ON β-DUAL OF VECTOR-VALUED SEQUENCE SPACES OF MADDOX

SUTHEP SUANTAI and WINATE SANHAN

Received 13 April 2001 and in revised form 10 October 2001

The β-dual of a vector-valued sequence space is defined and studied. We show that if an X-valued sequence space E is a BK-space having AK property, then the dual space of E and its β-dual are isometrically isomorphic. We also give characterizations of β-dual of vector-valued sequence spaces of Maddox $\ell(X, p), \ell_{\infty}(X, p), c_{0}(X, p)$, and $c(X, p)$.

2000 Mathematics Subject Classification: 46A45.

1. Introduction. Let $(X,\|\cdot\|)$ be a Banach space and $p=\left(p_{k}\right)$ a bounded sequence of positive real numbers. Let \mathbb{N} be the set of all natural numbers, we write $x=\left(x_{k}\right)$ with x_{k} in X for all $k \in \mathbb{N}$. The X-valued sequence spaces of Maddox are defined as

$$
\begin{align*}
& c_{0}(X, p)=\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left\|x_{k}\right\|^{p_{k}}=0\right\} ; \\
& c(X, p)=\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left\|x_{k}-a\right\|^{p_{k}}=0 \text { for some } a \in X\right\} ; \\
& \ell_{\infty}(X, p)=\left\{x=\left(x_{k}\right): \sup _{k}\left\|x_{k}\right\|^{p_{k}}<\infty\right\} ; \tag{1.1}\\
& \ell(X, p)=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left\|x_{k}\right\|^{p_{k}}<\infty\right\} .
\end{align*}
$$

When $X=\mathbb{K}$, the scalar field of X, the corresponding spaces are written as $c_{0}(p)$, $c(p), \ell_{\infty}(p)$, and $\ell(p)$, respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons [7] and Maddox [3, 4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and is known as the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces $c_{0}(p), c(p), \ell(p)$, and $\ell_{\infty}(p)$ and has given characterizations of β-dual of scalar-valued sequence spaces of Maddox.
In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space $\ell_{p}[X]$, where $\ell_{p}[X], 1<p<\infty$, is defined by

$$
\begin{equation*}
\ell_{p}[X]=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left|f\left(x_{k}\right)\right|^{p}<\infty \text { for each } f \in X^{\prime}\right\} . \tag{1.2}
\end{equation*}
$$

In this paper, the β-dual of a vector-valued sequence space is defined and studied and we give characterizations of β-dual of vector-valued sequence spaces of Maddox
$\ell(X, p), \ell_{\infty}(X, p), c_{0}(X, p)$, and $c(X, p)$. Some results, obtained in this paper, are generalizations of some in [1, 3].
2. Notation and definitions. Let $(X,\|\cdot\|)$ be a Banach space. Let $W(X)$ and $\Phi(X)$ denote the space of all sequences in X and the space of all finite sequences in X, respectively. A sequence space in X is a linear subspace of $W(X)$. Let E be an X valued sequence space. For $x \in E$ and $k \in \mathbb{N}$ we write that x_{k} stand for the k th term of x. For $x \in X$ and $k \in \mathbb{N}$, we let $e^{(k)}(x)$ be the sequence $(0,0,0, \ldots, 0, x, 0, \ldots)$ with x in the k th position and let $e(x)$ be the sequence (x, x, x, \ldots). For a fixed scalar sequence $u=\left(u_{k}\right)$, the sequence space E_{u} is defined as

$$
\begin{equation*}
E_{u}=\left\{x=\left(x_{k}\right) \in W(X):\left(u_{k} x_{k}\right) \in E\right\} . \tag{2.1}
\end{equation*}
$$

An X-valued sequence space E is said to be normal if $\left(y_{k}\right) \in E$ whenever $\left\|y_{k}\right\| \leq$ $\left\|x_{k}\right\|$ for all $k \in \mathbb{N}$ and $\left(x_{k}\right) \in E$. Suppose that the X-valued sequence space E is endowed with some linear topology τ. Then E is called a K-space if, for each $k \in \mathbb{N}$, the k th coordinate mapping $p_{k}: E \rightarrow X$, defined by $p_{k}(x)=x_{k}$, is continuous on E. In addition, if (E, τ) is a Fréchet (Banach) space, then E is called an FK-(BK)-space. Now, suppose that E contains $\Phi(X)$, then E is said to have property $A K$ if $\sum_{k=1}^{n} e^{(k)}\left(x_{k}\right) \rightarrow x$ in E as $n \rightarrow \infty$ for every $x=\left(x_{k}\right) \in E$.
The spaces $c_{0}(p)$ and $c(p)$ are FK-spaces. In $c_{0}(X, p)$, we consider the function $g(x)=\sup _{k}\left\|x_{k}\right\|^{p_{k} / M}$, where $M=\max \left\{1, \sup _{k} p_{k}\right\}$, as a paranorm on $c_{0}(X, p)$, and it is known that $c_{0}(X, p)$ is an FK-space having property AK under the paranorm g defined as above. In $\ell(X, p)$, we consider it as a paranormed sequence space with the paranorm given by $\left\|\left(x_{k}\right)\right\|=\left(\sum_{k=1}^{\infty}\left\|x_{k}\right\|^{p_{k}}\right)^{1 / M}$. It is known that $\ell(X, p)$ is an FK-space under the paranorm defined as above.

For an X-valued sequence space E, define its Köthe dual with respect to the dual pair (X, X^{\prime}) (see [2]) as follows:

$$
\begin{equation*}
\left.E^{\times}\right|_{\left(X, X^{\prime}\right)}=\left\{\left(f_{k}\right) \subset X^{\prime}: \sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right|<\infty \forall x=\left(x_{k}\right) \in E\right\} . \tag{2.2}
\end{equation*}
$$

In this paper, we denote $\left.E^{\times}\right|_{\left(X, X^{\prime}\right)}$ by E^{α} and it is called the α-dual of E.
For a sequence space E, the β-dual of E is defined by

$$
\begin{equation*}
E^{\beta}=\left\{\left(f_{k}\right) \subset X^{\prime}: \sum_{k=1}^{\infty} f_{k}\left(x_{k}\right) \text { converges } \forall\left(x_{k}\right) \in E\right\} . \tag{2.3}
\end{equation*}
$$

It is easy to see that $E^{\alpha} \subseteq E^{\beta}$.
For the sake of completeness we introduce some further sequence spaces that will be considered as β-dual of the vector-valued sequence spaces of Maddox:

$$
\begin{aligned}
& M_{0}(X, p)=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left\|x_{k}\right\| M^{-1 / p_{k}}<\infty \text { for some } M \in \mathbb{N}\right\} ; \\
& M_{\infty}(X, p)=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left\|x_{k}\right\| n^{1 / p_{k}}<\infty \quad \forall n \in \mathbb{N}\right\} ;
\end{aligned}
$$

$$
\begin{align*}
\ell_{0}(X, p) & =\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left\|x_{k}\right\|^{p_{k}} M^{-p_{k}}<\infty \text { for some } M \in \mathbb{N}\right\}, \quad p_{k}>1 \forall k \in N
\end{aligned} \quad \begin{aligned}
& \operatorname{cs}\left[X^{\prime}\right]=\left\{\left(f_{k}\right) \subset X^{\prime}: \sum_{k=1}^{\infty} f_{k}(x) \text { converges } \forall x \in X\right\}
\end{align*}
$$

When $X=\mathbb{K}$, the scalar field of X, the corresponding first two sequence spaces are written as $M_{0}(p)$ and $M_{\infty}(p)$, respectively. These two spaces were first introduced by Grosse-Erdmann [1].
3. Main results. We begin by giving some general properties of β-dual of vectorvalued sequence spaces.

Proposition 3.1. Let X be a Banach space and let E, E_{1}, and E_{2} be X-valued sequence spaces. Then
(i) $E^{\alpha} \subseteq E^{\beta}$.
(ii) If $E_{1} \subseteq E_{2}$, then $E_{2}^{\beta} \subseteq E_{1}^{\beta}$.
(iii) If $E=E_{1}+E_{2}$, then $E^{\beta}=E_{1}^{\beta} \cap E_{2}^{\beta}$.
(iv) If E is normal, then $E^{\alpha}=E^{\beta}$.

Proof. Assertions (i), (ii), and (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices to show only that $E^{\beta} \subseteq E^{\alpha}$. Let $\left(f_{k}\right) \in E^{\beta}$ and $x=$ $\left(x_{k}\right) \in E$. Then $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges. Choose a scalar sequence $\left(t_{k}\right)$ with $\left|t_{k}\right|=1$ and $f_{k}\left(t_{k} x_{k}\right)=\left|f_{k}\left(x_{k}\right)\right|$ for all $k \in \mathbb{N}$. Since E is normal, $\left(t_{k} x_{k}\right) \in E$. It follows that $\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right|$ converges, hence $\left(f_{k}\right) \in E^{\alpha}$.

If E is a BK-space, we define a norm on E^{β} by the formula

$$
\begin{equation*}
\left\|\left(f_{k}\right)\right\|_{E^{\beta}}=\sup _{\left\|\left(x_{k}\right)\right\| \leq 1}\left|\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)\right| \tag{3.1}
\end{equation*}
$$

It is easy to show that $\|\cdot\|_{E^{\beta}}$ is a norm on E^{β}.
Next, we give a relationship between β-dual of a sequence space and its continuous dual. Indeed, we need a lemma.

LEMMA 3.2. Let E be an X-valued sequence space which is an $F K$-space containing $\Phi(X)$. Then for each $k \in \mathbb{N}$, the mapping $T_{k}: X \rightarrow E$, defined by $T_{k} x=e^{k}(x)$, is continuous.

Proof. Let $V=\left\{e^{k}(x): x \in X\right\}$. Then V is a closed subspace of E, so it is an FK-space because E is an FK-space. Since E is a K-space, the coordinate mapping $p_{k}: V \rightarrow X$ is continuous and bijective. It follows from the open mapping theorem that p_{k} is open, which implies that $p_{k}^{-1}: X \rightarrow V$ is continuous. But since $T_{k}=p_{k}^{-1}$, we thus obtain that T_{k} is continuous.

THEOREM 3.3. If E is a $B K$-space having property $A K$, then E^{β} and E^{\prime} are isometrically isomorphic.

Proof. We first show that for $x=\left(x_{k}\right) \in E$ and $f \in E^{\prime}$,

$$
\begin{equation*}
f(x)=\sum_{k=1}^{\infty} f\left(e^{k}\left(x_{k}\right)\right) . \tag{3.2}
\end{equation*}
$$

To show this, let $x=\left(x_{k}\right) \in E$ and $f \in E^{\prime}$. Since E has property AK,

$$
\begin{equation*}
x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} e^{(k)}\left(x_{k}\right) . \tag{3.3}
\end{equation*}
$$

By the continuity of f, it follows that

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(e^{(k)}\left(x_{k}\right)\right)=\sum_{k=1}^{\infty} f\left(e^{(k)}\left(x_{k}\right)\right), \tag{3.4}
\end{equation*}
$$

so (3.2) is obtained. For each $k \in \mathbb{N}$, let $T_{k}: X \rightarrow E$ be defined as in Lemma 3.2. Since E is a BK-space, by Lemma 3.2, T_{k} is continuous. Hence $f \circ T_{k} \in X^{\prime}$ for all $k \in \mathbb{N}$. It follows from (3.2) that

$$
\begin{equation*}
f(x)=\sum_{k=1}^{\infty}\left(f \circ T_{k}\right)\left(x_{k}\right) \quad \forall x=\left(x_{k}\right) \in E . \tag{3.5}
\end{equation*}
$$

It implies, by (3.5), that $\left(f \circ T_{k}\right)_{k=1}^{\infty} \in E^{\beta}$. Define $\varphi: E^{\prime} \rightarrow E^{\beta}$ by

$$
\begin{equation*}
\varphi(f)=\left(f \circ T_{k}\right)_{k=1}^{\infty} \quad \forall f \in E^{\prime} . \tag{3.6}
\end{equation*}
$$

It is easy to see that φ is linear. Now, we show that φ is onto. Let $\left(f_{k}\right) \in E^{\beta}$. Define $f: E \rightarrow K$, where K is the scalar field of X, by

$$
\begin{equation*}
f(x)=\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right) \quad \forall x=\left(x_{k}\right) \in E . \tag{3.7}
\end{equation*}
$$

For each $k \in \mathbb{N}$, let p_{k} be the k th coordinate mapping on E. Then we have

$$
\begin{equation*}
f(x)=\sum_{k=1}^{\infty}\left(f_{k} \circ p_{k}\right)(x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(f \circ p_{k}\right)(x) . \tag{3.8}
\end{equation*}
$$

Since f_{k} and p_{k} are continuous linear, so is also continuous $f \circ p_{k}$. It follows by BanachSteinhaus theorem that $f \in E^{\prime}$ and we have by (3.7) that; for each $k \in \mathbb{N}$ and each $z \in X,\left(f \circ T_{k}\right)(z)=f\left(e^{(k)}(z)\right)=f_{k}(z)$. Thus $f \circ T_{k}=f_{k}$ for all $k \in \mathbb{N}$, which implies that $\varphi(f)=\left(f_{k}\right)$, hence φ is onto.

Finally, we show that φ is linear isometry. For $f \in E^{\prime}$, we have

$$
\begin{align*}
\|f\| & =\sup _{\left\|\left(x_{k}\right)\right\| \leq 1}\left|f\left(\left(x_{k}\right)\right)\right| \\
& =\sup _{\left\|\left(x_{k}\right)\right\| \leq 1}\left|\sum_{k=1}^{\infty} f\left(e^{(k)}\left(x_{k}\right)\right)\right| \quad(\text { by (3.2)) } \\
& =\sup _{\left\|\left(x_{k}\right)\right\| \leq 1}\left|\sum_{k=1}^{\infty}\left(f \circ T_{k}\right)\left(x_{k}\right)\right| \tag{3.9}\\
& =\left\|\left(f \circ T_{k}\right)_{k=1}^{\infty}\right\|_{E^{\beta}} \\
& =\|\varphi(f)\|_{E^{\beta}} .
\end{align*}
$$

Hence φ is isometry. Therefore, $\varphi: E^{\prime} \rightarrow E^{\beta}$ is an isometrically isomorphism from E^{\prime} onto E^{β}. This completes the proof.

We next give characterizations of β-dual of the sequence space $\ell(X, p)$ when $p_{k}>1$ for all $k \in \mathbb{N}$.

ThEOREM 3.4. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers with $p_{k}>1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^{\beta}=\ell_{0}\left(X^{\prime}, q\right)$, where $q=\left(q_{k}\right)$ is a sequence of positive real numbers such that $1 / p_{k}+1 / q_{k}=1$ for all $k \in \mathbb{N}$.

Proof. Suppose that $\left(f_{k}\right) \in \ell_{0}\left(X^{\prime}, q\right)$. Then $\sum_{k=1}^{\infty}\left\|f_{k}\right\|^{q_{k}} M^{-q_{k}}<\infty$ for some $M \in \mathbb{N}$. Then for each $x=\left(x_{k}\right) \in \ell(X, p)$, we have

$$
\begin{align*}
\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right| & \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\| M^{-1 / p_{k}} M^{1 / p_{k}}\left\|x_{k}\right\| \\
& \leq \sum_{k=1}^{\infty}\left(\left\|f_{k}\right\|^{q_{k}} M^{-q_{k} / p_{k}}+M\left\|x_{k}\right\|^{p_{k}}\right) \\
& =\sum_{k=1}^{\infty}\left\|f_{k}\right\|^{q_{k}} M^{-\left(q_{k}-1\right)}+M \sum_{k=1}^{\infty}\left\|x_{k}\right\|^{p_{k}} \tag{3.10}\\
& =M \sum_{k=1}^{\infty}\left\|f_{k}\right\|^{q_{k}} M^{-q_{k}}+M \sum_{k=1}^{\infty}\left\|x_{k}\right\|^{p_{k}} \\
& <\infty
\end{align*}
$$

which implies that $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges, so $\left(f_{k}\right) \in \ell(X, p)^{\beta}$.
On the other hand, assume that $\left(f_{k}\right) \in \ell(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges for all $x=\left(x_{k}\right) \in \ell(X, p)$. For each $x=\left(x_{k}\right) \in \ell(X, p)$, choose scalar sequence $\left(t_{k}\right)$ with $\left|t_{k}\right|=1$ such that $f_{k}\left(t_{k} x_{k}\right)=\left|f_{k}\left(x_{k}\right)\right|$ for all $k \in \mathbb{N}$. Since $\left(t_{k} x_{k}\right) \in \ell(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_{k}\left(t_{k} x_{k}\right)$ converges, so that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right|<\infty \quad \forall x \in \ell(X, p) \tag{3.11}
\end{equation*}
$$

We want to show that $\left(f_{k}\right) \in \ell_{0}\left(X^{\prime}, q\right)$, that is, $\sum_{k=1}^{\infty}\left\|f_{k}\right\|^{q_{k}} M^{-q_{k}}<\infty$ for some $M \in \mathbb{N}$. If it is not true, then

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\|f_{k}\right\|^{q_{k}} m^{-q_{k}}=\infty \quad \forall m \in \mathbb{N} \tag{3.12}
\end{equation*}
$$

It implies by (3.12) that for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{i>k}\left\|f_{i}\right\|^{q_{i}} m^{-q_{i}}=\infty \quad \forall m \in \mathbb{N} . \tag{3.13}
\end{equation*}
$$

By (3.12), let $m_{1}=1$, then there is a $k_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{k \leq k_{1}}\left\|f_{k}\right\|^{q_{k}} m_{1}^{-q_{k}}>1 \tag{3.14}
\end{equation*}
$$

By (3.13), we can choose $m_{2}>m_{1}$ and $k_{2}>k_{1}$ with $m_{2}>2^{2}$ such that

$$
\begin{equation*}
\sum_{k_{1}<k \leq k_{2}}\left\|f_{k}\right\|^{q_{k}} m_{2}^{-q_{k}}>1 \tag{3.15}
\end{equation*}
$$

Proceeding in this way, we can choose sequences of positive integers $\left(k_{i}\right)$ and (m_{i}) with $1=k_{0}<k_{1}<k_{2}<\cdots$ and $m_{1}<m_{2}<\cdots$, such that $m_{i}>2^{i}$ and

$$
\begin{equation*}
\sum_{k_{i-1}<k \leq k_{i}}\left\|f_{k}\right\|^{q_{k}} m_{i}^{-q_{k}}>1 \tag{3.16}
\end{equation*}
$$

For each $i \in \mathbb{N}$, choose x_{k} in X with $\left\|x_{k}\right\|=1$ for all $k \in \mathbb{N}, k_{i-1}<k \leq k_{i}$ such that

$$
\begin{equation*}
\sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}} m_{i}^{-q_{k}}>1 \quad \forall i \in \mathbb{N} \tag{3.17}
\end{equation*}
$$

Let $a_{i}=\sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}} m_{i}^{-q_{k}}$. Put $y=\left(y_{k}\right), y_{k}=a_{i}^{-1} m_{i}^{-q_{k}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}-1} x_{k}$ for all $k \in \mathbb{N}$ with $k_{i-1}<k \leq k_{i}$. By using the fact that $p_{k} q_{k}=p_{k}+q_{k}$ and $p_{k}\left(q_{k}-1\right)=q_{k}$ for all $k \in \mathbb{N}$, we have that for each $i \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{k_{i-1}<k \leq k_{i}}\left\|y_{k}\right\|^{p_{k}} & =\sum_{k_{i-1}<k \leq k_{i}}\left\|a_{i}^{-1} m_{i}^{-q_{k}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}-1} x_{k}\right\|^{p_{k}} \\
& =\sum_{k_{i-1}<k \leq k_{i}} a_{i}^{-p_{k}} m_{i}^{-p_{k} q_{k}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}} \\
& =\sum_{k_{i-1}<k \leq k_{i}} a_{i}^{-p_{k}} m_{i}^{-p_{k}} m_{i}^{-q_{k}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}} \\
& \leq a_{i}^{-1} m_{i}^{-1} \sum_{k_{i-1}<k \leq k_{i}} m_{i}^{-q_{k}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}} \\
& \leq a_{i}^{-1} m_{i}^{-1} a_{i} \\
& =m_{i}^{-1} \\
& <\frac{1}{2^{i}}
\end{aligned}
$$

so we have that $\sum_{k=1}^{\infty}\left\|y_{k}\right\|^{p_{k}} \leq \sum_{i=1}^{\infty} 1 / 2^{i}<\infty$. Hence, $y=\left(y_{k}\right) \in \ell(X, p)$. For each $i \in \mathbb{N}$, we have

$$
\begin{align*}
\sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(y_{k}\right)\right| & =\sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(a_{i}^{-1} m_{i}^{-q_{k}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}-1} x_{k}\right)\right| \\
& =\sum_{k_{i-1}<k \leq k_{i}} a_{i}^{-1} m_{i}^{-q_{k}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}} \tag{3.19}\\
& =a_{i}^{-1} \sum_{k_{i-1}<k \leq k_{i}} m_{i}^{-q_{k}}\left|f_{k}\left(x_{k}\right)\right|^{q_{k}} \\
& =1,
\end{align*}
$$

so that $\sum_{k=1}^{\infty}\left|f_{k}\left(y_{k}\right)\right|=\infty$, which contradicts (3.11). Hence $\left(f_{k}\right) \in \ell_{0}\left(X^{\prime}, q\right)$. The proof is now complete.

The following theorem gives a characterization of β-dual of $\ell(X, p)$ when $p_{k} \leq 1$ for all $k \in \mathbb{N}$. To do this, the following lemma is needed.

Lemma 3.5. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X, p)=\bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{\left(n^{-1 / p_{k}}\right)}$.

Proof. Let $x \in \ell_{\infty}(X, p)$, then there is some $n \in \mathbb{N}$ with $\left\|x_{k}\right\|^{p_{k}} \leq n$ for all $k \in \mathbb{N}$. Hence $\left\|x_{k}\right\| n^{-1 / p_{k}} \leq 1$ for all $k \in \mathbb{N}$, so that $x \in \ell_{\infty}(X)_{\left(n^{-1 / p_{k}}\right)}$. On the other hand, if $x \in$ $\cup_{n=1}^{\infty} \ell_{\infty}(X)_{\left(n^{-1 / p_{k}}\right)}$, then there are some $n \in \mathbb{N}$ and $M>1$ such that $\left\|x_{k}\right\| n^{-1 / p_{k}} \leq M$ for every $k \in \mathbb{N}$. Then we have $\left\|x_{k}\right\|^{p_{k}} \leq n M^{p_{k}} \leq n M^{\alpha}$ for all $k \in \mathbb{N}$, where $\alpha=\sup _{k} p_{k}$. Hence $x \in \ell_{\infty}(X, p)$.

Theorem 3.6. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers with $p_{k} \leq 1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^{\beta}=\ell_{\infty}\left(X^{\prime}, p\right)$.

Proof. If $\left(f_{k}\right) \in \ell(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges for every $x=\left(x_{k}\right) \in \ell(X, p)$, using the same proof as in Theorem 3.4, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right|<\infty \quad \forall x=\left(x_{k}\right) \in \ell(X, p) . \tag{3.20}
\end{equation*}
$$

If $\left(f_{k}\right) \notin \ell_{\infty}\left(X^{\prime}, p\right)$, it follows by Lemma 3.5 that $\sup _{k}\left\|f_{k}\right\| m^{-1 / p_{k}}=\infty$ for all $m \in \mathbb{N}$. For each $i \in \mathbb{N}$, choose sequences $\left(m_{i}\right)$ and $\left(k_{i}\right)$ of positive integers with $m_{1}<m_{2}<\cdots$ and $k_{1}<k_{2}<\cdots$ such that $m_{i}>2^{i}$ and $\left\|f_{k_{i}}\right\| m_{i}^{-1 / p_{k_{i}}}>1$. Choose $x_{k_{i}} \in X$ with $\left\|x_{k_{i}}\right\|=1$ such that

$$
\begin{equation*}
\left|f_{k_{i}}\left(x_{k_{i}}\right)\right| m_{i}^{-1 / p_{k_{i}}}>1 \tag{3.21}
\end{equation*}
$$

Let $y=\left(y_{k}\right), y_{k}=m_{i}^{-1 / p_{k_{i}}} x_{k_{i}}$ if $k=k_{i}$ for some i, and 0 otherwise. Then $\sum_{k=1}^{\infty}\left\|y_{k}\right\|^{p_{k}}=$ $\sum_{i=1}^{\infty} 1 / m_{i}<\sum_{i=1}^{\infty} 1 / 2^{i}=1$, so that $\left(y_{k}\right) \in \ell(X, p)$ and

$$
\begin{align*}
\sum_{k=1}^{\infty}\left|f_{k}\left(y_{k}\right)\right| & =\sum_{i=1}^{\infty}\left|f_{k_{i}}\left(m_{i}^{-1 / p_{k_{i}}} x_{k_{i}}\right)\right| \\
& =\sum_{i=1}^{\infty} m_{i}^{-1 / p_{k_{i}}}\left|f_{k_{i}}\left(x_{k_{i}}\right)\right| \tag{3.22}\\
& =\infty \quad(\text { by }(3.21)),
\end{align*}
$$

and this is contradictory to (3.20), hence $\left(f_{k}\right) \in \ell_{\infty}\left(X^{\prime}, p\right)$.
Conversely, assume that $\left(f_{k}\right) \in \ell_{\infty}\left(X^{\prime}, p\right)$. By Lemma 3.5, there exists $M \in \mathbb{N}$ such that $\sup _{k}\left\|f_{k}\right\| M^{-1 / p_{k}}<\infty$, so there is a $K>0$ such that

$$
\begin{equation*}
\left\|f_{k}\right\| \leq K M^{1 / p_{k}} \quad \forall k \in \mathbb{N} . \tag{3.23}
\end{equation*}
$$

Let $x=\left(x_{k}\right) \in \ell(X, p)$. Then there is a $k_{0} \in \mathbb{N}$ such that $M^{1 / p_{k}}\left\|x_{k}\right\| \leq 1$ for all $k \geq k_{0}$. By $p_{k} \leq 1$ for all $k \in \mathbb{N}$, we have that, for all $k \geq k_{0}$,

$$
\begin{equation*}
M^{1 / p_{k}}\left\|x_{k}\right\| \leq\left(M^{1 / p_{k}}\left\|x_{k}\right\|\right)^{p_{k}}=M\left\|x_{k}\right\|^{p_{k}} . \tag{3.24}
\end{equation*}
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right| & \leq \sum_{k=1}^{k_{0}}\left\|f_{k}\right\|\left\|x_{k}\right\|+\sum_{k=k_{0}+1}^{\infty}\left\|f_{k}\right\|\left\|x_{k}\right\| \\
& \leq \sum_{k=1}^{k_{0}}\left\|f_{k}\right\|\left\|x_{k}\right\|+K \sum_{k=k_{0}+1}^{\infty} M^{1 / p_{k}}\left\|x_{k}\right\| \quad \text { (by (3.23)) } \\
& \leq \sum_{k=1}^{k_{0}}\left\|f_{k}\right\|\left\|x_{k}\right\|+K M \sum_{k=k_{0}+1}^{\infty}\left\|x_{k}\right\|^{p_{k}} \quad(\text { by } \quad(3.24)) \\
& <\infty
\end{aligned}
$$

This implies that $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges, hence $\left(f_{k}\right) \in \ell(X, p)^{\beta}$.
Theorem 3.7. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X, p)^{\beta}=M_{\infty}\left(X^{\prime}, p\right)$.
Proof. If $\left(f_{k}\right) \in M_{\infty}\left(X^{\prime}, p\right)$, then $\sum_{k=1}^{\infty}\left\|f_{k}\right\| m^{1 / p_{k}}<\infty$ for all $m \in \mathbb{N}$, we have that for each $x=\left(x_{k}\right) \in \ell_{\infty}(X, p)$, there is $m_{0} \in \mathbb{N}$ such that $\left\|x_{k}\right\| \leq m_{0}^{1 / p_{k}}$ for all $k \in$ \mathbb{N}, hence $\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right| \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\|\left\|x_{k}\right\| \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\| m_{0}^{1 / p_{k}}<\infty$, which implies that $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges, so that $\left(f_{k}\right) \in \ell_{\infty}(X, p)^{\beta}$.

Conversely, assume that $\left(f_{k}\right) \in \ell_{\infty}(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges for all $x=$ $\left(x_{k}\right) \in \ell_{\infty}(X, p)$, by using the same proof as in Theorem 3.4, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right|<\infty \quad \forall x=\left(x_{k}\right) \in \ell_{\infty}(X, p) \tag{3.26}
\end{equation*}
$$

If $\left(f_{k}\right) \notin M_{\infty}\left(X^{\prime}, p\right)$, then $\sum_{k=1}^{\infty}\left\|f_{k}\right\| M^{1 / p_{k}}=\infty$ for some $M \in \mathbb{N}$. Then we can choose a sequence (k_{i}) of positive integers with $0=k_{0}<k_{1}<k_{2}<\cdots$ such that

$$
\begin{equation*}
\sum_{k_{i-1}<k \leq k_{i}}\left\|f_{k}\right\| M^{1 / p_{k}}>i \quad \forall i \in \mathbb{N} . \tag{3.27}
\end{equation*}
$$

And we choose x_{k} in X with $\left\|x_{k}\right\|=1$ such that for all $i \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(x_{k}\right)\right| M^{1 / p_{k}}>i \tag{3.28}
\end{equation*}
$$

Put $y=\left(y_{k}\right), y_{k}=M^{1 / p_{k}} x_{k}$. Clearly, $y \in \ell_{\infty}(X, p)$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|f_{k}\left(y_{k}\right)\right| \geq \sum_{k_{i-1}<k \leq k_{i}}^{\infty}\left|f_{k}\left(x_{k}\right)\right| M^{1 / p_{k}}>i \quad \forall i \in \mathbb{N} . \tag{3.29}
\end{equation*}
$$

Hence $\sum_{k=1}^{\infty}\left|f_{k}\left(y_{k}\right)\right|=\infty$, which contradicts (3.26). Hence $\left(f_{k}\right) \in M_{\infty}\left(X^{\prime}, p\right)$. The proof is now complete.
TheOrem 3.8. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers. Then $c_{0}(X, p)^{\beta}=M_{0}\left(X^{\prime}, p\right)$.

Proof. Suppose $\left(f_{k}\right) \in M_{0}\left(X^{\prime}, p\right)$, then $\sum_{k=1}^{\infty}\left\|f_{k}\right\| M^{-1 / p_{k}}<\infty$ for some $M \in \mathbb{N}$. Let $x=\left(x_{k}\right) \in c_{0}(X, p)$. Then there is a positive integer K_{0} such that $\left\|x_{k}\right\|^{p_{k}}<1 / M$ for all $k \geq K_{0}$, hence $\left\|x_{k}\right\|<M^{-1 / p_{k}}$ for all $k \geq K_{0}$. Then we have

$$
\begin{equation*}
\sum_{k=K_{0}}^{\infty}\left|f_{k}\left(x_{k}\right)\right| \leq \sum_{k=K_{0}}^{\infty}\left\|f_{k}\right\|\left\|x_{k}\right\| \leq \sum_{k=K_{0}}^{\infty}\left\|f_{k}\right\| M^{-1 / p_{k}}<\infty \tag{3.30}
\end{equation*}
$$

It follows that $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges, so that $\left(f_{k}\right) \in c_{0}(X, p)^{\beta}$.
On the other hand, assume that $\left(f_{k}\right) \in c_{0}(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges for all $x=\left(x_{k}\right) \in c_{0}(X, p)$. For each $x=\left(x_{k}\right) \in c_{0}(X, p)$, choose scalar sequence $\left(t_{k}\right)$ with $\left|t_{k}\right|=1$ such that $f_{k}\left(t_{k} x_{k}\right)=\left|f_{k}\left(x_{k}\right)\right|$ for all $k \in \mathbb{N}$. Since $\left(t_{k} x_{k}\right) \in c_{0}(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_{k}\left(t_{k} x_{k}\right)$ converges, so that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right|<\infty \quad \forall x \in c_{0}(X, p) . \tag{3.31}
\end{equation*}
$$

Now, suppose that $\left(f_{k}\right) \notin M_{0}\left(X^{\prime}, p\right)$. Then $\sum_{k=1}^{\infty}\left\|f_{k}\right\| m^{-1 / p_{k}}=\infty$ for all $m \in \mathbb{N}$. Choose $m_{1}, k_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{k \leq k_{1}}\left\|f_{k}\right\| m_{1}^{-1 / p_{k}}>1 \tag{3.32}
\end{equation*}
$$

and choose $m_{2}>m_{1}$ and $k_{2}>k_{1}$ such that

$$
\begin{equation*}
\sum_{k_{1}<k \leq k_{2}}\left\|f_{k}\right\| m_{2}^{-1 / p_{k}}>2 \tag{3.33}
\end{equation*}
$$

Proceeding in this way, we can choose $m_{1}<m_{2}<\cdots$, and $0=k_{1}<k_{2}<\cdots$ such that

$$
\begin{equation*}
\sum_{k_{i-1}<k \leq k_{i}}\left\|f_{k}\right\| m_{i}^{-1 / p_{k}}>i \tag{3.34}
\end{equation*}
$$

Take x_{k} in X with $\left\|x_{k}\right\|=1$ for all $k, k_{i-1}<k \leq k_{i}$ such that

$$
\begin{equation*}
\sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(x_{k}\right)\right| m_{i}^{-1 / p_{k}}>i \quad \forall i \in \mathbb{N} . \tag{3.35}
\end{equation*}
$$

Put $y=\left(y_{k}\right), y_{k}=m_{i}^{-1 / p_{k}} x_{k}$ for $k_{i-1}<k \leq k_{i}$, then $y \in c_{0}(X, p)$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|f_{k}\left(y_{k}\right)\right| \geq \sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(x_{k}\right)\right| m_{i}^{-1 / p_{k}}>i \quad \forall i \in \mathbb{N} . \tag{3.36}
\end{equation*}
$$

Hence we have $\sum_{k=1}^{\infty}\left|f_{k}\left(y_{k}\right)\right|=\infty$, which contradicts (3.31), therefore $\left(f_{k}\right) \in M_{0}\left(X^{\prime}, p\right)$. This completes the proof.

Theorem 3.9. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers. Then $c(X, p)^{\beta}=M_{0}\left(X^{\prime}, p\right) \cap c s\left[X^{\prime}\right]$.

Proof. Since $c(X, p)=c_{0}(X, p)+E$, where $E=\{e(x): x \in X\}$, it follows by Proposition 3.1(iii) and Theorem 3.8 that $c(X, p)^{\beta}=M_{0}\left(X^{\prime}, p\right) \cap E^{\beta}$. It is obvious by definition that $E^{\beta}=\left\{\left(f_{k}\right) \subset X^{\prime}: \sum_{k=1}^{\infty} f_{k}(x)\right.$ converges for all $\left.x \in X\right\}=\operatorname{cs}\left[X^{\prime}\right]$. Hence we have the theorem.

Acknowledgment. The author would like to thank the Thailand Research Fund for the financial support.

References

[1] K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), no. 2, 298-302.
[2] M. Gupta, P. K. Kamthan, and J. Patterson, Duals of generalized sequence spaces, J. Math. Anal. Appl. 82 (1981), no. 1, 152-168.
[3] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355.
[4] ___, Paranormed sequence spaces generated by infinite matrices, Math. Proc. Cambridge Philos. Soc. 64 (1968), 335-340.
[5] ___ Elements of Functional Analysis, Cambridge University Press, London, 1970.
[6] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.
[7] S. Simons, The sequence spaces $l\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc. (3) 15 (1965), 422-436.
[8] C. X. Wu and Q. Y. Bu, Köthe dual of Banach sequence spaces $l_{p}[X](1 \leq p<\infty)$ and Grothendieck space, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 265-273.

Suthep Suantai: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail address: ma1suthe@science.cmu.ac.th
Winate Sanhan: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

