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We study flows of an unsteady non-Newtonian fluid by assuming the form of the vorticity a
priori. The two forms that have been considered are ∇2ψ= F(t)ψ+G(t), which is known
as the generalized Beltrami flow and ∇2ψ= f(t)ψ+g(t)y .

2000 Mathematics Subject Classification: 76B47.

1. Introduction. At present, numerical solutions to fluid dynamics problems are

very attractive due to wide availability of computer codes. But these numerical solu-

tions are insignificant if they cannot be compared with either analytical solutions or

experimental results.

Exact solutions of the Navier-Stokes equations are rare since these are nonlinear par-

tial differential equations. Exact solutions are very important not only because they are

solutions of some fundamental flows but also because they serve as accuracy checks

for experimental, numerical, and asymptotic methods. In an excellent review article,

Wang [9] outlines most if not all of the exact solutions to the Navier-Stokes equations.

Over the past decades, non-Newtonian fluids have become more and more impor-

tant industrially. Polymer solutions and polymer melts provide the most common

examples of non-Newtonian fluids. The equations of motion of such fluids are highly

nonlinear and one order higher than the Navier-Stokes equations. In spite of the math-

ematical complexity of these nonlinear equations, there exists a few exact solutions.

Kaloni and Huschilt [3], Siddiqui [8], Rajagopal [6, 7], Benharbit and Siddiqui [1], and

Labropulu [4, 5] have given a few such exact solutions.

In the present work, following the work of Wang [9, 10], we study generalized

Beltrami flows for a non-Newtonian second-grade fluid. These are flows that satisfy

curl(ω×v) = 0, ω = curl(v), where ω is the vorticity function and v is the veloc-

ity function. For these flows, we assume that ∇2ψ = F(t)ψ+G(t) where ψ is the

streamfunction. We also obtain solutions when ∇2ψ= f(t)ψ+g(t)y .

The plan of this paper is as follows: in Section 2, the equations of motion of an

unsteady plane incompressible second-grade fluid are given. In Section 3, solutions

to generalized Beltrami flows are found. In Section 4, solutions are obtained under

the assumption that ∇2ψ= f(t)ψ+g(t)y .

2. Flow equations. The flow of a viscous incompressible non-Newtonian second-

grade fluid, neglecting thermal effects and body forces, is governed by

divV∼
∗ = 0, ρV̇∼

∗ = divT≈ (2.1)
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when the constitutive equation for the Cauchy stress tensor T≈ which describes second-

grade fluids given by Coleman and Noll [2] is

T≈ = −p
∗I≈+µA≈1

+α1A≈2
+α2A≈

2

1
,

A≈1
=
(

gradV∼
∗)+(gradV∼

∗)T , A≈2
= Ȧ≈1

+
(

gradV∼
∗)A≈1

+A≈1

(
gradV∼

∗). (2.2)

Here V∼
∗ is the velocity vector field, p∗ is the fluid pressure function, ρ is the con-

stant fluid density, µ is the constant coefficient of viscosity, and α1, α2 are the normal

stress moduli.

Considering the flow to be plane, we take V∼
∗ = (u∗(x∗,y∗, t∗),v∗(x∗,y∗, t∗)) and

p∗ = p∗(x∗,y∗, t∗) so that our flow equations (2.1) and (2.2) take the form

∂u∗

∂x∗
+ ∂v

∗

∂y∗
= 0, (2.3)

∂u∗

∂t∗
+u∗ ∂u

∗

∂x∗
+v∗ ∂u

∗

∂y∗
+ 1
ρ
∂p∗

∂x∗

= ν∇∗2u∗+ α1

ρ

{
∂
∂t∗

(∇∗2u∗
)

+ ∂
∂x∗

[
2u∗

∂2u∗

∂x∗2
+2v∗

∂2u∗

∂x∗∂y∗
+4
(
∂u∗

∂x∗

)2

+2
∂v∗

∂x∗

(
∂v∗

∂x∗
+ ∂u

∗

∂y∗

)]

+ ∂
∂y∗

[(
u∗

∂
∂x∗

+v∗ ∂
∂y∗

)(
∂v∗

∂x∗
+ ∂u

∗

∂y∗

)
+2
∂u∗

∂x∗
∂u∗

∂y∗
+2
∂v∗

∂x∗
∂v∗

∂y∗

]}

+ α2

ρ
∂
∂x∗

[
4
(
∂u∗

∂x∗

)2

+
(
∂v∗

∂x∗
+ ∂u

∗

∂y∗

)2
]
,

(2.4)

∂v∗

∂t∗
+u∗ ∂v

∗

∂x∗
+v∗ ∂v

∗

∂y∗
+ 1
ρ
∂p∗

∂y∗

= ν∇∗2v∗+ α1

ρ

{
∂
∂t∗

(∇∗2v∗
)

+ ∂
∂x∗

[
2
∂v∗

∂x∗
∂v∗

∂y∗
+
(
u∗

∂
∂x∗

+v∗ ∂
∂y∗

)(
∂v∗

∂x∗
+ ∂u

∗

∂y∗

)
+2
∂v∗

∂x∗
∂v∗

∂y∗

]

+ ∂
∂y∗

[
2u∗

∂2v∗

∂x∗∂y∗
+4
(
∂v∗

∂y∗

)2

+2v∗
∂2v∗

∂x∗2
+2
∂u∗

∂y∗

(
∂v∗

∂x∗
+ ∂u

∗

∂y∗

)]}

+ α2

ρ
∂
∂y∗

[
4
(
∂v∗

∂y∗

)2

+
(
∂v∗

∂x∗
+ ∂u

∗

∂y∗

)2
]
,

(2.5)

where ν = µ/ρ is the kinematic viscosity. The star on a variable indicates its dimen-

sional form. We non-dimensionalize the above equations according to

x = U0

ν
x∗, y = U0

ν
y∗, t = U

2
0

ν
t∗,

u= 1
U0
u∗, v = 1

U0
v∗, p = 1

ρU2
0

p∗,
(2.6)
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where U0 is some characteristic velocity. The flow equations in non-dimensional form

are

∂u
∂x

+ ∂v
∂y

= 0, (2.7)

∂u
∂t
+u∂u

∂x
+v ∂u

∂y
+ ∂p
∂x

+ 1
ρ
∂p
∂x

=∇2u+We
{
∂
∂t
(∇2u

)+ ∂
∂x

[
2u
∂2u
∂x2

+2v
∂2u
∂x∂y

+4
(
∂u
∂x

)2

+2
∂v
∂x

(
∂v
∂x

+ ∂u
∂y

)]

+ ∂
∂y

[(
u
∂
∂x

+v ∂
∂y

)(
∂v
∂x

+ ∂u
∂y

)
+2
∂u
∂x
∂u
∂y

+2
∂v
∂x
∂v
∂y

]}

+β ∂
∂x

[
4
(
∂u
∂x

)2

+
(
∂v
∂x

+ ∂u
∂y

)2
]
, (2.8)

∂v
∂t
+u∂v

∂x
+v ∂v

∂y
+ ∂p
∂y

+ 1
ρ
∂p
∂y

=∇2v+We
{
∂
∂t
(∇2v

)+ ∂
∂x

[(
u
∂
∂x

+v ∂
∂y

)(
∂v
∂x

+ ∂u
∂y

)
+2
∂u
∂x
∂u
∂y

+2
∂v
∂x
∂v
∂y

]

+ ∂
∂y

[
2u

∂2v
∂x∂y

+2v
∂2v
∂y2

+4
(
∂v
∂y

)2

+2
∂u
∂y

(
∂v
∂x

+ ∂u
∂y

)]}

+β ∂
∂y

[
4
(
∂v
∂y

)2

+
(
∂v
∂x

+ ∂u
∂y

)2
]
, (2.9)

where We =α1U2
0 /ρν2 is the Weissenberg number and β=α2U2

0 /ρν2.

Continuity equation (2.7) implies the existence of a streamfunction ψ(x,y,t) such

that

u= ∂ψ
∂y
, v =−∂ψ

∂x
. (2.10)

Substitution of (2.10) in (2.8) and (2.9) and elimination of pressure from the resulting

equations using pxy = pyx yields

∂
∂t
(∇2ψ

)−We ∂∂t
(∇4ψ

)− ∂
(
ψ,∇2ψ

)
∂(x,y)

+We ∂
(
ψ,∇4ψ

)
∂(x,y)

−∇4ψ= 0. (2.11)

Having obtained a solution of (2.11), the velocity components are given by (2.10) and

the pressure can be found by integrating equations (2.8) and (2.9).

3. Generalized Beltrami flows. We assume that

∇2ψ= F(t)ψ+G(t). (3.1)

Using (3.1) in (2.11), we obtain

F
(
1−WeF

)∂ψ
∂t
+(F ′ −2WeFF ′ −F2)ψ= FG−G′ +We(FG′ +F ′G), (3.2)
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where the prime denotes differentiation with respect to time. Thus, the streamfunction

ψ(x,y,t) satisfies a system of two linear partial differential equations (3.1) and (3.2).

If 1−WeF(t) = 0 then F(t) = 1/We and ψ = −WeG(t) which corresponds to an

irrotational flow. We exclude this case from further consideration. In the following,

we assume that 1−WeF(t)≠ 0.

We consider the following two cases:

(1) F(t)= 0.

(2) F(t)≠ 0.

3.1. Solutions when F(t)= 0. In this case, (3.2) implies that

G(t)= constant= a0. (3.3)

Thus, the streamfunction ψ(x,y) satisfies

∇2ψ= a0 (3.4)

with the general solution given by

ψ= 1
2

(
a0−a1

)
x2+a2x+ 1

2
a1y2+a3y+a4, (3.5)

where a1 to a4 are arbitrary constants. This is a steady-state solution with constant

vorticity. In the above expression for the streamfunction, we can add any irrotational

solution. This solution is independent of the Weissenberg number We, thus the same

as the Newtonian case studied by Wang [10] who gave some useful nontrivial solutions

as follows.

(a) Source or vortex in shear flow

ψ= ay+by2+c tan−1 y
x
,

ψ= ay+by2+c ln
(
x2+y2). (3.6)

(b) Shear flow over convection cells

ψ= ay2+be−λy cosλx, λ > 0. (3.7)

Figure 3.1 depicts the streamlines corresponding to this flow.

(c) Elliptic vortex of Kirchhoff

ψ= ax2+by2, a,b > 0. (3.8)

(d) Oblique impingement of two jets

ψ= ay2+bxy. (3.9)

Other useful nontrivial solutions are given by

(e)

ψ= x+x2−y2+ ln
(
x2+y2). (3.10)
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Figure 3.1. Streamline pattern for −y2+2e−y cosx = constant.

The streamlines are shown in Figure 3.2. This corresponds to impingement of two

jets.

(f)

ψ= 4x2+6y2−3y− ln
(
x2+y2). (3.11)

Figure 3.3 shows the streamline pattern.

(g)

ψ= x2−3x+2xy+tan−1
(
y
x

)
. (3.12)

Figure 3.4 depicts these streamlines.

(h)

ψ= x2+y2−x+10y+5xy. (3.13)

The streamline pattern is shown in Figure 3.5.

(i)

ψ= x2+3y2+3x2y−y3. (3.14)

(j)

ψ= x2+y2−5x+xy3−x3y. (3.15)

3.2. Solutions when F(t)≠ 0. Dividing (3.2) by F−WeF2 ≠ 0, we get

∂ψ
∂t
+
(
F ′ −2WeFF ′

F−WeF2
− F

1−WeF
)
ψ= 1

F−WeF2

[
FG−G′ +We

(
FG′ +F ′G)] (3.16)
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Figure 3.2. Streamline pattern for x2−y2+x+ ln(x2+y2)= constant.
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Figure 3.3. Streamline pattern for 4x2+6y2−3y− ln(x2+y2)= constant.

which upon one integration gives

ψ=−G
F
+ 1
F−WeF2

exp
[∫

F
1−WeF dt

]
h(x,y), (3.17)

where h(x,y) is an unknown function to be determined.
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Figure 3.4. Streamline pattern for x2−3x+2xy+tan−1(y/x)x = constant.
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Figure 3.5. Streamline pattern for x2+y2−x+10y+5xy = constant.

Employing (3.17) in (3.1), we obtain

∇2h= Fh (3.18)

which implies that

∇2h
h

= F(t)= constant=A≠ 0. (3.19)
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Thus, the streamfunction is given by

ψ=−G(t)
A

+ 1
A(1−WeA) exp

[
At

1−WeA
]
h(x,y), (3.20)

where G(t) is any function of time t and h(x,y) satisfies the following equation:

∇2h=Ah. (3.21)

If we assume that h(x,y)=X(x)Y(y), then (3.21) gives

X′′(x)−λX(x)= 0,

Y ′′(y)+(λ−A)Y(y)= 0,
(3.22)

where λ is the separation constant.

Thus, the function h(x,y) is given by

h(x,y)

=




(
a0+a1x

)(
c0e

√
Ay+c1e−

√
Ay), if λ= 0, A > 0;(

a0+a1x
)(
c2 cos

√−Ay+c3 sin
√−Ay), if λ= 0, A < 0;(

a2ekx+a3e−kx
)(
c4e
√
A−k2y+c5e−

√
A−k2y

)
, if λ= k2, A−k2 > 0;(

a2ekx+a3e−kx
)(
c6+c7y

)
, if λ= k2, A= k2;(

a2ekx+a3e−kx
)(
c8 cos

√
k2−Ay+c9 sin

√
k2−Ay

)
, if λ= k2, A−k2 < 0;(

a4 coskx+a5 sinkx
)(
c10e

√
A+k2y+c11e−

√
A+k2y

)
, if λ=−k2, A+k2 > 0;(

a4 coskx+a5 sinkx
)(
c12+c13y

)
, if λ=−k2, A=−k2;(

a4 coskx+a5 sinkx
)(
c14 cos

√−A−k2y+c15 sin
√−A−k2y

)
, if λ=−k2, A+k2<0,

(3.23)

where a0 to a5 and c0 to c15 are arbitrary constants of integration.

Assuming that h(x,y)=X(x)+Y(y), then (3.21) gives

X′′(x)−AX(x)= λ, Y ′′(y)−AY(y)=−λ, (3.24)

where λ is the separation constant.

Thus, the function h(x,y) is given by

h(x,y)=



b0e

√
Ax+b1e−

√
Ax+b2e

√
Ay+b3e−

√
Ay− λ

A
, if A> 0;

b4 cos
√−Ax+b5 sin

√−Ax+b6 cos
√−Ay+b7 sin

√−Ay+ λ
A
, if A< 0,

(3.25)

where b0 to b7 are constants of integration.
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4. Solutions for ∇2ψ= f(t)ψ+g(t)y . We assume that

∇2ψ= f(t)ψ+g(t)y. (4.1)

Using (4.1) in (2.11), we obtain

f
(
1−Wef

)∂ψ
∂t
−g(1−Wef )∂ψ∂x +

(
f ′ −2Weff ′ −f 2)ψ= [fg−g′ +We(fg′ +f ′g)]y,

(4.2)

where the prime denotes differentiation with respect to time. Thus, the streamfunction

ψ(x,y,t) satisfies a system of two linear partial differential equations (4.1) and (4.2).

If 1−Wef(t) = 0 then f(t) = 1/We and ψ = −Weg(t)y which corresponds to an

irrotational flow. We exclude this case from further consideration. In the following,

we assume that 1−Wef(t)≠ 0.

We have to consider the following three cases.

(1) f(t)= 0, g(t)≠ 0.

(2) g(t)= 0, f(t)≠ 0.

(3) f(t)≠ 0, g(t)≠ 0.

4.1. Solutions when f(t)= 0, g(t)≠ 0. In this case, (4.2) implies that

∂ψ
∂x

= g
′

g
y (4.3)

which upon one integration with respect to x gives

ψ= g
′

g
xy+f(y), (4.4)

where f(y) is an unknown function of y to be determined. Using (4.4) in (4.1), we get

1
y
d2f
dy2

= g(t)= 6b0 = constant . (4.5)

Integrating (1/y)(d2f/dy2)= 6b0 twice with respect to y , we obtain

f(y)= b0y3+b1y+b2, (4.6)

where b0, b1, and b2 are arbitrary constants. Thus, the streamfunction is given by

ψ(x,y)= b0y3+b1y+b2. (4.7)

This is a steady-state solution.

4.2. Solutions when g(t)= 0, f(t)≠ 0. If g(t)= 0, then (4.2) becomes

∂ψ
∂t
+ f

′ −2Weff ′ −f 2

f
(
1−Wef

) ψ= 0 (4.8)
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which upon one integration with respect to time t gives

ψ= 1
f −Wef 2

exp
[∫

f
1−Wef dt

]
h(x,y), (4.9)

where h(x,y) is a function to be determined.

Employing equation (4.9) into (4.1), we obtain

∇2h
h

= f(t)= constant=A. (4.10)

Hence the streamfunction ψ(x,y,t) is given by

ψ= 1
A−WeA2

exp
[

At
1−WeA

]
h(x,y), (4.11)

where h(x,y) satisfies

∇2h=Ah. (4.12)

Solutions for this equation are given by (3.23) and (3.25) above.

4.3. Solutions when f(t)≠ 0, g(t)≠ 0. Dividing (4.2) by f −Wef 2 ≠ 0, we get

∂ψ
∂t
− g
f
∂ψ
∂x

+
(
f ′ −2Weff ′

f −Wef 2
− f

1−Wef
)
ψ= 1

f −Wef 2

[
fg−g′ +We

(
fg′ +f ′g)]y.

(4.13)

Introducing new variables ξ = x+∫ (g/f)dt and t, we find that

∂(ξ,t)
∂(x,t)

= 1≠ 0. (4.14)

Transforming (4.13) into new independent variables ξ, t, we have

∂ψ
∂t
+
(
f ′ −2Weff ′

f −Wef 2
− f

1−Wef
)
ψ= fg−g

′ +We
(
fg′ +f ′g)

f −Wef 2
y. (4.15)

The general solution of this equation is given by

ψ=−gy
f
+ 1
f −Wef 2

exp
[∫

f
1−Wef dt

]
H(ξ,y), (4.16)

where H(ξ,y) is a function to be determined.

Employing (4.16) into (4.1), we obtain

∂2H
∂ξ2

+ ∂
2H
∂y2

= fH. (4.17)

Since (ξ,t) are independent variables, then we must have

f(t)= constant= B ≠ 0. (4.18)

Hence, the streamfunction is given by

ψ=−g(t)y
B

+ 1
B−WeB2

exp
[

Bt
1−WeB

]
H(ξ,y), (4.19)
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where g(t) is any function of time t and H(ξ,y)must satisfy the following equation:

∂2H
∂ξ2

+ ∂
2H
∂y2

= BH. (4.20)

Assuming that H(ξ,y)=X(ξ)Y(y), then (4.20) gives

X′′(ξ)−λX(ξ)= 0, Y ′′(y)+(λ−B)Y(y)= 0, (4.21)

where λ is the separation constant.

Thus, the function H(ξ,y) is given by

H(ξ,y)

=




(
a0+a1ξ

)(
b0e

√
By+b1e−

√
By), if λ= 0, B > 0;(

a0+a1ξ
)(
b2 cos

√−By+b3 sin
√−By), if λ= 0, B < 0;(

a2ekξ+a3e−kξ
)(
b4e

√
B−k2y+b5e−

√
B−k2y

)
, if λ= k2, B−k2 > 0;(

a2ekξ+a3e−kξ
)(
b6+b7y

)
, if λ= k2, B = k2;(

a2ekξ+a3e−kξ
)(
b8 cos

√
k2−By+b9 sin

√
k2−By), if λ= k2, B−k2 < 0;(

a4 coskξ+a5 sinkξ
)(
b10e

√
B+k2y+b11e−

√
B+k2y

)
, if λ=−k2, B+k2 > 0;(

a4 coskξ+a5 sinkξ
)(
b12+b13y

)
, if λ=−k2, B =−k2;(

a4 coskξ+a5 sinkξ
)(
b14 cos

√−B−k2y+b15 sin
√−B−k2y

)
, if λ=−k2, B+k2<0,

(4.22)

where a0 to a5 and b0 to b15 are arbitrary constants of integration.

Assuming that H(ξ,y)=X(ξ)+Y(y), then (4.20) gives

X′′(ξ)−BX(ξ)= λ, Y ′′(y)−BY(y)=−λ, (4.23)

where λ is the separation constant.

Thus, the function H(ξ,y) is given by

H(ξ,y)=



c0e

√
Bξ+c1e−

√
Bξ+c2e

√
By+c3e−

√
By− λ

B
, if B > 0;

c4 cos
√−Bξ+c5 sin

√−Bξ+c6 cos
√−By+c7 sin

√−By+ λ
B
, if B < 0,

(4.24)

where c0 to c7 are constants of integration.
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