SOME RESULTS ON FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS IN COMPLETE METRIC SPACES

JEONG SHEOK UME, BYUNG SOO LEE, and SUNG JIN CHO

Received 17 October 2001

Using the concept of w-distance, we improve some well-known fixed point theorems.

2000 Mathematics Subject Classification: 47H10.

1. Introduction. Recently, Ume [3] improved the fixed point theorems in a complete metric space using the concept of w-distance, introduced by Kada, Suzuki, and Takahashi [2], and more general contractive mappings than quasi-contractive mappings.

In this paper, using the concept of w-distance, we first prove common fixed point theorems for multivalued mappings in complete metric spaces, then these theorems are used to improve Ćirić's fixed point theorem [1], Kada-Suzuki-Takahashi's fixed point theorem [2], and Ume's fixed point theorem [3].

2. Preliminaries. Throughout, we denote by \mathbb{N} the set of all positive integers and by \mathbb{R} the set of all real numbers.

DEFINITION 2.1 (see [2]). Let (X,d) be a metric space, then a function $p: X \times X \rightarrow [0,\infty)$ is called a *w*-distance on *X* if the following are satisfied:

- (1) $p(x,z) \le p(x,y) + p(y,z)$ for all $x, y, z \in X$;
- (2) for any $x \in X$, $p(x, \cdot) : X \to [0, \infty)$ is lower semicontinuous;
- (3) for any $\epsilon > 0$, there exists $\delta > 0$ such that $p(z, x) \le \delta$ and $p(z, y) \le \delta$ imply $d(x, y) \le \epsilon$.

DEFINITION 2.2. Let (X, d) be a metric space with a *w*-distance *p*, then

- (1) for any $x \in X$ and $A \subseteq X$, $d(x,A) := \inf\{d(x,y) : y \in A\}$ and $d(A,x) := \inf\{d(y,x) : y \in A\};$
- (2) for any $x \in X$ and $A \subseteq X$, $p(x,A) := \inf\{p(x,y) : y \in A\}$ and $p(A,x) := \inf\{p(y,x) : y \in A\};$
- (3) for any $A, B \subseteq X$, $p(A, B) := \inf \{ p(x, y) : x \in A, y \in B \};$
- (4) $CB_p(X) = \{A \mid A \text{ is nonempty closed subset of } X \text{ and } \sup_{x,y \in A} p(x,y) < \infty \}.$

The following lemmas are fundamental.

LEMMA 2.3 (see [2]). Let *X* be a metric space with a metric *d*, let *p* be a *w*-distance on *X*. Let $\{x_n\}$ and $\{y_n\}$ be sequences in *X*, let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in $[0, \infty)$ converging to 0, and let $x, y, z \in X$. Then the following hold:

- (1) if $p(x_n, y) \le \alpha_n$ and $p(x_n, z) \le \beta_n$ for any $n \in \mathbb{N}$, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then y = z;
- (2) *if* $p(x_n, y_n) \le \alpha_n$ and $p(x_n, z) \le \beta_n$ for any $n \in \mathbb{N}$, then $\{y_n\}$ converges to z;
- (3) *if* $p(x_n, x_m) \le \alpha_n$ *for any* $n, m \in \mathbb{N}$ *with* m > n, *then* $\{x_n\}$ *is a Cauchy sequence;*
- (4) *if* $p(y, x_n) \le \alpha_n$ *for any* $n \in \mathbb{N}$ *, then* $\{x_n\}$ *is a Cauchy sequence.*

LEMMA 2.4 (see [3]). Let X be a metric space with a metric d, let p be a w-distance on X, and let T be a mapping of X into itself satisfying

$$p(Tx, Ty) \le q \cdot \max\{p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx)\}$$
(2.1)

for all $x, y \in X$ and some $q \in [0, 1)$. Then

(1) for each $x \in X$, $n \in \mathbb{N}$, and $i, j \in \mathbb{N}$ with $i, j \leq n$,

$$p(T^{i}x, T^{j}x) \le q \cdot \delta(O(x, n));$$

$$(2.2)$$

(2) for each $x \in X$ and $n \in \mathbb{N}$, there exist $k, l \in \mathbb{N}$ with $k, l \leq n$ such that

$$\delta(O(x,n)) = \max\{p(x,x), p(x,T^{k}x), p(T^{l}x,x)\};$$
(2.3)

(3) for each $x \in X$,

$$\delta(O(x,\infty)) \le \frac{1}{1-q} \{ p(x,x) + p(x,Tx) + p(Tx,x) \};$$
(2.4)

(4) for each $x \in X$, $\{T^n x\}_{n=1}^{\infty}$ is a Cauchy sequence.

3. Main results

THEOREM 3.1. Let X be a complete metric space with a metric d and let p be a w-distance on X. Suppose that S and T are two mappings of X into $CB_p(X)$ and φ : $X \times X \to [0, \infty)$ is a mapping such that

$$\max\{p(u_1, u_2), p(v_1, v_2)\} \le q \cdot \varphi(x, y)$$
(3.1)

for all nonempty subsets A, B of X, $u_1 \in SA$, $u_2 \in S^2A$, $v_1 \in TB$, $v_2 \in T^2B$, $x \in A$, $y \in B$, and some $q \in [0,1)$,

$$\sup\left\{\sup\left(\frac{\varphi(x,y)}{\min\left[p(x,SA),p(y,TB)\right]}:x\in A,\ y\in B\right):A,B\subseteq X\right\}<\frac{1}{q},\qquad(3.2)$$

$$\inf \{ p(y,u) + p(x,Sx) + p(y,Ty) : x, y \in X \} > 0,$$
(3.3)

for every $u \in X$ with $u \notin Su$ or $u \notin Tu$, where SA means $\bigcup_{a \in A} Sa$. Then S and T have a common fixed point in X.

PROOF. Let

$$\beta = \sup\left\{\sup\left(\frac{\varphi(x, y)}{\min\left[p(x, SA), p(y, TB)\right]} : x \in A, \ y \in B\right) : A, \ B \subseteq X\right\},\tag{3.4}$$

320

and $k = \beta q$. Define $x_{n+1} \in Sx_n$ and $y_{n+1} \in Ty_n$ for all $n \in \mathbb{N}$. Then $x_n \in Sx_{n-1}$, $x_{n+1} \in S^2 x_{n-1}$, $y_n \in Ty_{n-1}$, and $y_{n+1} \in T^2 y_{n-1}$. From (3.1) and (3.2), we have

$$p(x_n, x_{n+1}) \le kp(x_{n-1}, x_n) \le \dots \le k^{n-1}p(x_1, x_2),$$
 (3.5)

$$p(y_n, y_{n+1}) \le kp(y_{n-1}, y_n) \le \dots \le k^{n-1}p(y_1, y_2),$$
 (3.6)

for all $n \in \mathbb{N}$ and some $k \in [0,1)$. Let n and m be any positive integers such that n < m. Then, from (3.6), we obtain

$$p(y_{n}, y_{m}) \leq p(y_{n}, y_{n+1}) + \dots + p(y_{m-1}, y_{m})$$

$$= \sum_{i=0}^{m-n-1} p(y_{n+i}, y_{n+i+1})$$

$$\leq \sum_{i=0}^{m-n-1} k^{n+i-1} p(y_{1}, y_{2})$$

$$\leq \frac{k^{n-1}}{(1-k)} p(y_{1}, y_{2}).$$
(3.7)

By Lemma 2.3, $\{y_n\}$ is a Cauchy sequence. Since *X* is complete, $\{y_n\}$ converges to $u \in X$. Then, since $p(y_n, \cdot)$ is lower semicontinuous, from (3.7) we have

$$p(y_n, u) \le \lim_{m \to \infty} \inf p(y_n, y_m) \le \frac{k^{n-1}}{(1-k)} p(y_1, y_2).$$
 (3.8)

Suppose that $u \notin Su$ or $u \notin Tu$. Then, by (3.3), (3.5), (3.6), and (3.8), we have

$$0 < \inf \left\{ p(y,u) + p(x,Sx) + p(y,Ty) : x, y \in X \right\}$$

$$\leq \inf \left\{ p(y_n,u) + p(x_n,x_{n+1}) + p(y_n,y_{n+1}) : n \in \mathbb{N} \right\}$$

$$\leq \inf \left\{ \frac{k^{n-1}}{(1-k)} p(y_1,y_2) + k^{n-1} p(x_1,x_2) + k^{n-1} p(y_1,y_2) : n \in \mathbb{N} \right\}$$

$$= \left\{ \frac{2-k}{(1-k)} p(y_1,y_2) + p(x_1,x_2) \right\} \inf \left\{ k^{n-1} : n \in \mathbb{N} \right\}$$

$$= 0.$$
(3.9)

This is a contradiction. Therefore we have $u \in Su$ and $u \in Tu$.

THEOREM 3.2. Let *X* be a complete metric space with a metric *d* and let *p* be a *w*-distance on *X*. Suppose that *S* and *T* are two mappings of *X* into $CB_p(X)$ and φ : $X \times X \to [0, \infty)$ is a mapping such that

$$\max\{p(u_1, u_2), p(v_1, v_2)\} \le q \cdot \varphi(x, y)$$
(3.10)

for all $x, y \in X$, $u_1 \in Sx$, $u_2 \in S^2x$, $v_1 \in Ty$, $v_2 \in T^2y$, and some $q \in [0,1)$,

$$\sup\left\{\sup\left(\frac{\varphi(x,y)}{\min\left[p(x,Sx),p(y,Ty)\right]}:x\in A,\ y\in B\right):A,B\subseteq X\right\}<\frac{1}{q},\qquad(3.11)$$

and (3.3) is satisfied. Then S and T have a common fixed point in X.

PROOF. By a method similar to that in the proof of Theorem 3.1, the result follows.

THEOREM 3.3. Let *X* be a complete metric space with a metric *d* and let *p* be a *w*-distance on *X*. Suppose that *T* is a mapping of *X* into $CB_p(X)$ and $\psi: X \to [0, \infty)$ is a mapping such that

$$p(u_1, u_2) \le q \cdot \psi(x) \tag{3.12}$$

for all $x \in X$, $u_1 \in Tx$, $u_2 \in T^2x$ and some $q \in [0,1)$,

$$\sup\left\{\frac{\psi(x)}{p(x,Tx)}: x \in X\right\} < \frac{1}{q},$$

$$\inf\left\{p(x,u) + p(x,Tx): x \in X\right\} > 0,$$
(3.13)

for every $u \in X$ with $u \notin Tu$. Then T has a fixed point in X.

PROOF. By a method similar to that in the proof of Theorem 3.1, the result follows.

THEOREM 3.4. Let *X* be a complete metric space with a metric *d* and let *p* be a *w*-distance on *X*. Suppose that *S* and *T* are self-mapping of *X* and $\varphi : X \times X \rightarrow [0, \infty)$ is a mapping such that

$$\max\left\{p(Sx, S^2x), p(Ty, T^2y)\right\} \le q \cdot \varphi(x, y) \tag{3.14}$$

for all $x, y \in X$ and some $q \in [0,1)$,

$$\sup\left\{\frac{\varphi(x,y)}{\min\left[p(x,Sx),p(y,Ty)\right]}:x,y\in X\right\} < \frac{1}{q},$$

$$\inf\left\{p(y,u) + p(x,Sx) + p(y,Ty):x,y\in X\right\} > 0,$$
(3.15)

for every $u \in X$ with $u \neq Su$ or $u \neq Tu$. Then S and T have a common fixed point in X.

PROOF. By a method similar to that in the proof of Theorem 3.1, the result follows.

From Theorem 3.1, we have the following corollary.

COROLLARY 3.5. Let *X* be a complete metric space with a metric *d* and let *p* be a *w*-distance on *X*. Suppose that *S* and *T* are two mappings of *X* into $CB_p(X)$ and $\varphi: X \times X \to [0, \infty)$ is a mapping such that

$$\max \left\{ \sup \left[p(u_1, u_2) : u_1 \in Sx, \ u_2 \in S^2 x \right], \\ \sup \left[p(v_1, v_2) : v_1 \in Tx, \ v_2 \in T^2 x \right] \right\} \le q \cdot \varphi(x, y)$$
(3.16)

for all $x, y \in X$ and some $q \in [0,1)$, and that (3.3) and (3.11) are satisfied. Then S and T have a common fixed point in X.

From Theorem 3.3, we have the following corollaries.

COROLLARY 3.6. Let *X* be a complete metric space with a metric *d* and let *p* be a *w*-distance on *X*. Suppose that *T* is a mapping of *X* into $CB_p(X)$ and $\psi : X \to [0, \infty)$ is a mapping such that

$$\sup[p(u_1, u_2) : u_1 \in Tx, \ u_2 \in T^2x] \le q \cdot \psi(x)$$
(3.17)

for all $x \in X$ and some $q \in [0,1)$, and that (3.13) is satisfied. Then T has a fixed point in X.

COROLLARY 3.7. Let *X* be a complete metric space with a metric *d* and let *p* be a *w*-distance on *X*. Suppose that *T* is a self-mapping of *X* and $\psi : X \to [0, \infty)$ is a mapping such that

$$p(Tx, T^2x) \le q \cdot \psi(x) \tag{3.18}$$

for all $x \in X$ and some $q \in [0,1)$,

$$\sup\left\{\frac{\psi(x)}{p(x,Tx)}: x \in X\right\} < \frac{1}{q},$$

$$\inf\left\{p(x,u) + p(x,Tx): x \in X\right\} > 0,$$
(3.19)

for every $u \in X$ with $u \neq Tu$. Then T has a fixed point in X.

From Corollary 3.7, we have the following corollaries.

COROLLARY 3.8 (see [3]). Let X be a complete metric space with a metric d and let p be a w-distance on X. Suppose that T is a self-mapping of X such that

$$p(Tx, Ty) \le q \cdot \max\{p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx)\}$$
(3.20)

for all $x, y \in X$ and some $q \in [0, 1)$, and that

$$\inf \left\{ p(x,u) + p(x,Tx) : x \in X \right\} > 0 \tag{3.21}$$

for every $u \in X$ with $u \neq Tu$. Then T has a unique fixed point in X.

PROOF. By (3.20) and Lemma 2.4(3), we have

$$\sup\left\{p\left(T^{i}x, T^{j}x\right) \mid i, \ j \in \mathbb{N} \cup \{0\}\right\} < \infty \tag{3.22}$$

for every $x \in X$. Thus we may define a function $r: X \times X \rightarrow [0, \infty)$ by

$$r(x, y) = \max\{\sup[p(T^{i}x, T^{j}x) \mid i, j \in \mathbb{N} \cup \{0\}], p(x, y)\}$$
(3.23)

for every $x, y \in X$. Clearly, r is a w-distance on X. Let x be a given element of X, then, by using Lemma 2.4(1), (3.20), and (3.23), we have

$$r(Tx, T^{2}x) = \sup \left\{ p(T^{i}x, T^{j}x) \mid i, j \in \mathbb{N} \right\}$$

$$\leq q \cdot \sup \left\{ p(T^{i}x, T^{j}x) \mid i, j \in \mathbb{N} \cup \{0\} \right\}$$

$$= q \cdot r(x, Tx).$$

(3.24)

By (3.21) and (3.23), we obtain

$$\inf \{ r(x,u) + r(x,Tx) : x \in X \} > 0 \tag{3.25}$$

for every $u \in X$ with $u \neq Tu$. From (3.24), (3.25), and Corollary 3.7, *T* has a fixed point in *X*. By (3.20) and Lemma 2.4, it is clear that the fixed point of *T* is unique.

COROLLARY 3.9 (see [2]). Let X be a complete metric space, let p be a w-distance on X, and let T be a mapping from X into itself. Suppose that there exists $q \in [0,1)$ such that

$$p(Tx, T^2x) \le q \cdot p(x, Tx) \tag{3.26}$$

for every $x \in X$ *and that*

$$\inf \{ p(x, y) + p(x, Tx) : x \in X \} > 0$$
(3.27)

for every $y \in X$ with $y \neq Ty$. Then T has a fixed point in X.

PROOF. Define ψ : $X \rightarrow [0, \infty)$ by

$$\psi(x) = p(x, Tx) \tag{3.28}$$

for all $x \in X$. Thus the conditions of Corollary 3.7 are satisfied. Hence *T* has a fixed point in *X*.

From Corollary 3.8, we have the following corollary.

COROLLARY 3.10 (see [1]). Let *X* be a complete metric space with a metric *d* and let *T* be a mapping from *X* into itself. Suppose that *T* is a quasicontraction, that is, there exists $q \in [0, 1)$ such that

$$d(Tx, Ty) \le q \cdot \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$$
(3.29)

for every $x, y \in X$. Then T has a unique fixed point in X.

PROOF. It is clear that the metric *d* is a *w*-distance and

$$\inf \left\{ d(x, y) + d(x, Tx) : x \in X \right\} > 0 \tag{3.30}$$

for every $y \in X$ with $y \neq Ty$. Thus, by Corollary 3.8 or 3.9, *T* has a unique fixed point in *X*.

ACKNOWLEDGMENT. This work was supported by grant No. 2001-1-10100-005-2 from the Basic Research Program of the Korea Science & Engineering Foundation.

References

- L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273.
- [2] O. Kada, T. Suzuki, and W. Takahashi, *Nonconvex minimization theorems and fixed point theorems in complete metric spaces*, Math. Japon. 44 (1996), no. 2, 381-391.

324

 J. S. Ume, Fixed point theorems related to Ciric's contraction principle, J. Math. Anal. Appl. 225 (1998), no. 2, 630-640.

JEONG SHEOK UME: DEPARTMENT OF APPLIED MATHEMATICS, CHANGWON NATIONAL UNIVERSITY, CHANGWON 641-773, KOREA

E-mail address: jsume@sarim.changwon.ac.kr

BYUNG SOO LEE: DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, PUSAN 608-736, KOREA

E-mail address: bslee@star.kyungsung.ac.kr

Sung Jin Cho: Department of Applied Mathematics, Pukyong National University, Pusan $608\text{-}737, \mathrm{Korea}$

E-mail address: sjcho@dolphin.pknu.ac.kr