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We study the effect of variable suction or blowing on the flow of an incompressible viscous
fluid due to noncoaxial rotations of a porous disk and a fluid at infinity. The inquiries are
made about the components of fluid velocity and the shear stress at the disk. It is found
that the effect of uniform suction or blowing on the flow is enhanced in the presence of
variable suction or blowing.
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1. Introduction. Thornley [5] has studied the unsteady flow developed in an in-

compressible viscous fluid due to nontorsional oscillations of an infinite rigid plate

when both the fluid and the plate are in a state of solid body rotation. A similar prob-

lem of magnetohydrodynamic Ekman layer over an infinite rigid nonconducting plate

was examined by Gupta [3]. On the other hand, the flow due to noncoaxial rotations

of a disk and a fluid at infinity was initiated by Berker [1]. Subsequently, Erdogan [2]

constructed solutions of the problem of steady flow due to eccentrically rotations of

a porous disk and a fluid at infinity with the same angular velocity both for the cases

of uniform suction and blowing at the disk. Of late, Kasiviswanathan and Rao [4] ob-

tained an exact solution for the unsteady flow due to noncoaxial rotations of a porous

disk oscillating in its own plane and a fluid at infinity. In the present paper, the flow

due to noncoaxial rotations of a porous disk subjected to variable suction or blowing

and a fluid at infinity has been investigated. Analytical solutions are obtained both

for the components of fluid velocity and the components of shear stress at the disk.

Quantitative evolution of the results are also made with a view to examine the effects

of variable suction and blowing on the flow. It is found that the effects of uniform suc-

tion or blowing on the flow field enhances in presence of variable suction or blowing

at the disk.

2. Formulation of the problem. We consider the flow due to a porous disk lying

in the xy-plane rotating about the z-axis perpendicular to the disk with uniform

angular velocityΩ. The fluid at infinity rotates with the same angular velocity Ω about

an axis parallel to the z-axis passing through the point (x,y). The unsteady motion is

established in the fluid due to variable suction at the disk. For this motion, the velocity

field has the form

u=−Ωy+g(z,t), v =Ωx−f(z,t), w =−V(t), (2.1)
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where V(t) > 0 represents the suction velocity which satisfies the equation of conti-

nuity. Introducing (2.1) in Navier-Stokes equations, we get

(
v
∂2g
∂z2

+V(t)∂g
∂z
− ∂g
∂t
−Ωf

)
=−Ω2x+ 1

ρ
∂p
∂x
, (2.2)

(
v
∂2f
∂z2

+V(t)∂f
∂z
− ∂f
∂t
+Ωg

)
=Ω2y+ 1

ρ
∂p
∂x
, (2.3)

∂V(t)
∂t

= 1
ρ
∂p
∂z
. (2.4)

We now suppose that the suction velocity normal to the disk oscillates in magnitude

and not in direction about a nonzero mean given by

V(t)=W0
(
1+εAeiσt), (2.5)

where W0 is a positive constant; ε > 0 is small and A is a real positive constant such

that εA� 1.

From (2.4) and (2.5), we find that ∂p/∂z is small and hence can be neglected. This

shows that p is independent of z.

Eliminating p from (2.2) and (2.3) by differentiating with respect to z and combining

them, we get

v
∂3U
∂z3

+V(t)∂
2U
∂z2

− ∂2U
∂z∂t

−iΩ∂U
∂z

= 0, (2.6)

where U = f +ig.

Since no unsteady motion other than suction is imposed on the disk, we must have

the boundary conditions for U(z,t) as

U(z,t)= 0 at z = 0, U(z,t)=Ω(x1+iy1
)

at z =∞, t > 0. (2.7)

In addition to these, we assume that the solutions are bounded at infinity.

Again, from (2.5), we assumed that

U(z,t)= F0(z)+εF1(z)eiσt. (2.8)

Substituting (2.8) and (2.5) in (2.3), comparing harmonic terms and neglecting co-

efficient of ε2, we get

v
d3F0

dz3
+W0

d2F0

dz2
−iΩdF0

dz
= 0, (2.9)

v
d3F1

dz3
+W0

d2F1

dz2
−i(Ω+σ)dF1

dz
=−W0A

d2F0

dz2
, (2.10)
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with

F0(0)= 0, F1(0)= 0,

F0(∞)=Ω
(
x1+iy1

)
, F1(∞)= 0.

(2.11)

3. Solution of the problem. We introduce ξ = √
Ω/2vz, S = W0/2

√
Ωv , and n =√

1+σ/Ω in (2.10) and (2.11) to obtain

d3F0

dξ3
+2

√
2S
d2F0

dξ2
−2i

dF0

dξ
= 0, (3.1)

d3F1

dξ3
+2

√
2S
d2F1

dξ2
−2in2dF1

dξ
=−23/2εA

d2F0

dξ2
, (3.2)

subject to conditions (2.11).

On solving (3.1) and (3.2) subject to (2.11), we get

f
Ω
= x1

(
1−e−α0ξ cosβ0ξ

)−y1e−α0ξ sinβ0ξ

+ ε2
3/2AS

P2+Q2

[(
x1L−y1M

)[
e−α0ξ cos

(
β0ξ−σt

)−e−α1ξ cos
(
β1ξ−σt

)]

+(y1L+x1M
)[
e−α0ξ sin

(
β0ξ−σt

)−e−α1ξ sin
(
β1ξ−σt

)]]
,

(3.3)

g
Ω
=y1

(
1−e−α0ξ cosβ0ξ

)+x1e−α0ξ sinβ0ξ

+ ε2
3/2AS

P2+Q2

[(
y1L+x1M

)[
e−α0ξ cos

(
β0ξ−σt

)−e−α1ξ cos
(
β1ξ−σt

)]

−(x1L−y1M
)[
e−α0ξ sin

(
β0ξ−σt

)−e−α1ξ sin
(
β1ξ−σt

)]]
,

(3.4)

where α0 =
√

2S+γ0, γ0 = [
√
S4+1+S2]1/2, β0 = [

√
S4+1−S2]1/2, α1 =

√
2S+γ1, γ1 =

[
√
S4+n4+S2]1/2, β1 = [

√
S4+n4−S2]1/2, L = α0P −β0Q, M = β0P −α0Q, P = (α1−

α0)[α1+α0−2
√

2S]−(β2
1−β2

0), Q= (β1−β0)[α1+α0−2
√

2S]−(α1−α0)(β1+β0).
In particular, when A= 0, the general results (3.3) and (3.4) reduce to

f
Ω
= x1

(
1−e−α0ξ cosβ0ξ

)−y1e−α0ξ sinβ0ξ, (3.5)

g
Ω
=y1

(
1−e−α0ξ sinβ0ξ

)+x1e−α0ξ sinβ0ξ. (3.6)

These results coincide with the nonoscillating part of the results [4, (11), (12)] and

describe the flow in absence of variable suction at the disk.

Again, on putting x1 = 0 and y1 = l in (3.3) and (3.4), and replacing −f by g and g
by f , we get

f
Ωl

= (1−e−α0ξ cosβ0ξ
)+ ε23/2AS

P2+Q2

{
L
[
e−α0ξ cos

(
β0ξ−σt

)−e−α1ξ cos
(
β1ξ−σt

)]
+M[e−α0ξ sin

(
β0ξ−σt

)−e−α1ξ sin
(
β1ξ−σt

)]}
,

(3.7)
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g
Ωl

= e−α0ξ sinβ0ξ+ ε2
3/2AS

P2+Q2

{
M
[
e−α0ξ cos

(
β0ξ−σt

)−e−α1ξ cos
(
β1ξ−σt

)]

−L[e−α0ξ sin
(
β0ξ−σt

)−e−α1ξ sin
(
β1ξ−σt

)]}
,

(3.8)

which are exactly the same as those given in [2] whenA= 0. Thus, the effect of variable

suction at the disk introduces a transient part depending on ε, A, and σ superposed

on the steady solution corresponding to uniform suction at the disk. The case of S = 0

corresponds to impermeable case and recovers the solution for steady Ekman layer

on the disk. For the flow very near to the porous disk, we have, from (3.7) and (3.8),

f
Ωl

=α0ξ+ ε2
3/2AS

P2+Q2

[
L
{(
α1−α0

)
cosσt−(β1−β0

)
sinσt

}

−M{(β1−β0
)
cosσt+(α1−α0

)
sinσt

}]
,

(3.9)

g
Ωl

= β0ξ+ ε2
3/2AS

P2+Q2

[
M
{(
α1−α0

)
cosσt−(β1−β0

)
sinσt

}

−L{(β1−β0
)
cosσt+(α1−α0

)
sinσt

}]
.

(3.10)

Consequently, the inclination of the fluid velocity vector to y-axis near z = 0 becomes

θ = tan−1
(
C
D

)
, (3.11)

where C = β0(P2 +Q2)+ ε23/2AS[M{(α1 − α0)cosσt − (β1 − β0)sinσt} − L{(β1 −
β0)cosσt+ (α1−α0)sinσt}], D = α0(P2+Q2)+ε23/2AS[L{(α1−α0)cosσt− (β1−
β0)sinσt}−M{(β1−β0)cosσt+ (α1−α0)sinσt}]. When S = 0, θ = 45◦ and when

S ≠ 0 but A= 0, θ = tan−1(β0/α0) < 45◦.
In the case σt =π/2 and S ≠ 0, A≠ 0, the inclination of the fluid velocity to y-axis

near z = 0 will be

tan−1

(
β0
(
P2+Q2

)−ε23/2AS
[
L
(
α1−α0

)+M(β1−β0
)]

α0
(
P2+Q2

)−ε23/2AS
[
M
(
α1−α0

)+L(β1−β0
)]
)

(3.12)

which indicates a further reduction in the value of the inclination of the fluid velocity

compared with its value in the case of uniform suction.

The variations of f(ξ) and g(ξ) corresponding to (3.7) and (3.8) for various values

of the suction parameter S, the magnitude of fluctuation of suction velocity A, and

the frequency of fluctuation of suction velocity n are illustrated in Figures 3.1, 3.2,

3.3, 3.4, 3.5, and 3.6.

For the case of blowing, S < 0 and the components of fluid velocity in presence of

variable blowing at the disk can be obtained easily from (3.7) on replacing S by −λ,

where λ > 0. The results in the case of blowing are represented in Figures 3.7, 3.8, 3.9,

3.10, 3.11, and 3.12.
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Figure 3.1. Variations of f/Ωl and g/Ωl for different values of suction pa-
rameter S in absence of variable suction A.
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Figure 3.2. Variations of f/Ωl and g/Ωl for different values of suction pa-
rameter S in presence of variable suction A.
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Figure 3.3. Variations of f/Ωl and g/Ωl for different values of suction pa-
rameter S in presence of variable suction A.
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Figure 3.4. Variations of f/Ωl and g/Ωl for different values of A, the mag-
nitude of fluctuations in suction velocity.
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Figure 3.5. Variations of f/Ωl and g/Ωl for different values of A, the mag-
nitude of fluctuation in suction velocity.
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Figure 3.6. Variations of f/Ωl and g/Ωlwith frequencyn of the fluctuation
in suction velocity.



UNSTEADY FLOW INDUCED BY VARIABLE SUCTION ON A POROUS DISK . . . 199

0 0.2 0.4 0.6 0.8 1.0

Fluid velocity

1.0

2.0

3.0

4.0

5.0

ξ
1.0

0.5

0.0

1.0

0.5

0.0

ε = 0.1
A= 0.0
n=√1.5

Figure 3.7. Variations of f/Ωl and g/Ωl for different values of the blowing
parameter and in absence of A, the magnitude of the fluctuation in blowing

velocity.
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Figure 3.8. Variations of f/Ωl and g/Ωl for different values of the blowing
parameter and in presence of A, the magnitude of the fluctuation in blowing

velocity.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fluid velocity

1.0

2.0

3.0

4.0

5.0

ξ
0.0

0.5

1.0

g/Ωl f/Ωl
0.0

0.5

1.0

A= 8.0
ε = 0.1

n=√1.5

Figure 3.9. Variations of f/Ωl and g/Ωl for different values of the blowing
parameter and in presence of A, the magnitude of fluctuation in blowing

velocity.
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Figure 3.10. Variations of f/Ωl and g/Ωl for different values ofA, the mag-
nitude of fluctuations in blowing velocity.
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Figure 3.11. Variations of f/Ωl and g/Ωl for different values ofA, the mag-
nitude of fluctuations in blowing velocity.
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Figure 3.12. Variation of f/Ωl and g/Ωl with n, the frequency of fluctua-
tions of the blowing velocity.
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Finally, the components of the shear stress at the disk z = 0 corresponding to the

fluid velocity given by (3.7) and (3.8) can be obtained as

Px0+iPy0 =
τx0+iτy0(
µΩ3ρl2/2

)1/2

=
(
∂
∂ξ

(
f
Ωl

)
+i ∂
∂ξ

(
g
Ωl

))
ξ=0

=α0+ εAS23/2

P2+Q2

{[
L
(
α1−α0

)−M(β1−β0
)]

cosσt

−[M(α1−α0
)+L(β1−β0

)]
sinσt

}

+i
{
β0+ εAS23/2

P2+Q2

[
L
(
β1−β0

)+M(α1−α0
)]

cosσt

+[L(α1−α0
)−M(β1−β0

)]
sinσt

}
,

(3.13)

which, when σt =π/2, yields

Px0+iPy0 =α0−R
[
M
(
α1−α0

)+L(β1−β0
)]+i{β0+R

[
L
(
α1−α0

)−M(β1−β0
)]}
,

(3.14)

where R = εAS23/2/P2pQ2.

The components of shear stress at the disk in the presence of variable blowing can

also be found similarly.
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