STEADY VORTEX FLOWS OBTAINED FROM A CONSTRAINED VARIATIONAL PROBLEM

B. EMAMIZADEH and M. H. MEHRABI

Received 10 January 2001 and in revised form 24 August 2001

Abstract

We prove the existence of steady two-dimensional ideal vortex flows occupying the first quadrant and containing a bounded vortex; this is done by solving a constrained variational problem. Kinetic energy is maximized subject to the vorticity, being a rearrangement of a prescribed function and subject to a linear constraint.

2000 Mathematics Subject Classification: 35J20, 76B47.

1. Introduction. In this paper, we prove the existence of steady two-dimensional ideal vortex flows occupying the first quadrant, Π_{+}, containing a bounded vortex. This is done by solving a constrained variational problem. Such a flow will be described by a stream function $\hat{\psi}: \Pi_{+} \rightarrow \mathbb{R}$. At infinity we will have $\hat{\psi} \rightarrow-\lambda x_{1} x_{2}$ which is the stream function for an irrotational flow with velocity field $-\lambda\left(x_{1}, x_{2}\right)$, where λ is not known a priori. The vorticity is given by $-\Delta \hat{\psi}$, where Δ is the Laplacian, and $-\Delta \hat{\psi}$ vanishes outside a bounded region. It will be shown that $\hat{\psi}$ satisfies the following semilinear partial differential equation:

$$
\begin{equation*}
-\Delta \hat{\psi}=\phi \circ \hat{\psi}, \tag{1.1}
\end{equation*}
$$

almost everywhere in Π_{+}for ϕ an increasing function, unknown a priori. In our result the vorticity function $\zeta(=-\Delta \hat{\psi})$ is a rearrangement of a prescribed nonnegative, nontrivial function ζ_{0} having bounded support, and the impulse, \mathfrak{I}, given by

$$
\begin{equation*}
\mathfrak{I}(\zeta):=\int_{\Pi_{+}} x_{1} x_{2} \zeta \tag{1.2}
\end{equation*}
$$

is a prescribed positive number. We prove that the variational problem, $P(I)$ (see Section 2), is solvable provided that I is sufficiently large. Since the domain of interest Π_{+}is unbounded, we first consider the problem over bounded sets, $\Pi_{+}(\xi, \eta)$, where Burton's theory, related to constrained variational problems, can be applied. We then show that the maximizers are the same for all sufficiently large $\Pi_{+}(\xi, \eta)$.

Problems of this kind have been investigated by many authors; in particular we cite Badiani [1], Burton [2], Burton and Emamizadeh [3], Elcrat and Miller [7], Emamizadeh [8, 9, 10, 11], Nycander [14] for theoretical results and Elcrat et al. [5, 6] for numerical.
2. Notation, definitions, and statement of the results. Henceforth p denotes a real number in $(2, \infty)$. The first quadrant is denoted Π_{+}. Generic points in \mathbb{R}^{2} are denoted by x, y, and so forth. Thus, for example, $x=\left(x_{1}, x_{2}\right)$. For $x \in \mathbb{R}^{2}, \bar{x}, \underline{x}$, and $\underline{\bar{x}}$ denote
the reflections of x about the x_{1}-axis, x_{2}-axis, and the origin, respectively. For positive η and ξ we set

$$
\begin{align*}
\Pi_{+}(\eta) & :=\left\{x \in \Pi_{+} \mid x_{1} x_{2}<\eta\right\}, \\
\Pi_{+}(\xi, \eta) & :=\left\{x \in \Pi_{+} \mid x_{1} x_{2}<\eta, \max \left\{x_{1}, x_{2}\right\}<\xi\right\} . \tag{2.1}
\end{align*}
$$

For $A \subset \mathbb{R}^{2},|A|$ denotes the two-dimensional Lebesgue measure of A.
For a measurable function ζ, the strong support of ζ is defined by

$$
\begin{equation*}
\operatorname{supp}(\zeta)=\{x \in \operatorname{dom}(\zeta) \mid \zeta(x)>0\} . \tag{2.2}
\end{equation*}
$$

To define the rearrangement class needed for our variational problem, we fix a nonnegative, nontrivial function $\zeta_{0} \in L^{p}\left(\mathbb{R}^{2}\right)$ which vanishes outside a bounded set. In addition, we assume that

$$
\begin{equation*}
\left|\operatorname{supp}\left(\zeta_{0}\right)\right|=\pi a^{2} \tag{2.3}
\end{equation*}
$$

for some $a>0$. We say that ζ is a rearrangement of ζ_{0} if and only if

$$
\begin{equation*}
|\{x \mid \zeta(x) \geq \alpha\}|=\left|\left\{x \mid \zeta_{0}(x) \geq \alpha\right\}\right| \tag{2.4}
\end{equation*}
$$

for every positive α. The set of rearrangements of ζ_{0} which vanish outside bounded subsets of Π_{+}is denoted by \mathscr{F}. The set of functions $\zeta \in \mathscr{F}$ that satisfy $\mathfrak{I}(\zeta)=I$, for some $I>0$, is denoted by $\mathscr{F}(I)$; and the set of functions in $\mathscr{F}(I)$ that vanish outside $\Pi_{+}(\xi, \eta)$ is denoted by $\mathscr{F}(\xi, \eta, I)$; to ensure that $\mathscr{F}(\xi, \eta, I) \neq \varnothing$, we present the following definition: let $I_{1}:=\mathfrak{I}\left(\zeta_{0}^{*}\right)$, where ζ_{0}^{*} is the Schwarz-symmetrisation of ζ_{0}, and assume that $I>I_{1}$; we say that $\Pi_{+}(\xi, \eta)$ satisfies the hypothesis $\mathscr{H}(I)$ if the following two conditions hold:

$$
\begin{align*}
& \xi \geq \eta^{1 / 2} \tag{2.5}\\
& \eta \geq 4 \max \left\{a^{2}, l(I)\right\} \tag{2.6}
\end{align*}
$$

where $l(I):=\left(I-I_{1}\right) /\left\|\zeta_{0}\right\|_{1}$. Now it is immediate that if $\Pi_{+}(\xi, \eta)$ satisfies $\mathscr{H}(I)$, for $I>$ I_{1}, then $\mathscr{F}(\xi, \eta, I) \neq \varnothing$. Indeed if we set $t=l(I)^{1 / 2}$, then $\left(\zeta_{0}^{*}\right)_{t}(x):=\zeta_{0}^{*}\left(x_{1}-t, x_{2}-t\right)$ belongs to $\mathscr{F}(\xi, \eta, I)$.

The Green's function for $-\Delta$ on Π_{+}with homogeneous Dirichlet boundary conditions is denoted by G_{+}, hence

$$
\begin{equation*}
G_{+}(x, y)=\frac{1}{2 \pi} \log \frac{|x-\bar{y}||x-\underline{y}|}{|x-y||x-\underline{\bar{y}}|} . \tag{2.7}
\end{equation*}
$$

Next we define the integral operator K_{+}

$$
\begin{equation*}
K_{+} \zeta(x)=\int_{\Pi_{+}} G_{+}(x, y) \zeta(y) d y \tag{2.8}
\end{equation*}
$$

for measurable functions ζ on \mathbb{R}^{2}, whenever the integral exists. The Kinetic energy is defined by

$$
\begin{equation*}
\Psi(\zeta)=\int_{\Pi_{+}} \zeta K_{+} \zeta \tag{2.9}
\end{equation*}
$$

whenever the integral exists.

In this paper, we are concerned with constrained variational problems which are defined as follows. For $I>I_{1}$,

$$
\begin{equation*}
P(I): \sup _{\zeta \in \mathscr{F}(I)} \Psi(\zeta) ; \tag{2.10}
\end{equation*}
$$

and the corresponding solution set is denoted by $\Sigma(I)$. If $I>I_{1}$ and $\Pi_{+}(\xi, \eta)$ satisfies $\mathscr{H}(I)$, then we define the truncated variational problem

$$
\begin{equation*}
P(\xi, \eta, I): \sup _{\zeta \in \mathscr{F}(\xi, \eta, I)} \Psi(\zeta), \tag{2.11}
\end{equation*}
$$

with the solution set $\Sigma(\xi, \eta, I)$.
We are now in a position to state our main result.
Theorem 2.1. There exists $I_{0}>0$ such that if $I>I_{0}$ then $P(I)$ has a solution, that is, $\Sigma(I) \neq \varnothing$; if ζ is a solution and $\psi:=K_{+} \zeta$ then the following semilinear elliptic partial differential equation holds

$$
\begin{equation*}
-\Delta \psi=\phi \circ\left(\psi-\lambda x_{1} x_{2}\right), \quad \text { a.e. in } \Pi_{+}, \tag{2.12}
\end{equation*}
$$

where ϕ is an increasing function and $\lambda>0$, both unknown a priori. Furthermore, I_{0} can be chosen to ensure that the vortex core, the strong support of ζ, avoids $\partial \Pi_{+}$.
3. Preliminary results. We present some lemmas that are used in the proof of Theorem 2.1. We begin by stating a lemma from Burton's theory, see for example, Burton and McLeod [4].

Lemma 3.1. Let Ω be a nonempty open set in \mathbb{R}^{n}. Let $1 \leq p<\infty$ and p^{*} denote the conjugate exponent of p. For $\zeta \in L^{p}(\mu)$ let $\mathscr{F}(\Omega)$ denote the set of rearrangements of ζ on Ω. Let

$$
\begin{equation*}
\mathscr{L}:=\sum_{1 \leq|\alpha| \leq m} \mathscr{A}^{\alpha}(x) \mathscr{D}^{\alpha} \tag{3.1}
\end{equation*}
$$

be an m th-order linear partial differential operator, whose coefficients \mathscr{l}^{α} are finitevalued measurable functions on Ω, having no 0 th-order term, and suppose that there exists a compact, symmetric, positive linear operator $K: L^{p}(\Omega) \rightarrow L^{p^{*}}(\Omega)$ such that if $\zeta \in L^{p}(\Omega)$, then $K \zeta \in L^{p^{*}}(\Omega) \cap W_{\mathrm{loc}}^{m, 1}(\Omega)$ and $\mathscr{L} \zeta \zeta=\zeta$ almost everywhere in Ω. Define

$$
\begin{equation*}
\Psi(\zeta):=\int_{\Omega} \zeta K \zeta, \quad \zeta \in L^{p}(\Omega) . \tag{3.2}
\end{equation*}
$$

Let $w \in L^{p^{*}}(\Omega) \cap W_{\mathrm{loc}}^{m, 1}(\Omega)$ be such that $\mathscr{L} w$ is essentially constant, and define

$$
\begin{equation*}
\mathscr{T}(\zeta):=\int_{\Omega} w \zeta, \quad \zeta \in L^{p}(\Omega) . \tag{3.3}
\end{equation*}
$$

Let $b \in \mathbb{R}$. Then
(i) If $b \in \mathscr{T}(\mathscr{F}(\Omega))$ then

$$
\begin{equation*}
\sup \hat{\Psi}\left(\mathscr{T}^{-1}(b) \cap \mathscr{F}(\Omega)\right)=\sup \hat{\Psi}\left(\mathscr{T}^{-1}(b) \cap \overline{\mathscr{F}(\Omega)^{w}}\right) \tag{3.4}
\end{equation*}
$$

and the supremum is attained by at least one element of $\mathscr{T}^{-1}(b) \cap \mathscr{F}(\Omega)$.
(ii) If b is, relatively, interior to $\mathscr{T}(\mathscr{F}(\Omega))$, and if $\bar{\zeta}$ is a maximizer for Ψ relative to $\mathscr{T}^{-1}(b) \cap \mathscr{F}(\Omega)$, then there exist scalar λ and an increasing function ϕ such that

$$
\begin{equation*}
\bar{\zeta}=\phi \circ(K \bar{\zeta}+\lambda w), \quad \text { a.e. in } \Omega . \tag{3.5}
\end{equation*}
$$

Remark 3.2. It is clear that if $I>I_{1}$ and $\Pi_{+}(\xi, \eta)$ satisfies $\mathscr{H}(I)$ then, by Lemma 3.1(i), $\Sigma(\xi, \eta, I) \neq \varnothing$.

Before stating the next result we give the following definition: for $I>I_{1}$,

$$
\begin{equation*}
\sigma(I):=\inf \left\{\Psi(\zeta) \mid \zeta \in \Sigma(\xi, \eta, I), \text { for some } \Pi_{+}(\xi, \eta) \text { satisfying } \mathscr{H}(I)\right\} . \tag{3.6}
\end{equation*}
$$

We point out that $\sigma(I)=\Psi(\hat{\zeta})$ for some $\hat{\zeta} \in \Sigma\left(\xi_{0}, \eta_{0}, I\right)$, where $\Pi_{+}\left(\xi_{0}, \eta_{0}\right)$ is the minimal region that satisfies $\mathscr{H}(I)$.

Lemma 3.3. Let σ be as defined in (3.6), then

$$
\begin{equation*}
\lim _{I \rightarrow \infty} \sigma(I)=\infty . \tag{3.7}
\end{equation*}
$$

Proof. Let $I>I_{1}$ and set $t=l(I)^{1 / 2}$. If $\Pi_{+}(\xi, \eta)$ satisfies $\mathscr{H}(I)$, then $\left(\zeta_{0}^{*}\right)_{t} \in \mathscr{F}(\xi, \eta, I)$ and therefore, according to the last remark, we have

$$
\begin{equation*}
\sigma(I) \geq \Psi\left(\left(\zeta_{0}^{*}\right)_{t}\right) \tag{3.8}
\end{equation*}
$$

Now applying same method as in Burton [2, Lemma 12], we obtain $\Psi\left(\left(\zeta_{0}^{*}\right)_{t}\right) \geq k \log t$, for all sufficiently large t, hence large I. Thus our claim is done.

Let $I>I_{1}$ and $\Pi_{+}(\xi, \eta)$ satisfies $\mathscr{H}(I)$. We set

$$
\begin{align*}
M(\xi, \eta, I):= & \{(\zeta, \phi, \lambda) \mid \zeta \in \Sigma(\xi, \eta, I) \text { for some } \phi, \lambda \in \mathbb{R} \\
& \text { such that } \left.\zeta=\phi \circ\left(K_{+} \zeta-\lambda x_{1} x_{2}\right) \text { a.e. in } \Pi_{+}(\xi, \eta)\right\} . \tag{3.9}
\end{align*}
$$

Note that under the conditions imposed on ξ, η, I and in view of Lemma 3.1(ii) the set $M(\xi, \eta, I)$ is nonempty. The following two inequalities are standard, see Burton [2]

$$
\begin{gather*}
\left|K_{+} \zeta(x)\right| \leq N \min \left\{x_{1}, x_{2}\right\}, \tag{3.10}\\
\left|\nabla K_{+} \zeta(x)\right| \leq N, \tag{3.11}
\end{gather*}
$$

for every $x \in \Pi_{+}$and every $\zeta \in \mathscr{F}$, where N is a universal constant.
Lemma 3.4. For $I>I_{1}$ we define

$$
\begin{gather*}
\Lambda(I):=\sup \{\lambda \mid(\zeta, \phi, \lambda) \in M(\xi, \eta, I) \text { for some } \zeta, \phi \\
\text { and some } \left.\Pi_{+}(\xi, \eta) \text { satisfying } \mathscr{H}(I)\right\} . \tag{3.12}
\end{gather*}
$$

Then, $\lim \sup _{I \rightarrow \infty} \Lambda(I) \leq 0$.
Proof. Assume that the assertion of the lemma is not true and seek a contradiction. Hence, to this end we suppose that there exists $\beta \in(0, \infty]$ such that $\limsup _{I \rightarrow \infty} \Lambda(I)=$ β. Hence there exists $\Lambda>0$ such that the set

$$
\begin{equation*}
S:=\{I \mid \Lambda(I)>\Lambda\} \tag{3.13}
\end{equation*}
$$

is unbounded. Consider $I \in S$, then from the definition of $\Lambda(I)$, there exists $(\zeta, \phi, \lambda) \in$
$M(\xi, \eta, I)$ such that $\Pi_{+}(\xi, \eta)$ satisfies $\mathscr{H}(I)$ and $\Lambda(I) \geq \lambda>\Lambda>0$. Observe that by taking I sufficiently large we can ensure the existence of ξ_{1} such that $\Pi_{+}(\xi, \eta) \supseteq$ $\Pi_{+}\left(\xi_{1}, a\right)$ and $\left|\Pi_{+}\left(\xi_{1}, a\right)\right| \geq \pi a^{2}=|\operatorname{supp}(\zeta)|$. Now define the set

$$
\begin{equation*}
U:=\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq-\lambda a\right\} \tag{3.14}
\end{equation*}
$$

Then, $\Pi_{+}\left(\xi_{1}, a\right) \subseteq U$ and $|U| \geq|\operatorname{supp}(\zeta)|$. Since ζ is essentially an increasing function of $K_{+} \zeta-\lambda x_{1} x_{2}$ on $\Pi_{+}(\xi, \eta)$ we deduce that $\operatorname{supp}(\zeta) \subseteq U$.

Next we show that there exists a constant $C>0$, independent of $I \in S$, such that for $x \in \operatorname{supp}(\zeta)$ we have $x_{1} x_{2} \leq C$. From (3.10) we observe that for a sufficiently large $k>0$

$$
\begin{equation*}
K_{+} \zeta(x) \leq \frac{\Lambda}{2} x_{1} x_{2}, \tag{3.15}
\end{equation*}
$$

for all $\zeta \in \mathscr{F}$ and all x for which $\min \left\{x_{1}, x_{2}\right\} \geq k$. We next define

$$
\begin{align*}
& S_{1}:=\left\{x \in \Pi_{+} \mid \min \left\{x_{1}, x_{2}\right\} \geq k\right\}, \\
& S_{2}:=\left\{x \in \Pi_{+} \mid \min \left\{x_{1}, x_{2}\right\}<k, x_{1}<\alpha, x_{2}<\alpha\right\}, \tag{3.16}\\
& S_{3}:=\left\{x \in \Pi_{+} \mid \min \left\{x_{1}, x_{2}\right\}<k, \max \left\{x_{1}, x_{2}\right\} \geq \alpha\right\},
\end{align*}
$$

where $\alpha:=\max \{2 N / \lambda, k\}$. First consider $x \in \operatorname{supp}(\zeta) \cap S_{1}$; then

$$
\begin{equation*}
-\lambda a \leq K_{+} \zeta(x)-\lambda x_{1} x_{2} \leq \frac{\Lambda}{2} x_{1} x_{2}-\lambda x_{1} x_{2}<-\frac{\lambda}{2} x_{1} x_{2}, \tag{3.17}
\end{equation*}
$$

where the first inequality follows from $\operatorname{supp}(\zeta) \subseteq U$ and the second one from (3.15); whence $x_{1} x_{2}<2 a$. Next, consider $x \in \operatorname{supp}(\zeta) \cap S_{2}$; then we have

$$
\begin{equation*}
x_{1} x_{2}<\alpha^{2} \leq\left(\max \left\{\frac{2 N}{\Lambda}, k\right\}\right)^{2}, \tag{3.18}
\end{equation*}
$$

since $\lambda>\Lambda$. Finally, consider $x \in \operatorname{supp}(\zeta) \cap S_{3}$; then an application of (3.10) yields that

$$
\begin{align*}
-\lambda a & \leq K_{+} \zeta(x)-\lambda x_{1} x_{2} \\
& \leq N \min \left\{x_{1}, x_{2}\right\}-\lambda x_{1} x_{2} \\
& =\frac{N}{\alpha} \alpha \min \left\{x_{1}, x_{2}\right\}-\lambda x_{1} x_{2} \\
& \leq \frac{N}{\alpha} x_{1} x_{2}-\lambda x_{1} x_{2} \tag{3.19}\\
& \leq N \frac{\lambda}{2 N} x_{1} x_{2}-\lambda x_{1} x_{2} \\
& =-\frac{\lambda}{2} x_{1} x_{2},
\end{align*}
$$

hence $x_{1} x_{2} \leq 2 a$. Therefore, from above argument, it is clear that a constant $C>0$, as required, exists. This, in turn, implies that

$$
\begin{equation*}
I=\mathfrak{J}(\zeta):=\int_{\Pi_{+}} x_{1} x_{2} \zeta \leq C\left\|\zeta_{0}\right\|_{1} \tag{3.20}
\end{equation*}
$$

Thus S is bounded, which is a contradiction. Hence, the proof of Lemma 3.4.

LEMMA 3.5. For $I>I_{1}$ we define

$$
\begin{gather*}
A(I):=\inf \left\{\underset{x \in \operatorname{supp}(\zeta)}{\operatorname{essinf}}\left(K_{+} \zeta(x)-\lambda x_{1} x_{2}\right) \mid(\zeta, \phi, \lambda) \in M(\xi, \eta, I)\right. \tag{3.21}\\
\text { for some } \left.\Pi_{+}(\xi, \eta) \text { and some } \phi\right\},
\end{gather*}
$$

where $\Pi_{+}(\xi, \eta)$ is to satisfy $\mathscr{H}(I)$. Then, $\liminf _{I \rightarrow \infty} A(I) \geq 0$.
Proof. Fix $\epsilon>0$. By definition of $A(I)$ there exists $\Pi_{+}(\xi, \eta)$, satisfying $\mathscr{H}(I)$, and $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$ such that

$$
\begin{equation*}
A(I)+\epsilon \geq \operatorname{essinf}_{x \in \operatorname{supp}(\zeta)}\left(K_{+} \zeta(x)-\lambda x_{1} x_{2}\right) \tag{3.22}
\end{equation*}
$$

Note that by increasing I, the size of $\Pi_{+}(\xi, \eta)$ increases as well, hence there is no loss of generality if we assume that $\Pi_{+}(\xi, \eta)$ contains the square $D:=[0,2 a] \times[0,2 a]$, since I will eventually tend to infinity. For $x \in D$ we have

$$
\begin{equation*}
K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq-4 a^{2} \Lambda(I)^{+} \tag{3.23}
\end{equation*}
$$

where $\Lambda(I)^{+}$denotes the positive part of $\Lambda(I)$, since $K_{+} \zeta$ is nonnegative. From this, we infer that

$$
\begin{equation*}
D \subseteq\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq-4 a^{2} \Lambda(I)^{+}\right\} . \tag{3.24}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq-4 a^{2} \Lambda(I)^{+}\right\}\right|>|\operatorname{supp}(\zeta)| \tag{3.25}
\end{equation*}
$$

since $4 a^{2}>|\operatorname{supp}(\zeta)|$. Since ζ is essentially an increasing function of $K_{+} \zeta-\lambda x_{1} x_{2}$ on $\Pi_{+}(\xi, \eta)$, we then deduce that

$$
\begin{equation*}
\operatorname{supp}(\zeta) \subseteq\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq-4 a^{2} \Lambda(I)^{+}\right\} \tag{3.26}
\end{equation*}
$$

hence, by applying (3.22), we obtain $A(I)+\epsilon \geq-4 a^{2} \Lambda(I)^{+}$. Therefore, from Lemma 3.4 we have

$$
\begin{equation*}
\liminf _{I \rightarrow \infty} A(I)+\epsilon \geq 0 \tag{3.27}
\end{equation*}
$$

Since ϵ was arbitrary, we derive the desired conclusion.
The next two results can be proved similarly to Burton [2, Lemmas 8 and 9]; they bear some resemblance to Pohazaev-type identities proved in Friedman and Turkington [12] for 3-dimensional vortex rings. We add that, contrary to Burton [2], we can give a direct proof, using the weak divergence theorem (see, e.g., Grisvard [13]) for Lemma 3.6 below without referring to any density theorems.

LEMMA 3.6. Let $2<p<\infty$, let $\zeta \in L^{p}\left(\Pi_{+}\right)$have bounded support, and let $\psi:=K_{+} \zeta$. Then

$$
\begin{equation*}
\int_{\Pi_{+}}(x \cdot \nabla \psi) \zeta=0 \tag{3.28}
\end{equation*}
$$

Lemma 3.7. Let $2<p<\infty$, let $\zeta \in L^{p}\left(\Pi_{+}\right)$be nonnegative, nontrivial and vanish outside the square $D(\xi):=[0, \xi] \times[0, \xi]$, for some $\xi>0$. Let $\lambda \in \mathbb{R}$, and let $\psi:=$ $K_{+} \zeta-\lambda x_{1} x_{2}$. Suppose that $\zeta=\phi \circ \psi$ almost everywhere in $D(\xi)$ for some increasing function ϕ, and that ϕ has a nonnegative indefinite integral F. Then

$$
\begin{equation*}
2 \int_{D(\xi)} F \circ \psi-2 \lambda \int_{D(\xi)} x_{1} x_{2} \zeta=\int_{\partial D(\xi)}(F \circ \psi)(x \cdot \vec{n}), \tag{3.29}
\end{equation*}
$$

where \vec{n} is the outward unit normal, and consequently

$$
\begin{equation*}
\int_{D(\xi)} F \circ \psi \geq \lambda \int_{D(\xi)} x_{1} x_{2} \zeta . \tag{3.30}
\end{equation*}
$$

If additionally $F(s)=0$ for some $s \leq \beta$, then

$$
\begin{equation*}
\int_{D(\xi)} \zeta K_{+} \zeta \geq 2 \lambda \int_{D(\xi)} x_{1} x_{2} \zeta+\beta\|\zeta\|_{1} \tag{3.31}
\end{equation*}
$$

Lemma 3.8. For $I>I_{1}$ we define

$$
\begin{align*}
\mu(I):= & \inf \left\{\sup _{x \in \Pi_{+}(\xi, \eta)}\left(K_{+} \zeta(x)-\lambda x_{1} x_{2}\right) \mid(\zeta, \phi, \lambda) \in M(\xi, \eta, I)\right. \\
& \text { for some } \left.\Pi_{+}(\xi, \eta) \text { satisfying } \mathscr{H}(I), \text { and some } \phi\right\} . \tag{3.32}
\end{align*}
$$

Then $\lim _{I \rightarrow \infty} \mu(I)=\infty$.
Proof. It clearly suffices to show that

$$
\begin{equation*}
\liminf _{I \rightarrow \infty} \mu(I)=\infty . \tag{3.33}
\end{equation*}
$$

Let $I>I_{1}$ and consider $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$ for some $\Pi_{+}(\xi, \eta)$ satisfying $\mathscr{H}(I)$. Since $K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq \Lambda(I)$ for almost every $x \in \operatorname{supp}(\zeta)$, we may assume that $\phi(s)=0$ for $-\infty<s<A(I)$. Now write

$$
\begin{equation*}
F(s)=\int_{-\infty}^{s} \phi \tag{3.34}
\end{equation*}
$$

for all s in the domain of ϕ. Now, by Lemma 3.7, we have

$$
\begin{align*}
\int_{\Pi_{+}} \zeta\left(K_{+} \zeta-\lambda x_{1} x_{2}\right) & =2 \Psi(\zeta)-\lambda I \\
& =\frac{1}{2}\left(2 \Psi(\zeta)-2 \lambda I-A(I)\|\zeta\|_{1}\right)+\Psi(\zeta)+\frac{1}{2} A(I)\|\zeta\|_{1} \tag{3.35}\\
& \geq \Psi(\zeta)+\frac{1}{2} A(I)\|\zeta\|_{1} \\
& \geq \sigma(I)+\frac{1}{2} A(I)\|\zeta\|_{1} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\sup _{\Pi_{+}(\xi, \eta)}\left(K_{+} \zeta(x)-\lambda x_{1} x_{2}\right) \geq \frac{\sigma(I)}{\|\zeta\|_{1}}+\frac{1}{2} A(I) . \tag{3.36}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mu(I) \geq \frac{\sigma(I)}{\|\zeta\|_{1}}+\frac{1}{2} A(I) . \tag{3.37}
\end{equation*}
$$

Thus by applying Lemmas 3.4 and 3.5 we obtain (3.33).
Lemma 3.9. There exists $I_{2}>I_{1}$ such that

$$
\begin{equation*}
A(I) \geq a N, \quad I \geq I_{2} . \tag{3.38}
\end{equation*}
$$

Proof. By Lemma 3.7 there exists $I_{2}>I_{1}$ such that

$$
\begin{equation*}
\mu(I) \geq 7 a N, \quad I \geq I_{2} \tag{3.39}
\end{equation*}
$$

moreover by taking I_{2} sufficiently large we can ensure that if $I \geq I_{2}$, then any $\Pi_{+}(\xi, \eta)$ satisfying $\mathscr{H}(I)$, also satisfies

$$
\begin{equation*}
\left|\Pi_{+}(\xi, \eta) \backslash \Pi_{+}\left(\xi, \frac{\eta}{2}\right)\right| \geq \pi a^{2} . \tag{3.40}
\end{equation*}
$$

To see it, observe that in general we have

$$
\begin{equation*}
\left|\Pi_{+}(\xi, \eta)\right|=\eta\left(1+\log \frac{\xi^{2}}{\eta}\right), \tag{3.41}
\end{equation*}
$$

for any $\Pi_{+}(\xi, \eta)$ satisfying (2.5); therefore

$$
\begin{equation*}
\left|\Pi_{+}(\xi, \eta) \backslash \Pi_{+}\left(\xi, \frac{\eta}{2}\right)\right| \geq \frac{1}{2}(1-\log 2) \eta . \tag{3.42}
\end{equation*}
$$

Hence, in view of (2.6), for sufficiently large I we derive (3.40). Now, fix $I \geq I_{2}$ and consider $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$ for some $\Pi_{+}(\xi, \eta)$ satisfying $\mathscr{H}(I)$. Since $K_{+} \zeta-\lambda x_{1} x_{2} \in$ $C\left(\overline{\Pi_{+}(\xi, \eta)}\right)$, it attains its maximum at, say, $z \in \overline{\Pi_{+}(\xi, \eta)}$. Now from the definition of $\mu(I)$ and (3.10) we infer that

$$
\begin{equation*}
\mu(I) \leq K_{+} \zeta(z)-\lambda z_{1} z_{2} \leq N \min \left\{z_{1}, z_{2}\right\}-\lambda z_{1} z_{2} ; \tag{3.43}
\end{equation*}
$$

and applying (3.39), we obtain

$$
\begin{equation*}
7 a N \leq N \min \left\{z_{1}, z_{2}\right\}-\lambda z_{1} z_{2} . \tag{3.44}
\end{equation*}
$$

Clearly, if $\lambda \geq 0$ we obtain $\min \left\{z_{1}, z_{2}\right\} \geq 7 a$. If $\lambda<0$, then

$$
\begin{equation*}
7 a N \leq N \min \left\{z_{1}, z_{2}\right\}-\lambda \eta, \tag{3.45}
\end{equation*}
$$

or

$$
\begin{equation*}
N \min \left\{z_{1}, z_{2}\right\} \geq 7 a N+\lambda \eta . \tag{3.46}
\end{equation*}
$$

Now we consider two cases.

CASE 1. When $\lambda \eta \geq-2 a N$, then $N \min \left\{z_{1}, z_{2}\right\} \geq 5 a N$, hence $\min \left\{z_{1}, z_{2}\right\} \geq 5 a$. Therefore, when $\lambda \geq 0$, or when $\lambda<0$, and $\lambda \eta \geq-2 a N$ we find that $\min \left\{z_{1}, z_{2}\right\} \geq 5 a$. Thus $\Pi_{+}(\xi, \eta)$ must contain at least a quadrant of $B_{4 a}(z)$, denoted by Q. For $x \in Q$, by the mean value inequality, we have

$$
\begin{align*}
K_{+} \zeta(x)-\lambda x_{1} x_{2} & \geq K_{+} \zeta(x) \\
& \geq K_{+} \zeta(z)-4 a N \\
& =K_{+} \zeta(z)-\lambda z_{1} z_{2}-4 a N+\lambda z_{1} z_{2} \\
& \geq \mu(I)-4 a N+\lambda z_{1} z_{2} \tag{3.47}\\
& \geq \mu(I)-4 a N+\lambda \eta \\
& \geq 7 a N-4 a N-2 a N \\
& =a N .
\end{align*}
$$

This means that

$$
\begin{equation*}
Q \subseteq\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq a N\right\} . \tag{3.48}
\end{equation*}
$$

CASE 2. When $\lambda \eta<-2 a N$, then for $x \in \Pi_{+}(\xi, \eta) \backslash \Pi_{+}(\xi, \eta / 2)$ we have

$$
\begin{gather*}
K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq-\lambda x_{1} x_{2}>-\frac{\lambda \eta}{2} \\
\Pi_{+}(\xi, \eta) \backslash \Pi_{+}\left(\xi, \frac{\eta}{2}\right) \subset\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq a N\right\} . \tag{3.49}
\end{gather*}
$$

From (3.40) and the fact that $|Q|=4 \pi a^{2}$, we infer that

$$
\begin{equation*}
\left|\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq a N\right\}\right| \geq|\operatorname{supp}(\zeta)| . \tag{3.50}
\end{equation*}
$$

Since ζ is an increasing function of $K_{+} \zeta-\lambda x_{1} x_{2}$ on $\Pi_{+}(\xi, \eta)$, we derive

$$
\begin{equation*}
\operatorname{supp}(\zeta) \subseteq\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+} \zeta(x)-\lambda x_{1} x_{2} \geq a N\right\} \tag{3.51}
\end{equation*}
$$

modulo a set of zero measure, from which we obtain (3.38).
Lemma 3.10. Let $b>0$, let $2<p<\infty$ and $0<\gamma<1$. Then there exist positive constants M_{1}, M_{2}, and M_{3} such that

$$
\begin{align*}
K_{+} \zeta(x) \leq & M_{1}\left(x_{1} x_{2}\right)^{-1} \mathfrak{J}(\zeta)+M_{2}\left(x_{1} x_{2}\right)^{-1} \mathfrak{J}(\zeta) \log \frac{25 x_{1} x_{2}}{4|x|} \tag{3.52}\\
& +M_{3}\left(x_{1} x_{2}\right)^{-\gamma} \mathfrak{J}(\zeta)^{\gamma}\|\zeta\|_{p}^{1-\gamma},
\end{align*}
$$

for every $x \in \Pi_{+}$such that $\min \left\{x_{1} x_{2}\right\} \geq b / 2$ and every nonnegative $\zeta \in L^{p}\left(\Pi_{+}\right)$that vanishes outside a set of measure πb^{2}.
Proof. Fix $x \in \Pi_{+}$such that $v:=\min \left\{x_{1} x_{2}\right\} \geq b / 2$. For $y \in \Pi_{+}$we define

$$
\begin{equation*}
\alpha:=|x-\bar{y}|, \quad \beta:=|x-\underline{y}|, \quad \rho:=|x-y|, \quad \delta:=|x-\underline{\bar{y}}| . \tag{3.53}
\end{equation*}
$$

Thus

$$
\begin{align*}
K_{+} \zeta(x)= & \frac{1}{2 \pi} \int_{\Pi_{+}} \log \frac{\alpha \beta}{\rho \delta} \zeta(y) d y \\
= & \frac{1}{2 \pi} \int_{B_{v / 2}(x)} \log \frac{\alpha \beta}{\rho \delta} \zeta(y) d y \tag{3.54}\\
& +\frac{1}{2 \pi} \int_{\Pi_{+} \backslash B_{v / 2}(x)} \log \frac{\alpha \beta}{\rho \delta} \zeta(y) d y,
\end{align*}
$$

where $B_{v / 2}(x)$ denotes the ball centered at x with radius v. From the identity

$$
\begin{equation*}
\alpha^{2} \beta^{2}=\rho^{2} \delta^{2}+16 x_{1} x_{2} y_{1} y_{2} \tag{3.55}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\int_{\Pi_{+} \backslash B_{v / 2}(x)} \log \frac{\alpha \beta}{\rho \delta} \zeta(y) d y & =\frac{1}{2} \int_{\Pi_{+} \backslash B_{v / 2}(x)} \log \left(1+\frac{16 x_{1} x_{2} y_{1} y_{2}}{\rho^{2} \delta^{2}}\right) \zeta(y) d y \\
& \leq 8 x_{1} x_{2} \int_{\Pi_{+\backslash B_{v / 2}(x)}} \frac{y_{1} y_{2}}{\rho^{2} \delta^{2}} \zeta(y) d y \tag{3.56}\\
& \leq \frac{32 x_{1} x_{2}}{v^{2}|x|^{2}} \int_{\Pi_{+} \backslash B_{v / 2}(x)} y_{1} y_{2} \zeta(y) d y \\
& \leq 32\left(x_{1} x_{2}\right)^{-1} \mathfrak{J}(\zeta),
\end{align*}
$$

where the first inequality follows from the fact that $\log (1+x) \leq x$, for $x \geq 0$. To estimate $\int_{B_{v / 2}(x)} \log \left(\alpha \beta \rho^{-1} \delta^{-1}\right) \zeta(y) d y$, we note that for $y \in B_{v / 2}(x)$ we have

$$
\begin{equation*}
\alpha \leq|x-\bar{x}|+|\bar{x}-\bar{y}|=2 x_{2}+\rho<\frac{5}{2} x_{2} . \tag{3.57}
\end{equation*}
$$

Similarly, $\beta<5 / 2 x_{1}$. Therefore

$$
\begin{align*}
\int_{B_{v / 2}(x)} \log \frac{\alpha \beta}{\rho \delta} \zeta(y) d y \leq & \int_{B_{v / 2}(x)} \log \frac{25 x_{1} x_{2}}{4 \rho|x|} \zeta(y) d y \\
= & \log \frac{25 x_{1} x_{2}}{4|x|} \int_{B_{v / 2}(x)} \zeta(y) d y \tag{3.58}\\
& +\int_{B_{v / 2}(x)} \log \frac{1}{\rho} \zeta(y) d y .
\end{align*}
$$

Observe that for $y \in B_{v / 2}(x)$ we have $y_{1} y_{2} \geq x_{1} x_{2} / 4$, hence

$$
\begin{equation*}
\int_{B_{v / 2}(x)} \zeta(y) d y \leq 4\left(x_{1} x_{2}\right)^{-1} \int_{B_{v / 2}(x)} y_{1} y_{2} \zeta(y) d y \leq 4\left(x_{1} x_{2}\right)^{-1} \mathfrak{J}(\zeta) . \tag{3.59}
\end{equation*}
$$

On the other hand, if we let $\hat{\zeta}$ denote the Schwarz-symmetrisation of $\bar{\zeta}:=\zeta \chi_{B_{v / 2}(x)}$, where $\chi_{B_{v / 2}(x)}$ is the characteristic function of $B_{v / 2}(x)$ in Π_{+}, about x; then by a standard inequality (see, e.g., [3]) and Hölder's inequality we obtain

$$
\begin{align*}
\int_{B_{v / 2}(x)} \log \frac{1}{\rho} \zeta(y) d y & \leq \int_{B_{v / 2}(x)} \log \frac{1}{\rho} \hat{\zeta}(y) d y \\
& \leq\left(\int_{B_{\hat{b}}(x)}\left|\log \frac{1}{\rho}\right|^{\tau} d y\right)^{1 / \tau}\|\hat{\zeta}\|_{\epsilon} \tag{3.60}
\end{align*}
$$

where $\hat{b}:=\left|\operatorname{supp}\left(\zeta \chi_{B_{v / 2}(x)}\right)\right|(\leq b), \epsilon:=p /(1+p \gamma-\gamma)$ and τ is the conjugate exponent of ϵ. It is elementary to show that

$$
\begin{equation*}
\int_{B_{b}(x)}\left|\log \frac{1}{\rho}\right|^{\top} d y \leq C \tag{3.61}
\end{equation*}
$$

where C is a constant independent of x. Next observe that $\epsilon=\epsilon \mathcal{\gamma}+(1-\epsilon \gamma) p$ and $\epsilon \mathcal{<}<1$, hence applying the standard interpolation inequality yields

$$
\begin{equation*}
\|\hat{\zeta}\|_{\epsilon}^{\epsilon} \leq\|\hat{\zeta}\|_{1}^{\epsilon \gamma}\|\hat{\zeta}\|_{p}^{(1-\epsilon \gamma) p}, \tag{3.62}
\end{equation*}
$$

or

$$
\begin{equation*}
\|\hat{\zeta}\|_{\epsilon} \leq\|\hat{\zeta}\|_{1}^{\gamma}\|\hat{\zeta}\|_{p}^{(1-\epsilon \gamma) p / \epsilon}=\|\hat{\zeta}\|_{1}^{\gamma}\|\hat{\zeta}\|_{p}^{1-\gamma} . \tag{3.63}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{equation*}
\|\hat{\zeta}\|_{\epsilon} \leq 4^{\gamma}\left(x_{1} x_{2}\right)^{-\gamma} \mathfrak{I}(\zeta)^{\gamma}\|\zeta\|_{p}^{1-\gamma} . \tag{3.64}
\end{equation*}
$$

Finally from (3.56), (3.58), (3.60), (3.61), and (3.64) we derive (3.52).
By a simple modification of Burton [2, Lemma 1] we get the following lemma.
Lemma 3.11. Let ζ be a nonnegative measurable function on Π_{+}, let $t>0$. Let ζ_{t} be the function, defined on Π_{+}, obtained by translating ζ along the diagonal of Π_{+}, $\operatorname{diag}\left(\Pi_{+}\right), \sqrt{2} t$ units, that is,

$$
\zeta_{t}\left(x_{1}, x_{2}\right):= \begin{cases}\zeta\left(x_{1}-t, x_{2}-t\right), & x_{1} \geq t, x_{2} \geq t \tag{3.65}\\ 0, & 0<x_{1}<t, 0<x_{2}<t\end{cases}
$$

Then

$$
\begin{equation*}
\int_{\Pi_{+}} \zeta_{t} K_{+} \zeta_{t} \geq \int_{\Pi_{+}} \zeta K_{+} \zeta \tag{3.66}
\end{equation*}
$$

Lemma 3.12. Let $2<p<\infty$ and $\zeta \in L^{p}\left(\Pi_{+}\right)$be a nonnegative, nontrivial function which vanishes outside $\Pi_{+}(h)$ for some $h>0$. Then

$$
\begin{equation*}
K_{+} \zeta(x) \leq \frac{4 h x_{1} x_{2}}{\pi\left|x_{1}^{2}-x_{2}^{2}\right|}\|\zeta\|_{1}+N \min \left\{x_{1}, x_{2}\right\}, \tag{3.67}
\end{equation*}
$$

provided that $x \in \Pi_{+} \backslash \operatorname{diag}\left(\Pi_{+}\right)$.

Proof. Fix $x \in \Pi_{+} \backslash \operatorname{diag}\left(\Pi_{+}\right)$and define

$$
\begin{equation*}
U(x):=\left\{y \in \Pi_{+}| |\left(y_{1}^{2}-y_{2}^{2}\right)-\left(x_{1}^{2}-x_{2}^{2}\right)\left|<\left|x_{1}^{2}-x_{2}^{2}\right|^{1 / 2}\right\} .\right. \tag{3.68}
\end{equation*}
$$

Next we decompose ζ as follows: $\zeta:=\zeta_{1}+\zeta_{2}$, where

$$
\zeta_{1}(y):= \begin{cases}\zeta(y), & y \in \Pi_{+}(h) \cap U(x) \tag{3.69}\\ 0, & \text { otherwise }\end{cases}
$$

Again by setting $\alpha:=|x-\bar{y}|, \beta:=|x-\underline{y}|, \rho:=|x-y|, \delta:=|x-\underline{\bar{y}}|$, we obtain

$$
\begin{align*}
K_{+} \zeta_{2}(x) & =\frac{1}{4 \pi} \int_{\Pi_{+}} \log \frac{\alpha^{2} \beta^{2}}{\rho^{2} \delta^{2}} \zeta_{2}(y) d y \\
& =\frac{1}{4 \pi} \int_{\Pi_{+}} \log \left(1+\frac{16 x_{1} x_{2} y_{1} y_{2}}{\rho^{2} \delta^{2}}\right) \zeta_{2}(y) d y \tag{3.70}\\
& \leq \frac{4 h x_{1} x_{2}}{\pi} \int_{\Pi_{+} \backslash(x)} \frac{1}{\rho^{2} \delta^{2}} \zeta_{2}(y) d y .
\end{align*}
$$

In view of the following identity:

$$
\begin{equation*}
\rho^{2} \delta^{2}=\left(\left(y_{1}^{2}-y_{2}^{2}\right)-\left(x_{1}^{2}-x_{2}^{2}\right)\right)^{2}+4\left(x_{1} x_{2}-y_{1} y_{2}\right)^{2} \tag{3.71}
\end{equation*}
$$

we infer that if $y \in \Pi_{+} \backslash U(x)$, then $\rho^{2} \delta^{2}>\left|x_{1}^{2}-x_{2}^{2}\right|$. This, in conjunction with (3.70), yields

$$
\begin{equation*}
K_{+} \zeta_{2}(x) \leq \frac{4 h x_{1} x_{2}}{\pi\left|x_{1}^{2}-x_{2}^{2}\right|}\|\zeta\|_{1} \tag{3.72}
\end{equation*}
$$

Finally, recalling (2.5) we obtain

$$
\begin{equation*}
K_{+} \zeta_{1}(x) \leq N \min \left\{x_{1}, x_{2}\right\} . \tag{3.73}
\end{equation*}
$$

Since $K_{+} \zeta(x)=K_{+} \zeta_{1}(x)+K_{+} \zeta_{2}(x)$, (3.67) follows from (3.72) and (3.73).
REmARK 3.13. Under the hypotheses of Lemma 3.12 with b replaced by a and an additional assumption, namely, $\mathfrak{J}(\zeta) \geq 1$ we can show the existence of a positive constant P such that

$$
\begin{equation*}
K_{+} \zeta(x) \leq P\left(x_{1} x_{2}\right)^{-\gamma} \mathfrak{J}(\zeta), \tag{3.74}
\end{equation*}
$$

provided that $\min \left\{x_{1}, x_{2}\right\} \geq a / 2$ and $\zeta \in \mathscr{F}$. Clearly, the truth of (3.74) emerges from the elementary fact that $s^{\gamma-1} \log s$ is bounded on any interval of the form $[d, \infty), d>0$.
4. Proof of Theorem 2.1. We first show that, for I sufficiently large, there exists a positive constant $R(I)$ such that if $\Pi_{+}(\xi, \eta)$ is sufficiently large (satisfying $\mathscr{H}(I)$) and $\zeta \in \Sigma(\xi, \eta, I)$, then

$$
\begin{equation*}
\operatorname{supp}(\zeta) \subset \Pi_{+}(R(I)) \tag{4.1}
\end{equation*}
$$

modulo a set of zero measure. From Lemma 3.3, there exists $I_{3}>I_{1}$ such that if $I>I_{3}$, then

$$
\begin{equation*}
\sigma(I)>\frac{5}{2} a N\left\|\zeta_{0}\right\|_{1} \tag{4.2}
\end{equation*}
$$

Fix $I>I_{3}$ and consider $\zeta \in \Sigma(\xi, \eta, I)$ for some $\Pi_{+}(\xi, \eta)$ satisfying $\mathscr{H}(I)$. From (4.2) and definition of σ, we infer that

$$
\begin{equation*}
\frac{5}{2} a N\|\zeta\|_{1} \leq \Psi(\zeta) \leq \frac{1}{2}\|\zeta\|_{1} \sup _{x \in \operatorname{supp}(\zeta)} K_{+} \zeta(x) \tag{4.3}
\end{equation*}
$$

thus

$$
\begin{equation*}
\sup _{x \in \operatorname{supp}(\zeta)} K_{+} \zeta(x) \geq 5 a N . \tag{4.4}
\end{equation*}
$$

Since $K_{+} \zeta \in C\left(\mathbb{R}^{2}\right)$, it attains its maximum relative to $\overline{\operatorname{supp}(\zeta)}$ at z, say. Therefore, by applying (4.4), we obtain

$$
\begin{equation*}
5 a N \leq K_{+} \zeta(z) \leq N \min \left\{z_{1}, z_{2}\right\} \tag{4.5}
\end{equation*}
$$

whence $\min \left\{z_{1}, z_{2}\right\} \geq 5 a$. Without loss of generality, we may assume that $\mathfrak{J}(\zeta) \geq 1$, hence, by (3.74) we obtain

$$
\begin{equation*}
5 a N \leq K_{+} \zeta(z) \leq P I\left(z_{1} z_{2}\right)^{-\gamma} \tag{4.6}
\end{equation*}
$$

so

$$
\begin{equation*}
z_{1} z_{2} \leq\left(\frac{P I}{5 a N}\right)^{\gamma} \tag{4.7}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
R(I):=\max \left\{\left(\frac{P I}{5 a N}\right)^{\gamma}, 25 a^{2}\right\} \tag{4.8}
\end{equation*}
$$

Then $V:=\left\{x \in \Pi_{+} \mid x_{1} x_{2} \leq R(I), \min \left\{x_{1}, x_{2}\right\} \geq 5 a\right\}$ is not empty and $z \in V$. Note that at least a quadrant of $B_{4 a}(x)$, for every $x \in V$, is contained in $\Pi_{+}(R(I))$ and, in fact, contained in $\Pi_{+}\left(\xi_{1}, R(I)\right)$ for some $\xi_{1}^{2}>R(I)$. By $\Pi_{+}^{t}\left(\xi_{1}, R(I)\right)$ we denote the translation of $\Pi_{+}\left(\xi_{1}, R(I)\right)$ along diag $\left(\Pi_{+}\right), \sqrt{2} t$ units. Observe that the family of translations $\left\{\Pi_{+}^{t}\left(\xi_{1}, R(I)\right)\right\}_{0 \leq t \leq t_{0}}$, where $t_{0}:=\left(I /\left\|\zeta_{0}\right\|_{1}\right)^{1 / 2}$, is uniformly contained in $\Pi_{+}\left(\xi_{2}, \eta_{2}\right)$, for some ξ_{2} and η_{2} (in fact we can take $\xi_{2}=\xi_{1}+t_{0}$). From now on we assume that $\xi>\xi_{2}$ and $\eta>\eta_{2}$. Since a quadrant of $B_{4 a}(z)$, designated by Q, is contained in $\Pi_{+}(R(I))$ we can apply the mean value inequality and (2.5) to deduce that

$$
\begin{equation*}
K_{+} \zeta(x) \geq K_{+} \zeta(z)-4 a N \geq a N, \quad x \in Q \tag{4.9}
\end{equation*}
$$

where the last inequality is obtained from (4.4). To seek a contradiction we assume that $E:=\operatorname{supp}(\zeta) \backslash \Pi_{+}(R(I))$ has a positive measure and write $\zeta=\zeta_{0}+\zeta_{1}$, where

$$
\begin{equation*}
\zeta_{1}:=\zeta X_{E} . \tag{4.10}
\end{equation*}
$$

Since $|Q|=4 \pi a^{2}>|\operatorname{supp}(\zeta)|=\pi a^{2}$, there exists a measure preserving bijection, denoted by T, from E onto a subset of $Q \backslash \operatorname{supp}(\zeta)$, say G, see Royden [15]. Now define

$$
\begin{equation*}
\zeta_{2}:=\zeta_{1} \circ T^{-1}, \tag{4.11}
\end{equation*}
$$

on the range of T and zero elsewhere, that is,

$$
\begin{equation*}
\zeta_{2}=\left(\zeta_{1} \circ T^{-1}\right) \chi_{\mathrm{im}(T)}, \tag{4.12}
\end{equation*}
$$

where $\operatorname{im}(T)$ is the range of T, and let $\zeta^{\prime}:=\zeta_{0}+\zeta_{2}$. Clearly $\zeta^{\prime} \in \mathscr{F}(\xi, \eta)$. We show that $\mathfrak{J}\left(\zeta^{\prime}\right)<\mathfrak{J}(\zeta):$

$$
\begin{align*}
\mathfrak{I}\left(\zeta^{\prime}\right) & =\int_{\Pi_{+}} x_{1} x_{2} \zeta_{0}+\int_{\Pi_{+}} x_{1} x_{2} \zeta_{2} \\
& =\int_{\Pi_{+}} x_{1} x_{2} \zeta_{0}+\int_{\Pi_{+}} x_{1} x_{2} \zeta_{1} \circ T^{-1} \\
& =\int_{\Pi_{+}} x_{1} x_{2} \zeta_{0}+\int_{E}\left(x_{1} x_{2} \circ T\right) \zeta_{1} \tag{4.13}\\
& <\int_{\Pi_{+}} x_{1} x_{2} \zeta_{0}+\int_{\Pi_{+}} x_{1} x_{2} \zeta_{1} \\
& =\mathfrak{I}(\zeta) .
\end{align*}
$$

On the other hand, we have

$$
\begin{equation*}
\Psi\left(\zeta^{\prime}\right)-\Psi(\zeta)=\int_{\Pi_{+}}\left(\zeta_{2}-\zeta_{1}\right) K_{+} \zeta+\Psi\left(\zeta_{2}-\zeta_{1}\right)>\int_{\Pi_{+}}\left(\zeta_{2}-\zeta_{1}\right) K_{+} \zeta, \tag{4.14}
\end{equation*}
$$

since K_{+}is strictly positive, see Emamizadeh [10]. Hence

$$
\begin{align*}
\Psi\left(\zeta^{\prime}\right)-\Psi(\zeta) & >\int_{\Pi_{+}} \zeta_{2} K_{+} \zeta-\int_{\left\{x \in \Pi_{+} \mid x_{1} x_{2}>R(I)\right\}} \zeta_{1} K_{+} \zeta \\
& \geq a N \int_{\Pi_{+}} \zeta_{2}-\int_{\left\{x \in \Pi_{+} \mid x_{1} x_{2}>R(I)\right\}} \zeta_{1} K_{+} \zeta \tag{4.15}
\end{align*}
$$

by (4.9). Now we proceed to estimate $\int_{\left\{x \in \Pi_{+} \mid x_{1} x_{2}>R(I)\right\}} \zeta_{1} K_{+} \zeta$. For this purpose we set

$$
\begin{equation*}
\operatorname{supp}(\zeta)=J_{1} \cup J_{2}, \tag{4.16}
\end{equation*}
$$

where

$$
\begin{align*}
& J_{1}:=\left\{x \in \operatorname{supp}(\zeta) \mid x_{1} x_{2}>R(I), \min \left\{x_{1}, x_{2}\right\} \geq \frac{a}{2}\right\}, \\
& J_{2}:=\left\{x \in \operatorname{supp}(\zeta) \mid x_{1} x_{2}>R(I), \min \left\{x_{1}, x_{2}\right\}<\frac{a}{2}\right\} . \tag{4.17}
\end{align*}
$$

If $x \in J_{1}$, then by (3.74)

$$
\begin{equation*}
K_{+} \zeta(x) \leq P I\left(x_{1} x_{2}\right)^{-\gamma} \leq P I R(I)^{-\gamma} . \tag{4.18}
\end{equation*}
$$

On the other hand, if $x \in J_{2}$ then by (2.5)

$$
\begin{equation*}
K_{+} \zeta(x) \leq N \min \left\{x_{1}, x_{2}\right\} \leq \frac{a}{2} . \tag{4.19}
\end{equation*}
$$

Therefore, if $x \in \operatorname{supp}\left(\zeta_{1}\right)$

$$
\begin{equation*}
K_{+} \zeta(x) \leq \max \left\{\operatorname{PIR}(I)^{-\gamma}, \frac{a N}{2}\right\} . \tag{4.20}
\end{equation*}
$$

Assume that $R(I)$ is large enough to ensure

$$
\begin{equation*}
a N-\max \left\{\operatorname{PIR}(I)^{-\gamma}, \frac{a N}{2}\right\}>0 \tag{4.21}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{equation*}
\Psi\left(\zeta^{\prime}\right)-\Psi(\zeta) \geq\left(a N-\max \left\{\operatorname{PIR}(I)^{-\gamma}, \frac{a N}{2}\right\}\right)\left\|\zeta_{1}\right\|_{1}>0 . \tag{4.22}
\end{equation*}
$$

This implies that $\Psi\left(\zeta^{\prime}\right)>\Psi(\zeta)$. Finally, we define $\zeta^{\prime \prime}$ to be the function obtained by translating ζ^{\prime} along $\operatorname{diag}\left(\Pi_{+}\right)$so that $\mathfrak{J}\left(\zeta^{\prime \prime}\right)=I$. If we denote the amount of translation by t, then it is clear that t is the bigger root of the following algebraic equation:

$$
\begin{equation*}
\left\|\zeta^{\prime}\right\|_{1} t^{2}+2\left(\int_{\Pi_{+}}\left(x_{1}+x_{2}\right) \zeta^{\prime}\right) t+\int_{\Pi_{+}} x_{1} x_{2} \zeta^{\prime}=I \tag{4.23}
\end{equation*}
$$

Note that t depends on ζ; but we are able to find a uniform bound, independent of ζ, as follows. Solving (4.23) for t yields

$$
\begin{align*}
t & =\frac{-\int_{\Pi_{+}}\left(x_{1}+x_{2}\right) \zeta^{\prime}+\left(\left(\int_{\Pi_{+}}\left(x_{1}+x_{2}\right) \zeta^{\prime}\right)^{2}-\left\|\zeta^{\prime}\right\|_{1}\left(\mathfrak{I}\left(\zeta^{\prime}\right)-I\right)\right)^{1 / 2}}{\left\|\zeta^{\prime}\right\|_{1}} \tag{4.24}\\
& <\left(\left\|\zeta^{\prime}\right\|_{1}\left(I-\mathfrak{I}\left(\zeta^{\prime}\right)\right)\right)^{1 / 2}<\left(\frac{I}{\left\|\zeta^{\prime}\right\|_{1}}\right)^{1 / 2}
\end{align*}
$$

as desired. Note that the choices of ξ_{2} and η_{2} ensure that $\zeta^{\prime \prime} \in \mathscr{F}(\xi, \eta, I)$. Now, by Lemma 3.11 we have

$$
\begin{equation*}
\Psi\left(\zeta^{\prime \prime}\right) \geq \Psi\left(\zeta^{\prime}\right)>\Psi(\zeta) \tag{4.25}
\end{equation*}
$$

This is a contradiction to the maximality of ζ. Therefore we have been able to show that if $I>I_{3}$, then there exists $R(I)$ given by (4.8) such that if $\Pi_{+}(\xi, \eta)$ is sufficiently large $\left(\xi \geq \xi_{2}\right.$ and $\left.\eta \geq \eta_{2}\right)$ and $\zeta \in \Sigma(\xi, \eta, I)$, then, for almost every $x \in \operatorname{supp}(\zeta)$, (4.1) holds.

However, the possibility that the vortex core runs off to infinity, as $\Pi_{+}(\xi, \eta)$ exhausts Π_{+}, still exists. We now show that this situation is ruled out once I is sufficiently large. For this purpose, fix $I>I_{3}$ and consider $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$. We claim that if ξ and
η are large enough then λ can not be too negative. For this purpose let $\xi \geq \xi_{2}$ and $\eta \geq \max \left\{h, \eta_{2}\right\}, \xi_{2}$ and η_{2} are as above, where

$$
\begin{equation*}
h:=\left(N\left|\lambda^{*}\right|^{-1}+1\right) R(I), \quad \lambda^{*}:=-\frac{a N}{3 R(I)}, \tag{4.26}
\end{equation*}
$$

such that $\Pi_{+}(\xi, \eta)$ satisfies $\mathscr{H}(I)$. We show that

$$
\begin{equation*}
\lambda>\lambda^{*} . \tag{4.27}
\end{equation*}
$$

To seek a contradiction suppose that $\lambda \leq \lambda^{*}$. Without loss of generality we may assume that $R(I) \geq 1$. Let $x \in W:=\left\{y \in \Pi_{+}(\xi, \eta) \mid y_{1} y_{2}>h\right\}$. Then

$$
\begin{align*}
K_{+} \zeta(x)-\lambda x_{1} x_{2} & >-\lambda x_{1} x_{2}=|\lambda| x_{1} x_{2}>|\lambda| h \\
& =|\lambda|\left(N\left|\lambda^{*}\right|^{-1}+1\right) R(I)>(N+|\lambda|) R(I) . \tag{4.28}
\end{align*}
$$

Now consider $x \in \operatorname{supp}(\zeta)$. If $\max \left\{x_{1}, x_{2}\right\} \geq 1$, then $\min \left\{x_{1}, x_{2}\right\} \leq x_{1} x_{2}$, hence $\min \left\{x_{1}, x_{2}\right\} \leq R(I)$. If, however, $\max \left\{x_{1}, x_{2}\right\}<1$ then $\min \left\{x_{1}, x_{2}\right\}<1 \leq R(I)$. Therefore in either case we have $\min \left\{x_{1}, x_{2}\right\} \leq R(I)$. This, in turn, implies that

$$
\begin{equation*}
K_{+} \zeta(x)-\lambda x_{1} x_{2} \leq N \min \left\{x_{1}, x_{2}\right\}-\lambda x_{1} x_{2}<(N+|\lambda|) R(I), \tag{4.29}
\end{equation*}
$$

whence

$$
\begin{equation*}
\sup _{x \in \operatorname{supp}(\zeta)}\left(K_{+} \zeta(x)-\lambda x_{1} x_{2}\right) \leq(N+|\lambda|) R(I) . \tag{4.30}
\end{equation*}
$$

Therefore $K_{+} \zeta(x)-\lambda x_{1} x_{2}$ takes greater values on a nonempty subset of $\Pi_{+}(\xi, \eta)$, namely W, than its supremum on $\operatorname{supp}(\zeta)$. This is impossible, since ζ is essentially an increasing function of $K_{+} \zeta(x)-\lambda x_{1} x_{2}$ on $\Pi_{+}(\xi, \eta)$. Hence we derive (4.27). For the rest of the proof we fix $I>I_{0}:=\max \left\{I_{1}, I_{2}, I_{3}\right\}$. Let $\xi>\xi_{2}, \eta>h$ (as above) be such that $\Pi_{+}(\xi, \eta)$ satisfies $\mathscr{H}(I)$. Consider $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$. Now fix $x \in \operatorname{supp}(\zeta) \backslash \operatorname{diag}\left(\Pi_{+}\right)$ such that $\min \left\{x_{1}, x_{2}\right\}<a / 6$. Then by Lemmas 3.9 and 3.12, in conjunction with (4.27),

$$
\begin{align*}
a N & \leq K_{+} \zeta(x)-\lambda x_{1} x_{2} \\
& \leq \frac{4 R(I) x_{1} x_{2}}{\pi\left|x_{1}^{2}-x_{2}^{2}\right|}\|\zeta\|_{1}+N \min \left\{x_{1}, x_{2}\right\}-\lambda^{*} x_{1} x_{2} \\
& \leq \frac{4 R(I) x_{1} x_{2}}{\pi\left|x_{1}^{2}-x_{2}^{2}\right|}\|\zeta\|_{1}+N \min \left\{x_{1}, x_{2}\right\}-\lambda^{*} R(I) \tag{4.31}\\
& \leq \frac{4 R(I) x_{1} x_{2}}{\pi\left|x_{1}^{2}-x_{2}^{2}\right|}\|\zeta\|_{1}+\frac{a N}{6}+\frac{a N}{3} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\left|x_{1}^{2}-x_{2}^{2}\right|<\frac{8 R(I)\left\|\zeta_{0}\right\|_{1}}{a \pi N} \tag{4.32}
\end{equation*}
$$

To summarise, we have shown that if $x \in \operatorname{supp}(\zeta)$ is such that $\min \left\{x_{1}, x_{2}\right\}>a / 6$, then $x \in \Pi_{+}(R(I)) \cap\left\{y \in \Pi_{+} \mid \min \left\{y_{1}, y_{2}\right\}>a / 6\right\}$; otherwise x satisfies (4.32). This clearly concludes the existence part of the theorem.

Now consider $\zeta \in \Sigma(I)$. Then there exists $\hat{\xi}>0$ such that $\overline{\operatorname{supp}(\zeta)}$ is a compact subset of $D(\hat{\xi}):=(0, \hat{\xi}) \times(0, \hat{\xi})$ and, according to Lemma 3.1,

$$
\begin{equation*}
\zeta=\phi \circ\left(K_{+} \zeta-\lambda x_{1} x_{2}\right), \quad \text { a.e. in } D(\hat{\xi}), \tag{4.33}
\end{equation*}
$$

for some increasing function ϕ and $\lambda \in \mathbb{R}$. Note that from Lemma 3.9

$$
\begin{equation*}
\kappa:=\operatorname{ess} \sup \left\{K_{+} \zeta(x)-\lambda x_{1} x_{2} \mid x \in \operatorname{supp}(\zeta)\right\} \geq a N>0 \tag{4.34}
\end{equation*}
$$

Since the level sets of $K_{+} \zeta-\lambda x_{1} x_{2}$, on $\operatorname{supp}(\zeta)$, have zero measure, in particular we have

$$
\begin{equation*}
\left|\left\{x \in \operatorname{supp}(\zeta) \mid K_{+} \zeta-\lambda x_{1} x_{2}=\kappa\right\}\right|=0 . \tag{4.35}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
K_{+} \zeta-\lambda x_{1} x_{2}>\kappa, \quad \text { a.e. in } \operatorname{supp}(\zeta) \tag{4.36}
\end{equation*}
$$

Thus we may suppose that $\phi(s)=0$ for $s \leq \kappa$. Now if we define $F(s):=\int_{0}^{s} \phi(t) d t$, then Lemma 3.7 yields

$$
\begin{equation*}
2 \int_{D(\hat{\xi})} F \circ \psi-2 \lambda I=\int_{\partial D(\hat{\xi})}(F \circ \psi)(x \cdot \vec{n}), \tag{4.37}
\end{equation*}
$$

where $\psi:=K_{+} \zeta-\lambda x_{1} x_{2}$. We claim that for $x \in \partial D(\hat{\xi})$ we have $\psi \leq \kappa$. Otherwise, by the continuity of ψ we can find $B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \cap \operatorname{supp}(\zeta)$ has positive measure, since $\overline{\operatorname{supp}(\zeta)}$ is a compact subset of $D(\hat{\xi})$, and $\psi(s)>\kappa$ for $s \in B_{\epsilon}(x)$; but this is a contradiction to (4.33). Therefore, if $x \in \partial D(\hat{\xi})$ we have $F \circ \psi(x)=0$. Hence from (4.37) we deduce that $\lambda>0$, as required.

Now fix $x \in \operatorname{supp}(\zeta)$. Since $\lambda>0$, we can employ Lemma 3.9 to obtain

$$
\begin{equation*}
a N \leq K_{+} \zeta(x)-\lambda x_{1} x_{2}<K_{+} \zeta(x) \leq N \min \left\{x_{1}, x_{2}\right\} . \tag{4.38}
\end{equation*}
$$

Thus $\min \left\{x_{1}, x_{2}\right\} \geq a$. This proves the vortex core avoids $\partial \Pi_{+}$. The validity of (2.12) is established as in Emamizadeh [11].

References

[1] T. V. Badiani, Existence of steady symmetric vortex pairs on a planar domain with an obstacle, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 2, 365-384.
[2] G. R. Burton, Steady symmetric vortex pairs and rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 269-290.
[3] G. R. Burton and B. Emamizadeh, A constrained variational problem for steady vortices in a shear flow, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1341-1365.
[4] G. R. Burton and J. B. McLeod, Maximisation and minimisation on classes of rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 3-4, 287-300.
[5] A. R. Elcrat, B. Fornberg, M. Horn, and K. Miller, Some steady vortex flows past a circular cylinder, J. Fluid Mech. 409 (2000), 13-27.
[6] A. R. Elcrat, B. Fornberg, and K. Miller, Steady vortex flows obtained from a nonlinear eigenvalue problem, Flows and Related Numerical Methods (Toulouse, 1998), Soc. Math. Appl. Indust., Paris, 1999, pp. 130-136.
[7] A. R. Elcrat and K. G. Miller, Rearrangements in steady multiple vortex flows, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1481-1490.
[8] B. Emamizadeh, The complete proof of Nycander's problem, The 2nd International Conference on Applied Mathematics (Tehran, October 25-27, 2000), Iran University of Science and Technology (IUST), 2000, pp. 44-56.
[9] , Rearrangements of functions and 2D ideal fluids, The 2nd International Conference on Applied Mathematics (Tehran, October 25-27, 2000), Iran University of Science and Technology (IUST), 2000, pp. 46-54.
[10] Steady vortex in a uniform shear flow of an ideal fluid, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 4, 801-812.
[11] , Existence of a steady flow with a bounded vortex in an unbounded domain, J. Sci. Islam. Repub. Iran 12 (2001), no. 1, 57-63.
[12] A. Friedman and B. Turkington, Vortex rings: existence and asymptotic estimates, Trans. Amer. Math. Soc. 268 (1981), no. 1, 1-37.
[13] P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées, vol. 22, Masson, Paris, 1992.
[14] J. Nycander, Existence and stability of stationary vortices in a uniform shear flow, J. Fluid Mech. 287 (1995), 119-132.
[15] H. L. Royden, Real Analysis, The Macmillan, New York, 1963.
B. Emamizadeh: Department of Mathematics, Iran University of Science and Technology, Narmak 16844, Tehran, Iran

Current address: Institute for Studies in Theoretical Physics and Mathematics, Niavaran Building, Niavaran Square, Tehran, Iran

M. H. Mehrabi: Department of Mathematics, Iran University of Science and Technology, Narmak 16844, Tehran, Iran

