \lambda}+\alpha \cos \lambda\right)^{2}}{(A-B)^{2} \cos ^{2} \lambda}\right\} . \tag{4.8}
\end{align*}
$$

Hence applying Lemma 4.1, we get

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|=\left|\frac{(A-B) \cos \lambda}{2\left(e^{i \lambda}+2 \alpha \cos \lambda\right)}\right|\left|c_{2}-v c_{1}^{2}\right| \leq \frac{(A-B) \cos \lambda}{2\left|e^{i \lambda}+2 \alpha \cos \lambda\right|} \max \{1,|v|\} . \tag{4.9}
\end{equation*}
$$

The sharpness of (4.9) follows from the sharpness of inequality (4.1).
5. Some radius problems. In this section, we discuss the covering theorem of the class $M S_{\alpha}^{\lambda}[A, B]$, that is, we find the radius of the largest disk covered by the image of the unit disk Δ under the mapping $f \in M S_{\alpha}^{\lambda}[A, B]$. We also find the α-convex β-spiral radius of functions in $M S_{\alpha}^{\lambda}[A, B]$.

Theorem 5.1. Let $f \in M S_{\alpha}^{\lambda}[A, B]$. Then the disk Δ is mapped onto a domain that contains the disk

$$
\begin{equation*}
|w|<\frac{\left|e^{i \lambda}+\alpha \cos \lambda\right|}{2\left|e^{i \lambda}+\alpha \cos \lambda\right|+(A-B) \cos \lambda} . \tag{5.1}
\end{equation*}
$$

Proof. Let $w=f(z) \in M S_{\alpha}^{\lambda}[A, B]$ given by $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, and let w_{0} be any complex number such that $f(z) \neq w_{0}$ for $z \in \Delta$. Then

$$
\begin{equation*}
\frac{w_{0} f(z)}{w_{0}-f(z)}=z+\left(a_{2}+\frac{1}{w_{0}}\right) z^{2}+\cdots \tag{5.2}
\end{equation*}
$$

belongs to the class S of univalent functions. Hence (see [1])

$$
\begin{equation*}
\left|a_{2}+\frac{1}{w_{0}}\right| \leq 2 \tag{5.3}
\end{equation*}
$$

Substituting $\left|c_{1}\right| \leq 1$ in (4.5) (see [7]), we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{(A-B) \cos \lambda}{\left|e^{i \lambda}+\alpha \cos \lambda\right|} \tag{5.4}
\end{equation*}
$$

From (5.3) and (5.4), we obtain

$$
\begin{equation*}
\left|w_{0}\right| \geq \frac{\left|e^{i \lambda}+\alpha \cos \lambda\right|}{2\left|e^{i \lambda}+\alpha \cos \lambda\right|+(A-B) \cos \lambda} \tag{5.5}
\end{equation*}
$$

which is the required result.
To derive our next theorem we need the following lemma (see [6]).
Lemma 5.2. Let $f \in \operatorname{Sp}^{\lambda}[A, B]$, then $f \in \operatorname{Sp}^{\beta}[A, B],|\beta|<\pi / 2$, on the disc $|z|<r^{\star \star}$ where $r^{\star \star}$ is the smallest positive root of the equation

$$
\begin{equation*}
B[A \cos (\lambda+\beta)+B \sin \lambda \sin (\lambda-\beta)] r^{2}+(A-B) r \cos \lambda-\cos \beta=0 . \tag{5.6}
\end{equation*}
$$

This result is sharp.
Theorem 5.3. Let $f \in M S_{\alpha}^{\lambda}[A, B]$. Then $f \in M S_{\alpha}^{\beta}[A, B],|\beta|<\pi / 2$ on the disk $|z|<$ $r^{\star \star}$, where $r^{\star \star}$ is the smallest positive root of (5.6). This result is sharp.

Proof. Let $f \in M S_{\alpha}^{\lambda}[A, B]$. Then from Theorem 3.1, there exists a function $g \in$ $\mathrm{Sp}^{\lambda}[A, B]$ such that (3.1) is satisfied. From Lemma $5.2, g \in \mathrm{Sp}^{\beta}[A, B],|\beta|<\pi / 2$, on $|z|<r^{\star \star}$. Applying Theorem 3.1 again, we find that $f \in M S_{\alpha}^{\beta}[A, B]$ on $|z|<r^{\star \star}$. The radius $r^{\star \star}$ is best possible as shown by the function f given by (3.4).

References

[1] L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln., Sitzungsber. Preuss. Akad. Wiss. (1916), 940955 (German).
[2] Dashrath and S. L. Shukla, Coefficient estimates for a subclass of spiral-like functions, Indian J. Pure Appl. Math. 14 (1983), no. 4, 431-439.
[3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971), 469474.
[4] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
[5] Y. Kim and I. Jung, Subclasses of univalent functions subordinate to convex functions, Int. J. Math. Math. Sci. 20 (1997), no. 2, 243-247.
[6] V. Kumar and S. L. Shukla, Radii of spiral-likeness of certain analytic functions, Tamkang J. Math. 17 (1986), no. 4, 51-58.
[7] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
[8] P. Umarani, On a subclass of spiral-like functions, Indian J. Pure Appl. Math. 10 (1979), no. 10, 1292-1297.
F. M. Al-Oboudi: Department of Mathematics, Girl's College of Education, Science Sections, Sitteen Street, Malaz, Riyadh, Saudi Arabia

E-mail address: fma34@yahoo.com
M. M. Hidan: Department of Mathematics, Girl's College of Education, Science Sections, Kabel, Abha, Saudi Arabia

