STEADY VORTEX FLOWS OBTAINED FROM A CONSTRAINED VARIATIONAL PROBLEM

B. EMAMIZADEH and M. H. MEHRABI

Received 10 January 2001 and in revised form 24 August 2001

We prove the existence of steady two-dimensional ideal vortex flows occupying the first quadrant and containing a bounded vortex; this is done by solving a constrained variational problem. Kinetic energy is maximized subject to the vorticity, being a rearrangement of a prescribed function and subject to a linear constraint.

2000 Mathematics Subject Classification: 35J20, 76B47.

1. Introduction. In this paper, we prove the existence of steady two-dimensional ideal vortex flows occupying the first quadrant, Π_+ , containing a bounded vortex. This is done by solving a constrained variational problem. Such a flow will be described by a stream function $\hat{\psi} : \Pi_+ \to \mathbb{R}$. At infinity we will have $\hat{\psi} \to -\lambda x_1 x_2$ which is the stream function for an irrotational flow with velocity field $-\lambda(x_1, x_2)$, where λ is not known a priori. The vorticity is given by $-\Delta \hat{\psi}$, where Δ is the Laplacian, and $-\Delta \hat{\psi}$ vanishes outside a bounded region. It will be shown that $\hat{\psi}$ satisfies the following semilinear partial differential equation:

$$-\Delta\hat{\psi} = \phi \circ \hat{\psi},\tag{1.1}$$

almost everywhere in Π_+ for ϕ an increasing function, unknown a priori. In our result the vorticity function $\zeta(=-\Delta \hat{\psi})$ is a rearrangement of a prescribed nonnegative, nontrivial function ζ_0 having bounded support, and the *impulse*, \Im , given by

$$\mathfrak{I}(\zeta) := \int_{\Pi_+} x_1 x_2 \zeta, \qquad (1.2)$$

is a prescribed positive number. We prove that the variational problem, P(I) (see Section 2), is solvable provided that *I* is sufficiently large. Since the domain of interest Π_+ is unbounded, we first consider the problem over bounded sets, $\Pi_+(\xi,\eta)$, where Burton's theory, related to constrained variational problems, can be applied. We then show that the maximizers are the same for all sufficiently large $\Pi_+(\xi,\eta)$.

Problems of this kind have been investigated by many authors; in particular we cite Badiani [1], Burton [2], Burton and Emamizadeh [3], Elcrat and Miller [7], Emamizadeh [8, 9, 10, 11], Nycander [14] for theoretical results and Elcrat et al. [5, 6] for numerical.

2. Notation, definitions, and statement of the results. Henceforth p denotes a real number in $(2, \infty)$. The first quadrant is denoted Π_+ . Generic points in \mathbb{R}^2 are denoted by x, y, and so forth. Thus, for example, $x = (x_1, x_2)$. For $x \in \mathbb{R}^2$, \overline{x} , \underline{x} , and \overline{x} denote

the reflections of *x* about the x_1 -axis, x_2 -axis, and the origin, respectively. For positive η and ξ we set

$$\Pi_{+}(\eta) := \{ x \in \Pi_{+} \mid x_{1}x_{2} < \eta \},$$

$$\Pi_{+}(\xi, \eta) := \{ x \in \Pi_{+} \mid x_{1}x_{2} < \eta, \max\{x_{1}, x_{2}\} < \xi \}.$$

$$(2.1)$$

For $A \subset \mathbb{R}^2$, |A| denotes the two-dimensional Lebesgue measure of A.

For a measurable function ζ , the strong support of ζ is defined by

$$\operatorname{supp}(\zeta) = \{ x \in \operatorname{dom}(\zeta) \mid \zeta(x) > 0 \}.$$
(2.2)

To define the rearrangement class needed for our variational problem, we fix a nonnegative, nontrivial function $\zeta_0 \in L^p(\mathbb{R}^2)$ which vanishes outside a bounded set. In addition, we assume that

$$|\operatorname{supp}(\zeta_0)| = \pi a^2, \tag{2.3}$$

for some a > 0. We say that ζ is a rearrangement of ζ_0 if and only if

$$|\{x \mid \zeta(x) \ge \alpha\}| = |\{x \mid \zeta_0(x) \ge \alpha\}|,$$
(2.4)

for every positive α . The set of rearrangements of ζ_0 which vanish outside bounded subsets of Π_+ is denoted by \mathcal{F} . The set of functions $\zeta \in \mathcal{F}$ that satisfy $\mathfrak{I}(\zeta) = I$, for some I > 0, is denoted by $\mathcal{F}(I)$; and the set of functions in $\mathcal{F}(I)$ that vanish outside $\Pi_+(\xi,\eta)$ is denoted by $\mathcal{F}(\xi,\eta,I)$; to ensure that $\mathcal{F}(\xi,\eta,I) \neq \emptyset$, we present the following definition: let $I_1 := \mathfrak{I}(\zeta_0^*)$, where ζ_0^* is the Schwarz-symmetrisation of ζ_0 , and assume that $I > I_1$; we say that $\Pi_+(\xi,\eta)$ satisfies the hypothesis $\mathcal{H}(I)$ if the following two conditions hold:

$$\xi \ge \eta^{1/2},\tag{2.5}$$

$$\eta \ge 4 \max\left\{a^2, l(I)\right\},\tag{2.6}$$

where $l(I) := (I - I_1) / \|\zeta_0\|_1$. Now it is immediate that if $\Pi_+(\xi, \eta)$ satisfies $\mathcal{H}(I)$, for $I > I_1$, then $\mathcal{F}(\xi, \eta, I) \neq \emptyset$. Indeed if we set $t = l(I)^{1/2}$, then $(\zeta_0^*)_t(x) := \zeta_0^*(x_1 - t, x_2 - t)$ belongs to $\mathcal{F}(\xi, \eta, I)$.

The Green's function for $-\Delta$ on Π_+ with homogeneous Dirichlet boundary conditions is denoted by G_+ , hence

$$G_{+}(x,y) = \frac{1}{2\pi} \log \frac{|x-\overline{y}| |x-\underline{y}|}{|x-y| |x-\overline{y}|}.$$
(2.7)

Next we define the integral operator K_+

$$K_{+}\zeta(x) = \int_{\Pi_{+}} G_{+}(x,y)\zeta(y)dy, \qquad (2.8)$$

for measurable functions ζ on \mathbb{R}^2 , whenever the integral exists. The *Kinetic energy* is defined by

$$\Psi(\zeta) = \int_{\Pi_+} \zeta K_+ \zeta, \qquad (2.9)$$

whenever the integral exists.

In this paper, we are concerned with constrained variational problems which are defined as follows. For $I > I_1$,

$$P(I): \sup_{\zeta \in \mathcal{F}(I)} \Psi(\zeta); \tag{2.10}$$

and the corresponding solution set is denoted by $\Sigma(I)$. If $I > I_1$ and $\Pi_+(\xi, \eta)$ satisfies $\mathcal{H}(I)$, then we define the truncated variational problem

$$P(\xi,\eta,I): \sup_{\zeta \in \mathscr{F}(\xi,\eta,I)} \Psi(\zeta),$$
(2.11)

with the solution set $\Sigma(\xi, \eta, I)$.

We are now in a position to state our main result.

THEOREM 2.1. There exists $I_0 > 0$ such that if $I > I_0$ then P(I) has a solution, that is, $\Sigma(I) \neq \emptyset$; if ζ is a solution and $\psi := K_+\zeta$ then the following semilinear elliptic partial differential equation holds

$$-\Delta \psi = \phi \circ (\psi - \lambda x_1 x_2), \quad a.e. \text{ in } \Pi_+, \tag{2.12}$$

where ϕ is an increasing function and $\lambda > 0$, both unknown a priori. Furthermore, I_0 can be chosen to ensure that the vortex core, the strong support of ζ , avoids $\partial \Pi_+$.

3. Preliminary results. We present some lemmas that are used in the proof of Theorem 2.1. We begin by stating a lemma from Burton's theory, see for example, Burton and McLeod [4].

LEMMA 3.1. Let Ω be a nonempty open set in \mathbb{R}^n . Let $1 \le p < \infty$ and p^* denote the conjugate exponent of p. For $\zeta \in L^p(\mu)$ let $\mathcal{F}(\Omega)$ denote the set of rearrangements of ζ on Ω . Let

$$\mathscr{L} := \sum_{1 \le |\alpha| \le m} \mathscr{A}^{\alpha}(x) \mathfrak{D}^{\alpha}$$
(3.1)

be an mth-order linear partial differential operator, whose coefficients \mathcal{A}^{α} are finitevalued measurable functions on Ω , having no 0th-order term, and suppose that there exists a compact, symmetric, positive linear operator $K : L^{p}(\Omega) \to L^{p^{*}}(\Omega)$ such that if $\zeta \in L^{p}(\Omega)$, then $K\zeta \in L^{p^{*}}(\Omega) \cap W_{loc}^{m,1}(\Omega)$ and $\mathcal{L}K\zeta = \zeta$ almost everywhere in Ω . Define

$$\Psi(\hat{\boldsymbol{\zeta}}) := \int_{\Omega} \boldsymbol{\zeta} K \boldsymbol{\zeta}, \quad \boldsymbol{\zeta} \in L^{p}(\Omega).$$
(3.2)

Let $w \in L^{p^*}(\Omega) \cap W^{m,1}_{loc}(\Omega)$ be such that $\mathcal{L}w$ is essentially constant, and define

$$\mathcal{T}(\zeta) := \int_{\Omega} w\zeta, \quad \zeta \in L^{p}(\Omega).$$
(3.3)

Let $b \in \mathbb{R}$ *. Then*

(i) If $b \in \mathcal{T}(\mathcal{F}(\Omega))$ then

$$\sup \hat{\Psi}\big(\mathcal{T}^{-1}(b) \cap \mathcal{F}(\Omega)\big) = \sup \hat{\Psi}\big(\mathcal{T}^{-1}(b) \cap \overline{\mathcal{F}(\Omega)^w}\big), \tag{3.4}$$

and the supremum is attained by at least one element of $\mathcal{T}^{-1}(b) \cap \mathcal{F}(\Omega)$.

(ii) If *b* is, relatively, interior to $\mathcal{T}(\mathcal{F}(\Omega))$, and if $\overline{\zeta}$ is a maximizer for Ψ relative to $\mathcal{T}^{-1}(b) \cap \mathcal{F}(\Omega)$, then there exist scalar λ and an increasing function ϕ such that

$$\overline{\zeta} = \phi \circ (K\overline{\zeta} + \lambda w), \quad a.e. \text{ in } \Omega.$$
(3.5)

REMARK 3.2. It is clear that if $I > I_1$ and $\Pi_+(\xi, \eta)$ satisfies $\mathcal{H}(I)$ then, by Lemma 3.1(i), $\Sigma(\xi, \eta, I) \neq \emptyset$.

Before stating the next result we give the following definition: for $I > I_1$,

$$\sigma(I) := \inf \{ \Psi(\zeta) \mid \zeta \in \Sigma(\xi, \eta, I), \text{ for some } \Pi_+(\xi, \eta) \text{ satisfying } \mathcal{H}(I) \}.$$
(3.6)

We point out that $\sigma(I) = \Psi(\hat{\zeta})$ for some $\hat{\zeta} \in \Sigma(\xi_0, \eta_0, I)$, where $\Pi_+(\xi_0, \eta_0)$ is the minimal region that satisfies $\mathcal{H}(I)$.

LEMMA 3.3. Let σ be as defined in (3.6), then

$$\lim_{I \to \infty} \sigma(I) = \infty. \tag{3.7}$$

PROOF. Let $I > I_1$ and set $t = l(I)^{1/2}$. If $\Pi_+(\xi, \eta)$ satisfies $\mathcal{H}(I)$, then $(\zeta_0^*)_t \in \mathcal{F}(\xi, \eta, I)$ and therefore, according to the last remark, we have

$$\sigma(I) \ge \Psi((\zeta_0^*)_t). \tag{3.8}$$

Now applying same method as in Burton [2, Lemma 12], we obtain $\Psi((\zeta_0^*)_t) \ge k \log t$, for all sufficiently large *t*, hence large *I*. Thus our claim is done.

Let $I > I_1$ and $\Pi_+(\xi, \eta)$ satisfies $\mathcal{H}(I)$. We set

$$M(\xi,\eta,I) := \{ (\zeta,\phi,\lambda) \mid \zeta \in \Sigma(\xi,\eta,I) \text{ for some } \phi, \lambda \in \mathbb{R} \\ \text{ such that } \zeta = \phi \circ (K_+\zeta - \lambda x_1 x_2) \text{ a.e. in } \Pi_+(\xi,\eta) \}.$$
(3.9)

Note that under the conditions imposed on ξ , η , I and in view of Lemma 3.1(ii) the set $M(\xi, \eta, I)$ is nonempty. The following two inequalities are standard, see Burton [2]

$$|K_{+}\zeta(x)| \le N\min\{x_{1}, x_{2}\}, \tag{3.10}$$

$$\left|\nabla K_{+}\zeta(x)\right| \le N,\tag{3.11}$$

for every $x \in \Pi_+$ and every $\zeta \in \mathcal{F}$, where *N* is a universal constant.

LEMMA 3.4. For $I > I_1$ we define

$$\Lambda(I) := \sup \{ \lambda \mid (\zeta, \phi, \lambda) \in M(\xi, \eta, I) \text{ for some } \zeta, \phi \\ and \text{ some } \Pi_+(\xi, \eta) \text{ satisfying } \mathcal{H}(I) \}.$$
(3.12)

Then, $\limsup_{I\to\infty} \Lambda(I) \leq 0$.

PROOF. Assume that the assertion of the lemma is not true and seek a contradiction. Hence, to this end we suppose that there exists $\beta \in (0, \infty]$ such that $\limsup_{I \to \infty} \Lambda(I) = \beta$. Hence there exists $\Lambda > 0$ such that the set

$$S := \{ I \mid \Lambda(I) > \Lambda \}$$

$$(3.13)$$

is unbounded. Consider $I \in S$, then from the definition of $\Lambda(I)$, there exists $(\zeta, \phi, \lambda) \in$

 $M(\xi,\eta,I)$ such that $\Pi_+(\xi,\eta)$ satisfies $\mathcal{H}(I)$ and $\Lambda(I) \ge \lambda > \Lambda > 0$. Observe that by taking *I* sufficiently large we can ensure the existence of ξ_1 such that $\Pi_+(\xi,\eta) \supseteq \Pi_+(\xi_1,a)$ and $|\Pi_+(\xi_1,a)| \ge \pi a^2 = |\operatorname{supp}(\zeta)|$. Now define the set

$$U := \{ x \in \Pi_+(\xi, \eta) \mid K_+ \zeta(x) - \lambda x_1 x_2 \ge -\lambda a \}.$$

$$(3.14)$$

Then, $\Pi_+(\xi_1, a) \subseteq U$ and $|U| \ge |\operatorname{supp}(\zeta)|$. Since ζ is essentially an increasing function of $K_+\zeta - \lambda x_1 x_2$ on $\Pi_+(\xi, \eta)$ we deduce that $\operatorname{supp}(\zeta) \subseteq U$.

Next we show that there exists a constant C > 0, independent of $I \in S$, such that for $x \in \text{supp}(\zeta)$ we have $x_1x_2 \leq C$. From (3.10) we observe that for a sufficiently large k > 0

$$K_{+}\zeta(x) \leq \frac{\Lambda}{2} x_{1} x_{2}, \qquad (3.15)$$

for all $\zeta \in \mathcal{F}$ and all *x* for which min $\{x_1, x_2\} \ge k$. We next define

$$S_{1} := \{x \in \Pi_{+} \mid \min\{x_{1}, x_{2}\} \ge k\},$$

$$S_{2} := \{x \in \Pi_{+} \mid \min\{x_{1}, x_{2}\} < k, \ x_{1} < \alpha, \ x_{2} < \alpha\},$$

$$S_{3} := \{x \in \Pi_{+} \mid \min\{x_{1}, x_{2}\} < k, \ \max\{x_{1}, x_{2}\} \ge \alpha\},$$
(3.16)

where $\alpha := \max\{2N/\lambda, k\}$. First consider $x \in \operatorname{supp}(\zeta) \cap S_1$; then

$$-\lambda a \leq K_{+}\zeta(x) - \lambda x_{1}x_{2} \leq \frac{\Lambda}{2}x_{1}x_{2} - \lambda x_{1}x_{2} < -\frac{\lambda}{2}x_{1}x_{2}, \qquad (3.17)$$

where the first inequality follows from $\text{supp}(\zeta) \subseteq U$ and the second one from (3.15); whence $x_1x_2 < 2a$. Next, consider $x \in \text{supp}(\zeta) \cap S_2$; then we have

$$x_1 x_2 < \alpha^2 \le \left(\max\left\{ \frac{2N}{\Lambda}, k \right\} \right)^2, \tag{3.18}$$

since $\lambda > \Lambda$. Finally, consider $x \in \text{supp}(\zeta) \cap S_3$; then an application of (3.10) yields that

$$-\lambda a \leq K_{+} \zeta(x) - \lambda x_{1} x_{2}$$

$$\leq N \min \{x_{1}, x_{2}\} - \lambda x_{1} x_{2}$$

$$= \frac{N}{\alpha} \alpha \min \{x_{1}, x_{2}\} - \lambda x_{1} x_{2}$$

$$\leq \frac{N}{\alpha} x_{1} x_{2} - \lambda x_{1} x_{2}$$

$$\leq N \frac{\lambda}{2N} x_{1} x_{2} - \lambda x_{1} x_{2}$$

$$= -\frac{\lambda}{2} x_{1} x_{2},$$
(3.19)

hence $x_1x_2 \le 2a$. Therefore, from above argument, it is clear that a constant C > 0, as required, exists. This, in turn, implies that

$$I = \mathfrak{I}(\zeta) := \int_{\Pi_+} x_1 x_2 \zeta \le C ||\zeta_0||_1.$$
(3.20)

Thus *S* is bounded, which is a contradiction. Hence, the proof of Lemma 3.4. \Box

LEMMA 3.5. For $I > I_1$ we define

$$A(I) := \inf \left\{ \underset{x \in \text{supp}(\zeta)}{\text{ess inf}} \left(K_{+}\zeta(x) - \lambda x_{1}x_{2} \right) \mid (\zeta, \phi, \lambda) \in M(\xi, \eta, I) \right.$$

for some $\Pi_{+}(\xi, \eta)$ and some $\phi \right\},$

$$(3.21)$$

where $\Pi_+(\xi,\eta)$ is to satisfy $\mathcal{H}(I)$. Then, $\liminf_{I\to\infty} A(I) \ge 0$.

PROOF. Fix $\epsilon > 0$. By definition of A(I) there exists $\Pi_+(\xi, \eta)$, satisfying $\mathcal{H}(I)$, and $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$ such that

$$A(I) + \epsilon \ge \operatorname{essinf}_{x \in \operatorname{supp}(\zeta)} (K_{+}\zeta(x) - \lambda x_{1}x_{2}).$$
(3.22)

Note that by increasing *I*, the size of $\Pi_+(\xi, \eta)$ increases as well, hence there is no loss of generality if we assume that $\Pi_+(\xi, \eta)$ contains the square $D := [0, 2a] \times [0, 2a]$, since *I* will eventually tend to infinity. For $x \in D$ we have

$$K_{+}\zeta(x) - \lambda x_{1}x_{2} \ge -4a^{2}\Lambda(I)^{+}, \qquad (3.23)$$

where $\Lambda(I)^+$ denotes the positive part of $\Lambda(I)$, since $K_+\zeta$ is nonnegative. From this, we infer that

$$D \subseteq \{ x \in \Pi_+(\xi, \eta) \mid K_+ \zeta(x) - \lambda x_1 x_2 \ge -4a^2 \Lambda(I)^+ \}.$$
(3.24)

Hence

$$\left| \left\{ x \in \Pi_{+}(\xi,\eta) \mid K_{+}\zeta(x) - \lambda x_{1}x_{2} \ge -4a^{2}\Lambda(I)^{+} \right\} \right| > |\operatorname{supp}(\zeta)|,$$
(3.25)

since $4a^2 > |\operatorname{supp}(\zeta)|$. Since ζ is essentially an increasing function of $K_+\zeta - \lambda x_1x_2$ on $\Pi_+(\xi,\eta)$, we then deduce that

$$\operatorname{supp}(\zeta) \subseteq \{ x \in \Pi_+(\xi, \eta) \mid K_+ \zeta(x) - \lambda x_1 x_2 \ge -4a^2 \Lambda(I)^+ \},$$
(3.26)

hence, by applying (3.22), we obtain $A(I) + \epsilon \ge -4a^2 \Lambda(I)^+$. Therefore, from Lemma 3.4 we have

$$\liminf_{I \to \infty} A(I) + \epsilon \ge 0. \tag{3.27}$$

Since ϵ was arbitrary, we derive the desired conclusion.

The next two results can be proved similarly to Burton [2, Lemmas 8 and 9]; they bear some resemblance to Pohazaev-type identities proved in Friedman and Turkington [12] for 3-dimensional vortex rings. We add that, contrary to Burton [2], we can give a direct proof, using the weak divergence theorem (see, e.g., Grisvard [13]) for Lemma 3.6 below without referring to any density theorems.

LEMMA 3.6. Let $2 , let <math>\zeta \in L^p(\Pi_+)$ have bounded support, and let $\psi := K_+\zeta$. Then

$$\int_{\Pi_{+}} (\boldsymbol{x} \cdot \nabla \boldsymbol{\psi}) \boldsymbol{\zeta} = 0.$$
(3.28)

LEMMA 3.7. Let $2 , let <math>\zeta \in L^p(\Pi_+)$ be nonnegative, nontrivial and vanish outside the square $D(\xi) := [0,\xi] \times [0,\xi]$, for some $\xi > 0$. Let $\lambda \in \mathbb{R}$, and let $\psi := K_+\zeta - \lambda x_1 x_2$. Suppose that $\zeta = \phi \circ \psi$ almost everywhere in $D(\xi)$ for some increasing function ϕ , and that ϕ has a nonnegative indefinite integral *F*. Then

$$2\int_{D(\xi)} F \circ \psi - 2\lambda \int_{D(\xi)} x_1 x_2 \zeta = \int_{\partial D(\xi)} (F \circ \psi) (x \cdot \vec{n}), \qquad (3.29)$$

where \vec{n} is the outward unit normal, and consequently

$$\int_{D(\xi)} F \circ \psi \ge \lambda \int_{D(\xi)} x_1 x_2 \zeta.$$
(3.30)

If additionally F(s) = 0 for some $s \le \beta$, then

$$\int_{D(\xi)} \zeta K_+ \zeta \ge 2\lambda \int_{D(\xi)} x_1 x_2 \zeta + \beta \|\zeta\|_1.$$
(3.31)

LEMMA 3.8. For $I > I_1$ we define

$$\mu(I) := \inf \left\{ \sup_{x \in \Pi_{+}(\xi,\eta)} \left(K_{+}\zeta(x) - \lambda x_{1}x_{2} \right) \mid (\zeta,\phi,\lambda) \in M(\xi,\eta,I) \right.$$

$$for \ some \ \Pi_{+}(\xi,\eta) \ satisfying \ \mathcal{H}(I), \ and \ some \ \phi \right\}.$$

$$(3.32)$$

Then $\lim_{I\to\infty} \mu(I) = \infty$.

PROOF. It clearly suffices to show that

$$\liminf_{I \to \infty} \mu(I) = \infty. \tag{3.33}$$

Let $I > I_1$ and consider $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$ for some $\Pi_+(\xi, \eta)$ satisfying $\mathcal{H}(I)$. Since $K_+\zeta(x) - \lambda x_1 x_2 \ge \Lambda(I)$ for almost every $x \in \text{supp}(\zeta)$, we may assume that $\phi(s) = 0$ for $-\infty < s < A(I)$. Now write

$$F(s) = \int_{-\infty}^{s} \phi, \qquad (3.34)$$

for all *s* in the domain of ϕ . Now, by Lemma 3.7, we have

$$\begin{aligned} \int_{\Pi_{+}} \zeta (K_{+}\zeta - \lambda x_{1}x_{2}) &= 2\Psi(\zeta) - \lambda I \\ &= \frac{1}{2} \left(2\Psi(\zeta) - 2\lambda I - A(I) \|\zeta\|_{1} \right) + \Psi(\zeta) + \frac{1}{2}A(I) \|\zeta\|_{1} \\ &\geq \Psi(\zeta) + \frac{1}{2}A(I) \|\zeta\|_{1} \\ &\geq \sigma(I) + \frac{1}{2}A(I) \|\zeta\|_{1}. \end{aligned}$$
(3.35)

Hence

$$\sup_{\Pi_{+}(\xi,\eta)} \left(K_{+}\zeta(x) - \lambda x_{1}x_{2} \right) \geq \frac{\sigma(I)}{\|\zeta\|_{1}} + \frac{1}{2}A(I).$$
(3.36)

Therefore

$$\mu(I) \ge \frac{\sigma(I)}{\|\zeta\|_1} + \frac{1}{2}A(I).$$
(3.37)

Thus by applying Lemmas 3.4 and 3.5 we obtain (3.33).

LEMMA 3.9. There exists $I_2 > I_1$ such that

$$A(I) \ge aN, \quad I \ge I_2. \tag{3.38}$$

PROOF. By Lemma 3.7 there exists $I_2 > I_1$ such that

$$\mu(I) \ge 7aN, \quad I \ge I_2; \tag{3.39}$$

moreover by taking I_2 sufficiently large we can ensure that if $I \ge I_2$, then any $\Pi_+(\xi, \eta)$ satisfying $\mathcal{H}(I)$, also satisfies

$$\left|\Pi_{+}(\xi,\eta)\setminus\Pi_{+}\left(\xi,\frac{\eta}{2}\right)\right|\geq\pi a^{2}.$$
(3.40)

To see it, observe that in general we have

$$\left|\Pi_{+}(\xi,\eta)\right| = \eta \left(1 + \log \frac{\xi^2}{\eta}\right),\tag{3.41}$$

for any $\Pi_+(\xi,\eta)$ satisfying (2.5); therefore

$$\left|\Pi_{+}(\xi,\eta)\setminus\Pi_{+}\left(\xi,\frac{\eta}{2}\right)\right| \geq \frac{1}{2}(1-\log 2)\eta.$$
(3.42)

Hence, in view of (2.6), for sufficiently large *I* we derive (3.40). Now, fix $I \ge I_2$ and consider $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$ for some $\Pi_+(\xi, \eta)$ satisfying $\mathcal{H}(I)$. Since $K_+\zeta - \lambda x_1x_2 \in C(\overline{\Pi_+(\xi, \eta)})$, it attains its maximum at, say, $z \in \overline{\Pi_+(\xi, \eta)}$. Now from the definition of $\mu(I)$ and (3.10) we infer that

$$\mu(I) \le K_{+}\zeta(z) - \lambda z_{1}z_{2} \le N\min\{z_{1}, z_{2}\} - \lambda z_{1}z_{2};$$
(3.43)

and applying (3.39), we obtain

$$7aN \le N\min\{z_1, z_2\} - \lambda z_1 z_2. \tag{3.44}$$

Clearly, if $\lambda \ge 0$ we obtain min{ z_1, z_2 } $\ge 7a$. If $\lambda < 0$, then

$$7aN \le N\min\{z_1, z_2\} - \lambda\eta, \tag{3.45}$$

or

$$N\min\{z_1, z_2\} \ge 7aN + \lambda\eta. \tag{3.46}$$

Now we consider two cases.

CASE 1. When $\lambda \eta \ge -2aN$, then $N\min\{z_1, z_2\} \ge 5aN$, hence $\min\{z_1, z_2\} \ge 5a$. Therefore, when $\lambda \ge 0$, or when $\lambda < 0$, and $\lambda \eta \ge -2aN$ we find that $\min\{z_1, z_2\} \ge 5a$. Thus $\Pi_+(\xi, \eta)$ must contain at least a quadrant of $B_{4a}(z)$, denoted by Q. For $x \in Q$, by the mean value inequality, we have

$$K_{+}\zeta(x) - \lambda x_{1}x_{2} \ge K_{+}\zeta(x)$$

$$\ge K_{+}\zeta(z) - 4aN$$

$$= K_{+}\zeta(z) - \lambda z_{1}z_{2} - 4aN + \lambda z_{1}z_{2}$$

$$\ge \mu(I) - 4aN + \lambda z_{1}z_{2}$$

$$\ge \mu(I) - 4aN + \lambda \eta$$

$$\ge 7aN - 4aN - 2aN$$

$$= aN.$$
(3.47)

This means that

$$Q \subseteq \{ \boldsymbol{x} \in \Pi_+(\boldsymbol{\xi}, \boldsymbol{\eta}) \mid K_+\boldsymbol{\zeta}(\boldsymbol{x}) - \lambda \boldsymbol{x}_1 \boldsymbol{x}_2 \ge aN \}.$$
(3.48)

CASE 2. When $\lambda \eta < -2aN$, then for $x \in \Pi_+(\xi, \eta) \setminus \Pi_+(\xi, \eta/2)$ we have

$$K_{+}\zeta(x) - \lambda x_{1}x_{2} \ge -\lambda x_{1}x_{2} > -\frac{\lambda\eta}{2};$$

$$\Pi_{+}(\xi,\eta) \setminus \Pi_{+}\left(\xi,\frac{\eta}{2}\right) \subset \{x \in \Pi_{+}(\xi,\eta) \mid K_{+}\zeta(x) - \lambda x_{1}x_{2} \ge aN\}.$$
(3.49)

From (3.40) and the fact that $|Q| = 4\pi a^2$, we infer that

$$\left|\left\{x \in \Pi_{+}(\xi, \eta) \mid K_{+}\zeta(x) - \lambda x_{1}x_{2} \ge aN\right\}\right| \ge \left|\operatorname{supp}(\zeta)\right|.$$
(3.50)

Since ζ is an increasing function of $K_+\zeta - \lambda x_1 x_2$ on $\Pi_+(\xi, \eta)$, we derive

$$\operatorname{supp}(\zeta) \subseteq \{ x \in \Pi_+(\xi, \eta) \mid K_+\zeta(x) - \lambda x_1 x_2 \ge aN \},$$
(3.51)

modulo a set of zero measure, from which we obtain (3.38).

LEMMA 3.10. Let b > 0, let 2 and <math>0 < y < 1. Then there exist positive constants M_1 , M_2 , and M_3 such that

$$K_{+}\zeta(x) \leq M_{1}(x_{1}x_{2})^{-1}\mathfrak{I}(\zeta) + M_{2}(x_{1}x_{2})^{-1}\mathfrak{I}(\zeta)\log\frac{25x_{1}x_{2}}{4|x|} + M_{3}(x_{1}x_{2})^{-\gamma}\mathfrak{I}(\zeta)^{\gamma}\|\zeta\|_{p}^{1-\gamma},$$
(3.52)

for every $x \in \Pi_+$ such that $\min\{x_1x_2\} \ge b/2$ and every nonnegative $\zeta \in L^p(\Pi_+)$ that vanishes outside a set of measure πb^2 .

PROOF. Fix $x \in \Pi_+$ such that $v := \min\{x_1x_2\} \ge b/2$. For $y \in \Pi_+$ we define

$$\alpha := |x - \overline{y}|, \quad \beta := |x - \underline{y}|, \quad \rho := |x - y|, \quad \delta := |x - \overline{y}|.$$
(3.53)

Thus

$$K_{+}\zeta(x) = \frac{1}{2\pi} \int_{\Pi_{+}} \log \frac{\alpha\beta}{\rho\delta} \zeta(y) dy$$

$$= \frac{1}{2\pi} \int_{B_{\nu/2}(x)} \log \frac{\alpha\beta}{\rho\delta} \zeta(y) dy$$

$$+ \frac{1}{2\pi} \int_{\Pi_{+} \setminus B_{\nu/2}(x)} \log \frac{\alpha\beta}{\rho\delta} \zeta(y) dy,$$
 (3.54)

where $B_{\nu/2}(x)$ denotes the ball centered at *x* with radius *v*. From the identity

$$\alpha^2 \beta^2 = \rho^2 \delta^2 + 16 x_1 x_2 y_1 y_2, \tag{3.55}$$

we obtain

$$\begin{split} \int_{\Pi_{+} \setminus B_{\nu/2}(x)} \log \frac{\alpha \beta}{\rho \delta} \zeta(y) dy &= \frac{1}{2} \int_{\Pi_{+} \setminus B_{\nu/2}(x)} \log \left(1 + \frac{16 x_{1} x_{2} y_{1} y_{2}}{\rho^{2} \delta^{2}} \right) \zeta(y) dy \\ &\leq 8 x_{1} x_{2} \int_{\Pi_{+} \setminus B_{\nu/2}(x)} \frac{y_{1} y_{2}}{\rho^{2} \delta^{2}} \zeta(y) dy \\ &\leq \frac{32 x_{1} x_{2}}{\nu^{2} |x|^{2}} \int_{\Pi_{+} \setminus B_{\nu/2}(x)} y_{1} y_{2} \zeta(y) dy \\ &\leq 32 (x_{1} x_{2})^{-1} \mathfrak{I}(\zeta), \end{split}$$
(3.56)

where the first inequality follows from the fact that $\log(1 + x) \le x$, for $x \ge 0$. To estimate $\int_{B_{\nu/2}(x)} \log(\alpha \beta \rho^{-1} \delta^{-1}) \zeta(y) dy$, we note that for $y \in B_{\nu/2}(x)$ we have

$$\alpha \le |x - \overline{x}| + |\overline{x} - \overline{y}| = 2x_2 + \rho < \frac{5}{2}x_2.$$
(3.57)

Similarly, $\beta < 5/2x_1$. Therefore

$$\int_{B_{\nu/2}(x)} \log \frac{\alpha \beta}{\rho \delta} \zeta(y) dy \leq \int_{B_{\nu/2}(x)} \log \frac{25x_1 x_2}{4\rho |x|} \zeta(y) dy$$
$$= \log \frac{25x_1 x_2}{4|x|} \int_{B_{\nu/2}(x)} \zeta(y) dy$$
$$+ \int_{B_{\nu/2}(x)} \log \frac{1}{\rho} \zeta(y) dy.$$
(3.58)

Observe that for $y \in B_{\nu/2}(x)$ we have $y_1y_2 \ge x_1x_2/4$, hence

$$\int_{B_{\nu/2}(x)} \zeta(y) dy \le 4 (x_1 x_2)^{-1} \int_{B_{\nu/2}(x)} y_1 y_2 \zeta(y) dy \le 4 (x_1 x_2)^{-1} \mathfrak{I}(\zeta).$$
(3.59)

On the other hand, if we let $\hat{\zeta}$ denote the Schwarz-symmetrisation of $\overline{\zeta} := \zeta \chi_{B_{\nu/2}(x)}$, where $\chi_{B_{\nu/2}(x)}$ is the characteristic function of $B_{\nu/2}(x)$ in Π_+ , about x; then by a standard inequality (see, e.g., [3]) and Hölder's inequality we obtain

$$\begin{split} \int_{B_{\nu/2}(x)} \log \frac{1}{\rho} \zeta(y) dy &\leq \int_{B_{\nu/2}(x)} \log \frac{1}{\rho} \hat{\zeta}(y) dy \\ &\leq \left(\int_{B_{\hat{b}}(x)} \left| \log \frac{1}{\rho} \right|^{\tau} dy \right)^{1/\tau} ||\hat{\zeta}||_{\epsilon}, \end{split}$$
(3.60)

where $\hat{b} := |\operatorname{supp}(\zeta \chi_{B_{\nu/2}(x)})| (\leq b)$, $\epsilon := p/(1 + p\gamma - \gamma)$ and τ is the conjugate exponent of ϵ . It is elementary to show that

$$\int_{B_{\hat{b}}(x)} \left| \log \frac{1}{\rho} \right|^{\tau} dy \le C, \tag{3.61}$$

where *C* is a constant independent of *x*. Next observe that $\epsilon = \epsilon \gamma + (1 - \epsilon \gamma)p$ and $\epsilon \gamma < 1$, hence applying the standard interpolation inequality yields

$$\left\| \hat{\boldsymbol{\zeta}} \right\|_{\epsilon}^{\epsilon} \le \left\| \hat{\boldsymbol{\zeta}} \right\|_{1}^{\epsilon\gamma} \left\| \hat{\boldsymbol{\zeta}} \right\|_{p}^{(1-\epsilon\gamma)p}, \tag{3.62}$$

or

$$\|\hat{\zeta}\|_{\epsilon} \le \|\hat{\zeta}\|_{1}^{\gamma}\|\hat{\zeta}\|_{p}^{(1-\epsilon\gamma)p/\epsilon} = \|\hat{\zeta}\|_{1}^{\gamma}\|\hat{\zeta}\|_{p}^{1-\gamma}.$$
(3.63)

Therefore, we obtain

$$\|\hat{\zeta}\|_{\epsilon} \le 4^{\gamma} (x_1 x_2)^{-\gamma} \mathfrak{I}(\zeta)^{\gamma} \|\zeta\|_{p}^{1-\gamma}.$$
(3.64)

Finally from (3.56), (3.58), (3.60), (3.61), and (3.64) we derive (3.52).

By a simple modification of Burton [2, Lemma 1] we get the following lemma.

LEMMA 3.11. Let ζ be a nonnegative measurable function on Π_+ , let t > 0. Let ζ_t be the function, defined on Π_+ , obtained by translating ζ along the diagonal of Π_+ , diag (Π_+) , $\sqrt{2}t$ units, that is,

$$\zeta_t(x_1, x_2) := \begin{cases} \zeta(x_1 - t, x_2 - t), & x_1 \ge t, \ x_2 \ge t \\ 0, & 0 < x_1 < t, \ 0 < x_2 < t. \end{cases}$$
(3.65)

Then

$$\int_{\Pi_+} \zeta_t K_+ \zeta_t \ge \int_{\Pi_+} \zeta K_+ \zeta. \tag{3.66}$$

LEMMA 3.12. Let $2 and <math>\zeta \in L^p(\Pi_+)$ be a nonnegative, nontrivial function which vanishes outside $\Pi_+(h)$ for some h > 0. Then

$$K_{+}\zeta(x) \leq \frac{4hx_{1}x_{2}}{\pi |x_{1}^{2} - x_{2}^{2}|} \|\zeta\|_{1} + N\min\{x_{1}, x_{2}\},$$
(3.67)

provided that $x \in \Pi_+ \setminus \text{diag}(\Pi_+)$.

PROOF. Fix $x \in \Pi_+ \setminus \text{diag}(\Pi_+)$ and define

$$U(x) := \left\{ y \in \Pi_+ \mid |(y_1^2 - y_2^2) - (x_1^2 - x_2^2)| < |x_1^2 - x_2^2|^{1/2} \right\}.$$
 (3.68)

Next we decompose ζ as follows: $\zeta := \zeta_1 + \zeta_2$, where

$$\zeta_{1}(\gamma) := \begin{cases} \zeta(\gamma), & \gamma \in \Pi_{+}(h) \cap U(x), \\ 0, & \text{otherwise.} \end{cases}$$
(3.69)

Again by setting $\alpha := |x - \overline{y}|, \beta := |x - \underline{y}|, \rho := |x - y|, \delta := |x - \overline{y}|$, we obtain

$$K_{+}\zeta_{2}(x) = \frac{1}{4\pi} \int_{\Pi_{+}} \log \frac{\alpha^{2} \beta^{2}}{\rho^{2} \delta^{2}} \zeta_{2}(y) dy$$

$$= \frac{1}{4\pi} \int_{\Pi_{+}} \log \left(1 + \frac{16x_{1}x_{2}y_{1}y_{2}}{\rho^{2} \delta^{2}} \right) \zeta_{2}(y) dy \qquad (3.70)$$

$$\leq \frac{4hx_{1}x_{2}}{\pi} \int_{\Pi_{+} \setminus U(x)} \frac{1}{\rho^{2} \delta^{2}} \zeta_{2}(y) dy.$$

In view of the following identity:

$$\rho^{2}\delta^{2} = \left(\left(y_{1}^{2} - y_{2}^{2}\right) - \left(x_{1}^{2} - x_{2}^{2}\right)\right)^{2} + 4\left(x_{1}x_{2} - y_{1}y_{2}\right)^{2},$$
(3.71)

we infer that if $y \in \Pi_+ \setminus U(x)$, then $\rho^2 \delta^2 > |x_1^2 - x_2^2|$. This, in conjunction with (3.70), yields

$$K_{+}\zeta_{2}(x) \leq \frac{4hx_{1}x_{2}}{\pi |x_{1}^{2} - x_{2}^{2}|} \|\zeta\|_{1}.$$
(3.72)

Finally, recalling (2.5) we obtain

$$K_{+}\zeta_{1}(x) \le N \min\{x_{1}, x_{2}\}.$$
(3.73)

Since $K_+\zeta(x) = K_+\zeta_1(x) + K_+\zeta_2(x)$, (3.67) follows from (3.72) and (3.73).

REMARK 3.13. Under the hypotheses of Lemma 3.12 with *b* replaced by *a* and an additional assumption, namely, $\Im(\zeta) \ge 1$ we can show the existence of a positive constant *P* such that

$$K_{+}\zeta(x) \le P(x_{1}x_{2})^{-\gamma}\mathfrak{I}(\zeta), \qquad (3.74)$$

provided that $\min\{x_1, x_2\} \ge a/2$ and $\zeta \in \mathcal{F}$. Clearly, the truth of (3.74) emerges from the elementary fact that $s^{\gamma-1} \log s$ is bounded on any interval of the form $[d, \infty), d > 0$.

4. Proof of Theorem 2.1. We first show that, for *I* sufficiently large, there exists a positive constant *R*(*I*) such that if $\Pi_+(\xi, \eta)$ is sufficiently large (satisfying $\mathcal{H}(I)$) and $\zeta \in \Sigma(\xi, \eta, I)$, then

$$\operatorname{supp}(\zeta) \subset \Pi_+(R(I)), \tag{4.1}$$

modulo a set of zero measure. From Lemma 3.3, there exists $I_3 > I_1$ such that if $I > I_3$, then

$$\sigma(I) > \frac{5}{2}aN||\zeta_0||_1.$$
(4.2)

Fix $I > I_3$ and consider $\zeta \in \Sigma(\xi, \eta, I)$ for some $\Pi_+(\xi, \eta)$ satisfying $\mathcal{H}(I)$. From (4.2) and definition of σ , we infer that

$$\frac{5}{2}aN\|\zeta\|_{1} \le \Psi(\zeta) \le \frac{1}{2}\|\zeta\|_{1} \sup_{x \in \text{supp}(\zeta)} K_{+}\zeta(x),$$
(4.3)

thus

$$\sup_{x \in \text{supp}(\zeta)} K_+ \zeta(x) \ge 5aN.$$
(4.4)

Since $K_+\zeta \in C(\mathbb{R}^2)$, it attains its maximum relative to $\overline{\operatorname{supp}(\zeta)}$ at z, say. Therefore, by applying (4.4), we obtain

$$5aN \le K_{+}\zeta(z) \le N\min\{z_{1}, z_{2}\},$$
(4.5)

whence $\min\{z_1, z_2\} \ge 5a$. Without loss of generality, we may assume that $\Im(\zeta) \ge 1$, hence, by (3.74) we obtain

$$5aN \le K_+ \zeta(z) \le PI(z_1 z_2)^{-\gamma},\tag{4.6}$$

so

$$z_1 z_2 \le \left(\frac{PI}{5aN}\right)^{\gamma}.\tag{4.7}$$

Now we define

$$R(I) := \max\left\{ \left(\frac{PI}{5aN}\right)^{\gamma}, 25a^{2} \right\}.$$
(4.8)

Then $V := \{x \in \Pi_+ \mid x_1x_2 \le R(I), \min\{x_1, x_2\} \ge 5a\}$ is not empty and $z \in V$. Note that at least a quadrant of $B_{4a}(x)$, for every $x \in V$, is contained in $\Pi_+(R(I))$ and, in fact, contained in $\Pi_+(\xi_1, R(I))$ for some $\xi_1^2 > R(I)$. By $\Pi_+^t(\xi_1, R(I))$ we denote the translation of $\Pi_+(\xi_1, R(I))$ along diag $(\Pi_+), \sqrt{2}t$ units. Observe that the family of translations $\{\Pi_+^t(\xi_1, R(I))\}_{0 \le t \le t_0}$, where $t_0 := (I/\|\zeta_0\|_1)^{1/2}$, is uniformly contained in $\Pi_+(\xi_2, \eta_2)$, for some ξ_2 and η_2 (in fact we can take $\xi_2 = \xi_1 + t_0$). From now on we assume that $\xi > \xi_2$ and $\eta > \eta_2$. Since a quadrant of $B_{4a}(z)$, designated by Q, is contained in $\Pi_+(R(I))$ we can apply the mean value inequality and (2.5) to deduce that

$$K_{+}\zeta(x) \ge K_{+}\zeta(z) - 4aN \ge aN, \quad x \in Q, \tag{4.9}$$

where the last inequality is obtained from (4.4). To seek a contradiction we assume that $E := \operatorname{supp}(\zeta) \setminus \Pi_+(R(I))$ has a positive measure and write $\zeta = \zeta_0 + \zeta_1$, where

$$\zeta_1 := \zeta \chi_E. \tag{4.10}$$

Since $|Q| = 4\pi a^2 > |\operatorname{supp}(\zeta)| = \pi a^2$, there exists a measure preserving bijection, denoted by *T*, from *E* onto a subset of $Q \setminus \operatorname{supp}(\zeta)$, say *G*, see Royden [15]. Now define

$$\zeta_2 := \zeta_1 \circ T^{-1}, \tag{4.11}$$

on the range of *T* and zero elsewhere, that is,

$$\zeta_2 = (\zeta_1 \circ T^{-1}) \chi_{\operatorname{im}(T)}, \qquad (4.12)$$

where im(*T*) is the range of *T*, and let $\zeta' := \zeta_0 + \zeta_2$. Clearly $\zeta' \in \mathcal{F}(\xi, \eta)$. We show that $\mathfrak{I}(\zeta') < \mathfrak{I}(\zeta)$:

$$\begin{aligned} \mathfrak{I}(\zeta') &= \int_{\Pi_{+}} x_{1} x_{2} \zeta_{0} + \int_{\Pi_{+}} x_{1} x_{2} \zeta_{2} \\ &= \int_{\Pi_{+}} x_{1} x_{2} \zeta_{0} + \int_{\Pi_{+}} x_{1} x_{2} \zeta_{1} \circ T^{-1} \\ &= \int_{\Pi_{+}} x_{1} x_{2} \zeta_{0} + \int_{E} (x_{1} x_{2} \circ T) \zeta_{1} \\ &< \int_{\Pi_{+}} x_{1} x_{2} \zeta_{0} + \int_{\Pi_{+}} x_{1} x_{2} \zeta_{1} \\ &= \mathfrak{I}(\zeta). \end{aligned}$$
(4.13)

On the other hand, we have

$$\Psi(\zeta') - \Psi(\zeta) = \int_{\Pi_+} (\zeta_2 - \zeta_1) K_+ \zeta + \Psi(\zeta_2 - \zeta_1) > \int_{\Pi_+} (\zeta_2 - \zeta_1) K_+ \zeta, \qquad (4.14)$$

since K_+ is strictly positive, see Emamizadeh [10]. Hence

$$\Psi(\zeta') - \Psi(\zeta) > \int_{\Pi_{+}} \zeta_{2} K_{+} \zeta - \int_{\{x \in \Pi_{+} | x_{1} x_{2} > R(I)\}} \zeta_{1} K_{+} \zeta$$

$$\geq a N \int_{\Pi_{+}} \zeta_{2} - \int_{\{x \in \Pi_{+} | x_{1} x_{2} > R(I)\}} \zeta_{1} K_{+} \zeta,$$
(4.15)

by (4.9). Now we proceed to estimate $\int_{\{x \in \Pi_+ | x_1 x_2 > R(I)\}} \zeta_1 K_+ \zeta$. For this purpose we set

$$\operatorname{supp}(\zeta) = J_1 \cup J_2, \tag{4.16}$$

where

$$J_{1} := \left\{ x \in \operatorname{supp}(\zeta) \mid x_{1}x_{2} > R(I), \min\{x_{1}, x_{2}\} \ge \frac{a}{2} \right\},$$

$$J_{2} := \left\{ x \in \operatorname{supp}(\zeta) \mid x_{1}x_{2} > R(I), \min\{x_{1}, x_{2}\} < \frac{a}{2} \right\}.$$
(4.17)

If $x \in J_1$, then by (3.74)

$$K_{+}\zeta(x) \leq PI(x_{1}x_{2})^{-\gamma} \leq PIR(I)^{-\gamma}.$$
(4.18)

297

On the other hand, if $x \in J_2$ then by (2.5)

$$K_{+}\zeta(x) \le N\min\{x_{1}, x_{2}\} \le \frac{a}{2}.$$
 (4.19)

Therefore, if $x \in \text{supp}(\zeta_1)$

$$K_{+}\zeta(x) \le \max\left\{PIR(I)^{-\gamma}, \frac{aN}{2}\right\}.$$
(4.20)

Assume that R(I) is large enough to ensure

$$aN - \max\left\{PIR(I)^{-\gamma}, \frac{aN}{2}\right\} > 0.$$
 (4.21)

Therefore, we obtain

$$\Psi(\zeta') - \Psi(\zeta) \ge \left(aN - \max\left\{PIR(I)^{-\gamma}, \frac{aN}{2}\right\}\right) ||\zeta_1||_1 > 0.$$
(4.22)

This implies that $\Psi(\zeta') > \Psi(\zeta)$. Finally, we define ζ'' to be the function obtained by translating ζ' along diag(Π_+) so that $\Im(\zeta'') = I$. If we denote the amount of translation by *t*, then it is clear that *t* is the bigger root of the following algebraic equation:

$$||\zeta'||_1 t^2 + 2\left(\int_{\Pi_+} (x_1 + x_2)\zeta'\right) t + \int_{\Pi_+} x_1 x_2 \zeta' = I.$$
(4.23)

Note that *t* depends on ζ ; but we are able to find a uniform bound, independent of ζ , as follows. Solving (4.23) for *t* yields

$$t = \frac{-\int_{\Pi_{+}} (x_{1} + x_{2})\zeta' + \left(\left(\int_{\Pi_{+}} (x_{1} + x_{2})\zeta'\right)^{2} - ||\zeta'||_{1}(\mathfrak{I}(\zeta') - I)\right)^{1/2}}{||\zeta'||_{1}}$$

$$< (||\zeta'||_{1}(I - \mathfrak{I}(\zeta')))^{1/2} < \left(\frac{I}{||\zeta'||_{1}}\right)^{1/2},$$
(4.24)

as desired. Note that the choices of ξ_2 and η_2 ensure that $\zeta'' \in \mathcal{F}(\xi, \eta, I)$. Now, by Lemma 3.11 we have

$$\Psi(\zeta'') \ge \Psi(\zeta') > \Psi(\zeta). \tag{4.25}$$

This is a contradiction to the maximality of ζ . Therefore we have been able to show that if $I > I_3$, then there exists R(I) given by (4.8) such that if $\Pi_+(\xi, \eta)$ is sufficiently large ($\xi \ge \xi_2$ and $\eta \ge \eta_2$) and $\zeta \in \Sigma(\xi, \eta, I)$, then, for almost every $x \in \text{supp}(\zeta)$, (4.1) holds.

However, the possibility that the vortex core runs off to infinity, as $\Pi_+(\xi, \eta)$ exhausts Π_+ , still exists. We now show that this situation is ruled out once *I* is sufficiently large. For this purpose, fix $I > I_3$ and consider $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$. We claim that if ξ and

 η are large enough then λ can not be too negative. For this purpose let $\xi \ge \xi_2$ and $\eta \ge \max\{h, \eta_2\}, \xi_2$ and η_2 are as above, where

$$h := \left(N \left| \lambda^* \right|^{-1} + 1 \right) R(I), \quad \lambda^* := -\frac{aN}{3R(I)}, \tag{4.26}$$

such that $\Pi_+(\xi,\eta)$ satisfies $\mathcal{H}(I)$. We show that

$$\lambda > \lambda^*. \tag{4.27}$$

To seek a contradiction suppose that $\lambda \le \lambda^*$. Without loss of generality we may assume that $R(I) \ge 1$. Let $x \in W := \{y \in \Pi_+(\xi, \eta) \mid y_1y_2 > h\}$. Then

$$K_{+}\zeta(x) - \lambda x_{1}x_{2} > -\lambda x_{1}x_{2} = |\lambda| x_{1}x_{2} > |\lambda|h$$

= $|\lambda| (N |\lambda^{*}|^{-1} + 1) R(I) > (N + |\lambda|) R(I).$ (4.28)

Now consider $x \in \text{supp}(\zeta)$. If $\max\{x_1, x_2\} \ge 1$, then $\min\{x_1, x_2\} \le x_1 x_2$, hence $\min\{x_1, x_2\} \le R(I)$. If, however, $\max\{x_1, x_2\} < 1$ then $\min\{x_1, x_2\} < 1 \le R(I)$. Therefore in either case we have $\min\{x_1, x_2\} \le R(I)$. This, in turn, implies that

$$K_{+}\zeta(x) - \lambda x_{1}x_{2} \le N\min\{x_{1}, x_{2}\} - \lambda x_{1}x_{2} < (N + |\lambda|)R(I), \qquad (4.29)$$

whence

$$\sup_{x \in \operatorname{supp}(\zeta)} \left(K_+ \zeta(x) - \lambda x_1 x_2 \right) \le \left(N + |\lambda| \right) R(I).$$
(4.30)

Therefore $K_+\zeta(x) - \lambda x_1 x_2$ takes greater values on a nonempty subset of $\Pi_+(\xi,\eta)$, namely W, than its supremum on supp(ζ). This is impossible, since ζ is essentially an increasing function of $K_+\zeta(x) - \lambda x_1 x_2$ on $\Pi_+(\xi,\eta)$. Hence we derive (4.27). For the rest of the proof we fix $I > I_0 := \max\{I_1, I_2, I_3\}$. Let $\xi > \xi_2, \eta > h$ (as above) be such that $\Pi_+(\xi,\eta)$ satisfies $\mathcal{H}(I)$. Consider $(\zeta, \phi, \lambda) \in M(\xi, \eta, I)$. Now fix $x \in \text{supp}(\zeta) \setminus \text{diag}(\Pi_+)$ such that $\min\{x_1, x_2\} < a/6$. Then by Lemmas 3.9 and 3.12, in conjunction with (4.27),

$$aN \leq K_{+}\zeta(x) - \lambda x_{1}x_{2}$$

$$\leq \frac{4R(I)x_{1}x_{2}}{\pi |x_{1}^{2} - x_{2}^{2}|} \|\zeta\|_{1} + N\min\{x_{1}, x_{2}\} - \lambda^{*}x_{1}x_{2}$$

$$\leq \frac{4R(I)x_{1}x_{2}}{\pi |x_{1}^{2} - x_{2}^{2}|} \|\zeta\|_{1} + N\min\{x_{1}, x_{2}\} - \lambda^{*}R(I)$$

$$\leq \frac{4R(I)x_{1}x_{2}}{\pi |x_{1}^{2} - x_{2}^{2}|} \|\zeta\|_{1} + \frac{aN}{6} + \frac{aN}{3}.$$
(4.31)

Hence

$$|x_1^2 - x_2^2| < \frac{8R(I) ||\zeta_0||_1}{a\pi N}.$$
(4.32)

To summarise, we have shown that if $x \in \text{supp}(\zeta)$ is such that $\min\{x_1, x_2\} > a/6$, then $x \in \Pi_+(R(I)) \cap \{y \in \Pi_+ | \min\{y_1, y_2\} > a/6\}$; otherwise x satisfies (4.32). This clearly concludes the existence part of the theorem.

Now consider $\zeta \in \Sigma(I)$. Then there exists $\hat{\xi} > 0$ such that $\overline{\operatorname{supp}(\zeta)}$ is a compact subset of $D(\hat{\xi}) := (0, \hat{\xi}) \times (0, \hat{\xi})$ and, according to Lemma 3.1,

$$\zeta = \phi \circ (K_{+}\zeta - \lambda x_{1}x_{2}), \quad \text{a.e. in } D(\hat{\xi}), \tag{4.33}$$

for some increasing function ϕ and $\lambda \in \mathbb{R}$. Note that from Lemma 3.9

$$\kappa := \operatorname{ess\,sup}\left\{K_{+}\zeta(x) - \lambda x_{1}x_{2} \mid x \in \operatorname{supp}(\zeta)\right\} \ge aN > 0. \tag{4.34}$$

Since the level sets of $K_+\zeta - \lambda x_1 x_2$, on supp (ζ) , have zero measure, in particular we have

$$\left| \left\{ x \in \operatorname{supp}(\zeta) \mid K_{+}\zeta - \lambda x_{1}x_{2} = \kappa \right\} \right| = 0.$$

$$(4.35)$$

Therefore

$$K_{+}\zeta - \lambda x_{1}x_{2} > \kappa$$
, a.e. in supp(ζ). (4.36)

Thus we may suppose that $\phi(s) = 0$ for $s \le \kappa$. Now if we define $F(s) := \int_0^s \phi(t) dt$, then Lemma 3.7 yields

$$2\int_{D(\hat{\xi})} F \circ \psi - 2\lambda I = \int_{\partial D(\hat{\xi})} (F \circ \psi) (x \cdot \vec{n}), \qquad (4.37)$$

where $\psi := K_+ \zeta - \lambda x_1 x_2$. We claim that for $x \in \partial D(\hat{\xi})$ we have $\psi \le \kappa$. Otherwise, by the continuity of ψ we can find $B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \cap \text{supp}(\zeta)$ has positive measure, since $\overline{\text{supp}(\zeta)}$ is a compact subset of $D(\hat{\xi})$, and $\psi(s) > \kappa$ for $s \in B_{\epsilon}(x)$; but this is a contradiction to (4.33). Therefore, if $x \in \partial D(\hat{\xi})$ we have $F \circ \psi(x) = 0$. Hence from (4.37) we deduce that $\lambda > 0$, as required.

Now fix $x \in \text{supp}(\zeta)$. Since $\lambda > 0$, we can employ Lemma 3.9 to obtain

$$aN \le K_{+}\zeta(x) - \lambda x_{1}x_{2} < K_{+}\zeta(x) \le N\min\{x_{1}, x_{2}\}.$$
(4.38)

Thus $\min\{x_1, x_2\} \ge a$. This proves the vortex core avoids $\partial \Pi_+$. The validity of (2.12) is established as in Emamizadeh [11].

REFERENCES

- T. V. Badiani, Existence of steady symmetric vortex pairs on a planar domain with an obstacle, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 2, 365–384.
- [2] G. R. Burton, Steady symmetric vortex pairs and rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 269–290.
- G. R. Burton and B. Emamizadeh, A constrained variational problem for steady vortices in a shear flow, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1341–1365.
- [4] G. R. Burton and J. B. McLeod, Maximisation and minimisation on classes of rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 3-4, 287–300.
- [5] A. R. Elcrat, B. Fornberg, M. Horn, and K. Miller, Some steady vortex flows past a circular cylinder, J. Fluid Mech. 409 (2000), 13–27.
- [6] A. R. Elcrat, B. Fornberg, and K. Miller, *Steady vortex flows obtained from a nonlinear eigenvalue problem*, Flows and Related Numerical Methods (Toulouse, 1998), Soc. Math. Appl. Indust., Paris, 1999, pp. 130–136.

- [7] A. R. Elcrat and K. G. Miller, *Rearrangements in steady multiple vortex flows*, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1481-1490.
- [8] B. Emamizadeh, *The complete proof of Nycander's problem*, The 2nd International Conference on Applied Mathematics (Tehran, October 25–27, 2000), Iran University of Science and Technology (IUST), 2000, pp. 44–56.
- [9] _____, *Rearrangements of functions and 2D ideal fluids*, The 2nd International Conference on Applied Mathematics (Tehran, October 25–27, 2000), Iran University of Science and Technology (IUST), 2000, pp. 46–54.
- [10] _____, Steady vortex in a uniform shear flow of an ideal fluid, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 4, 801-812.
- [11] _____, *Existence of a steady flow with a bounded vortex in an unbounded domain*, J. Sci. Islam. Repub. Iran **12** (2001), no. 1, 57–63.
- [12] A. Friedman and B. Turkington, *Vortex rings: existence and asymptotic estimates*, Trans. Amer. Math. Soc. **268** (1981), no. 1, 1–37.
- [13] P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées, vol. 22, Masson, Paris, 1992.
- [14] J. Nycander, *Existence and stability of stationary vortices in a uniform shear flow*, J. Fluid Mech. 287 (1995), 119–132.
- [15] H. L. Royden, *Real Analysis*, The Macmillan, New York, 1963.

B. EMAMIZADEH: DEPARTMENT OF MATHEMATICS, IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, NARMAK 16844, TEHRAN, IRAN

Current address: Institute for Studies in Theoretical Physics and Mathematics, Niavaran Building, Niavaran Square, Tehran, Iran

M. H. MEHRABI: DEPARTMENT OF MATHEMATICS, IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, NARMAK 16844, TEHRAN, IRAN