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1. Introduction. This paper is devoted to the solvability of a certain singular para-

bolic problem with a nonlocal boundary condition. It can be a part in the contribution

of the development of the a priori estimates method for solving such problems. The

questions related to these problems are so miscellaneous that the elaboration of a gen-

eral theory is still premature. Therefore, the investigation of these problems requires

at every time a separate study.

This work can be considered as a continuation of the results of Yurchuk [12], Benuar

and Yurchuk [1], Bouziani [2, 3, 5, 4, 6], Bouziani and Benouar [7, 8], and Mesloub and

Bouziani [9], in so far as, on the one hand, the studied equation is parabolic and, on

the other hand, the boundary condition is of integral type.

The remainder of the paper is divided into four sections. In Section 2, we give the

statement of the problem. Then in Section 3, we first introduce the appropriate func-

tion spaces needed in our investigation, the abstract formulation of the problem and

the sense of the generalized solution are presented in Section 3.2, and some proper-

ties of special smoothing operators are considered in Section 3.3. The uniqueness and

the continuous dependence upon the data of a solution are established in Section 4.

In Section 5, the existence of the generalized solution is proved.

2. Statement of the problem. In the rectangle Q = (0,b)×(0,T ), we consider the

singular parabolic equation

�z = ∂z
∂t
− a(t)

x
∂
∂x

(
x
∂z
∂x

)
= f(x,t), (2.1)

where b and T are fixed but arbitrary positive numbers, and a(t) is a known function

satisfying the following assumption.
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Assumption 2.1. For t ∈ [0,T ], we assume that

c0 ≤ a(t)≤ c1, a′(t)≤ c2. (2.2)

In Assumption 2.1, and throughout, we suppose that ci (where i= 0, . . . ,4) are positive

constants.

We pose the following problem for (2.1): given the data f ,Φ, µ, andM , find a function

z = z(x,t) subject to the initial condition

�z = z(x,0)= Φ(x), for 0≤ x ≤ b, (2.3)

the Dirichlet condition

z(b,t)= µ(t), for 0≤ t ≤ T , Φ(b)= µ(0), (2.4)

and the weighted integral condition

∫ b
0
x2z(x,t)dx =M(t) for 0≤ x ≤ b,

∫ b
0
x2Φ(x)dx =M(0). (2.5)

We transform problem (2.1), (2.3), (2.4), and (2.5) with inhomogeneous boundary

conditions into a problem with homogeneous boundary conditions. For this, we put

z(x,t)=u(x,t)+ζ(x,t), where

ζ(x,t)= x
b
µ(t)+ 12

b4
(b−x)

(
M(t)− b

3

4
µ(t)

)
. (2.6)

Then, problem (2.1), (2.3), (2.4), and (2.5) can be transformed as follows: find a function

u=u(x,t) satisfying

�u= ∂u
∂t
− a(t)

x
∂
∂x

(
x
∂u
∂x

)
= f(x,t)−�ζ = f(x,t), (2.7)

�u=u(x,0)= Φ(x)−�ζ =ϕ(x), (2.8)

u(b,t)= 0,
∫ b

0
x2u(x,t)dx = 0.

(2.9)

3. Preliminaries

3.1. Function spaces. We first introduce appropriate function spaces. We denote

by C0(0,b) the vector space of continuous functions with compact support in (0,b).
Since such functions are Lebesgue integrable with respect to dx, we can define on

C0(0,b) the bilinear form ((·,·))x given by

(
(u,w)

)
x =

∫ b
0
�∗x(ξu)·�∗x(ξw)dx, (3.1)

where �∗xg =
∫ b
x g(ξ,t)dξ. We recall that ((·,·))x is a scalar product on C0(0,b) for

which C0(0,b) is not complete. Thus we are led to introduce its completion.
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Definition 3.1. We denote by B1,∗
2,x (0,b) a completion of C0(0,b) for the scalar

product defined by (3.1), called the space of square integrable weighted primitive func-

tions on (0,b) (or the weighted Bouziani space).

Remark 3.2. Ifx=1, then the space B1,∗
2,x (0,b) is identified with the space B1,∗

2 (0,b),
first introduced in [2, 5].

Definition 3.3. We denote by B1
2,ρ(0,b) a completion of C0(0,b) for the scalar

product defined by

(
(u,w)

)
ρ =

∫ T
0
�t
(
ρ(τ)u

)·�t(ρ(τ)w)dt, (3.2)

where �tg =
∫ t
0 g(x,τ)dτ and ρ(t)= ect .

Now, we generalize Definitions 3.1 and 3.3 of weighted Bouziani spaces B1,∗
2,x (0,b)

and B1
2,ρ(0,T ).

Definition 3.4. Let (0,b) (resp., (0,T )) be an open interval in R, let σ(x) (resp.,

ρ(t)) be a continuous function from (0,b) to R+∗ (resp., from (0,T ) to R+∗), let m be

a non-negative integer and let 1≤ p ≤∞. Then we define Bm,∗p,σ (0,b) (resp., Bmp,ρ(0,T ))
to be the completion of the space C0(0,b) (resp., C0(0,T )) for the norm

‖u‖Bm,∗p,σ (0,b) =
{∫ b

0

(�∗mx (σu)
)pdx

}1/p
, (3.3)

respectively,

‖u‖Bmp,ρ(0,T ) =
{∫ T

0

(�mt (ρu))pdt
}1/p

, (3.4)

and for p = 2, we define a scalar product by

(u,w)Bm,∗2,σ (0,b) =
(�∗mx (σu),�∗mx (σw)

)
L2(0,b), (3.5)

respectively,

(u,w)Bm2,ρ(0,T ) =
(�mt (ρu),�mt (ρw))L2(0,T ). (3.6)

Remark 3.5. The spaces B0,∗
2,σ (0,b) and B0

2,ρ(0,T ) coincide (with equality of norm

of graphs) with the spaces L2
x(0,b) and L2

ρ(0,T ), respectively; that is, by the norms

of functions u from L2
x(0,b) and L2

ρ(0,T ) we understand the nonnegative numbers:

‖u‖L2
x(0,b) = {

∫ b
0 (xu)2dx}1/2 and ‖u‖L2

ρ(0,T ) = {
∫ T
0 (ρ(t)u)2dt}1/2, respectively.

In this paper, we also use other weighted spaces such as L2
σ (0,b), L2

s (0,b), and

L2
r (0,T ), where σ(x) = x2, s(x) = √x, and r(t) = √ρ(t) = ect/2, which are Hilbert

spaces of (classes of) weighted square integrable functions with finite norms:

‖u‖L2
σ (0,b) =

{∫ b
0
(σu)2dx

}1/2
,

‖u‖L2
s (0,b) =

{∫ b
0
(su)2dx

}1/2
,

‖u‖L2
r (0,T ) =

{∫ T
0
(ru)2dt

}1/2
.

(3.7)
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Let H1
s (0,b) = {u/u ∈ L2

s (0,b), ∂u/∂x ∈ L2
s (0,b),

∫ b
0 x2u(x,t)dx = 0}, which is the

Hilbert space for the norm

‖u‖H1
s (0,b) =

{
‖u‖2

L2
s (0,b)

+
∥∥∥∥∂u∂x

∥∥∥∥
2

L2
s (0,b)

}1/2
. (3.8)

LetH be a Hilbert space with a norm ‖·‖H . We denote by L2(0,T ;H) (resp., L2
r (0,T ;H))

the set of all measurable abstract functions u(·, t) from (0,T ) into H such that

‖u‖L2(0,T ;H) =
{∫ T

0

∥∥u(·, t)∥∥2
Hdt

}1/2
<∞, (3.9)

respectively,

‖u‖L2
r (0,T ;H) =

{∫ T
0

(
ect/2

∥∥u(·, t)∥∥H)2dt
}1/2

<∞. (3.10)

Let C(0,T ;H) be the set of all continuous functions u(·, t) : (0,T )→H with

‖u‖C(0,T ;H) = sup
0≤τ≤T

∥∥u(·,τ)∥∥H <∞. (3.11)

We write B1
2,ρ(0,T ;H) for the space of functions from (0,T ) intoH which are weighted

Bouziani space for the measure dt. It is a Hilbert space for the norm

‖u‖B1
2,ρ(0,T ;H) =

{∫ T
0

(�t(ecτ∥∥u(·,τ)∥∥H))2dt
}1/2

. (3.12)

The following inequalities are well known and are frequently used in this paper. We

list them here for convenience.

Lemma 3.6. For x ∈ (0,b), the following inequalities hold:

‖u‖2
L2
x(0,b)

≤ b‖u‖2
L2
s (0,b)

, (3.13)

‖u‖2
B1,∗

2 (0,b)
≤ 4‖u‖2

L2
x(0,b)

,

‖u‖2
B1,∗

2,x (0,b)
≤ b

2

2
‖u‖2

L2
x(0,b)

.
(3.14)

We are now in a position to give the abstract formulation corresponding to the

problem (2.7), (2.8), and (2.9).

3.2. Abstract formulation. We consider problem (2.7), (2.8), and (2.9) as the solu-

tion of the abstract equation

Lu= (f ,ϕ), (3.15)
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where L is the operator which maps u(x,t) to the pair of elements �u and �u, so that

Lu= (�u,�u). (3.16)

We consider L as an unbounded operator with domain D(L) consisting of all func-

tions u belonging to L2(0,T ;B1,∗
2,x (0,b)) for which ∂u/∂t,(1/x)(∂u/∂x),∂2u/∂x2 ∈

L2(0,T ;B1,∗
2,x (0,b)) and satisfying conditions (2.9). We complete D(L) in the norm

‖u‖B =
{∥∥∥∥∂u∂t

∥∥∥∥
2

L2(0,T ;B1,∗
2,x (0,b))

+‖u‖2
C(0,T ;H1

s (0,b))

}1/2
; (3.17)

this yields a Banach space B. The elements of B are continuous functions on [0,T ]
with values inH1

s (0,b). Hence on B, the following mapping is defined and continuous:

� : B 
u �→ �u=u(x,0)∈H1
s (0,b). (3.18)

We write F for the Hilbert space L2(0,T ;L2
s (0,b))×H1

s (0,b) consisting of all elements

(f ,ϕ) for which the norm

∥∥(f ,ϕ)∥∥F =
{
‖f‖2

L2(0,T ;L2
s (0,b))

+‖ϕ‖2
H1
s (0,b)

}1/2
(3.19)

is finite. We consider the operator L with the above domain as a mapping from B
into F .

Now, we can introduce the concept of a generalized solution of problem (2.7), (2.8),

and (2.9). Let L̄ be the closure of the operator L.

Definition 3.7. A solution of the operator equation

L̄u= (f ,ϕ), (f ,ϕ)∈ F, (3.20)

is called a generalized solution of problem (2.7), (2.8), and (2.9).

To prove the solvability of problem (2.7), (2.8), and (2.9) in the sense of Definition 3.7,

we establish the a priori estimate

‖u‖B ≤ c‖Lu‖F , u∈D(L). (3.21)

It follows from (3.21) that there is a bounded inverse L−1 on the range R(L) of L.

However, since we have no information concerning R(L) except that R(L) ⊂ F , we

must extend L, so that an a priori estimate like (3.21) holds for the extension. For

this, we prove that L admits a closure. Thus we extend (3.21) to u∈D(L̄) by passing

to the limit. It follows that the closure procedure for L reduces to the closure of the

range R(L) in F , so that R(L) = R(L̄), and a bounded inverse L̄−1 exists on R(L̄), so

the uniqueness of a generalized solution. For existence, it remains to prove that R(L)
does not have an orthogonal complement in F .

3.3. Smoothing operators. We consider the operators defined by the relations

(
ρ−1
ε
)
v = 1

ε
�t
(
e(1/ε)(τ−t)v

)
, ε > 0,

(
ρ−1
ε
)∗v =−1

ε
�∗t
(
e(1/ε)(t−τ)v

)
, ε > 0,

(3.22)
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where �∗t g =
∫ T
t g(x,τ)dτ . These operators, first proposed by Yurchuk in abstract

form in [11], are used as smoothing operators with respect to t [12]. They furnish the

solutions of the problems

ε
∂
(
ρ−1
ε
)
v

∂t
+(ρ−1

ε
)
v = v, (

ρ−1
ε
)
v(x,0)= 0,

−ε ∂
(
ρ−1
ε
)∗v

∂t
+(ρ−1

ε
)∗v = v, (

ρ−1
ε
)∗v(x,T)= 0,

(3.23)

respectively. These operators have, for all v ∈ L2(0,T ,L2(0,b)), the following

properties:

(P1) the functions (ρ−1
ε )v and (ρ−1

ε )∗v ∈ H1(0,T ), with (ρ−1
ε )v(x,0) = 0, and

(ρ−1
ε )∗v(x,T)= 0;

(P2) the operators (ρ−1
ε )∗ are conjugate to (ρ−1

ε ), that is,
∫
Q

(
ρ−1
ε
)
v ·ωdxdt =

∫
Q
v ·(ρ−1

ε
)∗ωdxdt, ∀ω∈ L2(0,T ); (3.24)

(P3) (ρ−1
ε )(∂v/∂τ)= (∂/∂t)(ρ−1

ε )v+(1/ε)e−t/ε ·v(x,0);
(P4)

∫ T
0 ‖(ρ−1

ε )v‖L2(0,b)dt ≤
∫ T
0 ‖v‖L2(0,b)dt and

∫ T
0 ‖(ρ−1

ε )v −v‖L2(0,b)dt → 0, when

ε→ 0;

(P5)
∫ T
0 ‖(ρ−1

ε )∗v‖L2(0,b)dt ≤
∫ T
0 ‖v‖L2(0,b)dt and

∫ T
0 ‖(ρ−1

ε )∗v−v‖L2(0,b)dt→ 0, when

ε→ 0;

(P6) if A(t)v = a(t)(∂/∂x)(x(∂v/∂x)) then

A(t)
(
ρ−1
ε
)
v = (ρ−1

ε
)
A(τ)v+ε(ρ−1

ε
)
A′(τ)

(
ρ−1
ε
)
v, (3.25)

where A′(t)v = a′(t)(∂/∂x)(x(∂u/∂x)).
For the proof of these properties, see, for instance, [4].

4. Uniqueness and continuous dependence. In this section, we first establish an a

priori estimate. The uniqueness and the continuous dependence of the solution upon

the data then are direct corollary of it.

Theorem 4.1. Under Assumption 2.1, the solution of problem (2.7), (2.8), and (2.9)

satisfies the following a priori estimate:

‖u‖B ≤ c‖Lu‖F , (4.1)

where c is a positive constant independent of u.

Proof. We consider the scalar product in L2(0,τ ;B1,∗
2,x (0,b)∩L2

s (0,b)), with 0 ≤
τ ≤ T , of (2.7) and ∂u/∂t, yields
∫ τ

0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

B1,∗
2,x (0,b)

dt−
∫ τ

0

(
a(t)
x

∂
∂x

(
x
∂u(·, t)
∂x

)
,
∂u(·, t)
∂t

)
B1,∗

2,x (0,b)
dt

+
∫ τ

0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2
s (0,b)

dt−
∫ τ

0

(
a(t)
x

∂
∂x

(
x
∂u(·, t)
∂x

)
,
∂u(·, t)
∂t

)
L2
s (0,b)

dt

=
∫ τ

0

(
f(·, t), ∂u(·, t)

∂t

)
B1,∗

2,x (0,b)
dt+

∫ τ
0

(
f(·, t), ∂u(·, t)

∂t

)
L2
s (0,b)

dt.

(4.2)
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The standard integration by parts of the second and last terms on the left-hand side

of (4.2) leads to

−
∫ τ

0

(
a(t)
x

∂
∂x

(
x
∂u(·, t)
∂x

)
,
∂u(·, t)
∂t

)
B1,∗

2,x (0,b)
dt =

∫ τ
0

∫ b
0
a(t)x

∂u
∂x
�∗x
(
ξ
∂u
∂t

)
dxdt,

−
∫ τ

0

(
a(t)
x

∂
∂x

(
x
∂u(·, t)
∂x

)
,
∂u(·, t)
∂t

)
L2
s (0,b)

dt = 1
2

∫ b
0
a(τ)x

(
∂u(x,τ)
∂x

)2

dx

− 1
2

∫ b
0
a(0)x

(
dϕ
dx

)2

dx

− 1
2

∫ τ
0

∫ b
0
a′(t)x

(
∂u
∂x

)2

dxdt.

(4.3)

Substituting (4.3) into (4.2), we get

∫ τ
0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

B1,∗
2,x (0,b)

dt+
∫ τ

0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2
s (0,b)

dt+ 1
2

∫ b
0
a(τ)x

(
∂u(x,τ)
∂x

)2

dx

=
∫ τ

0

(
f ,
∂u
∂t

)
B1,∗

2,x (0,b)
dt+

∫ τ
0

(
f(·, t), ∂u(·, t)

∂t

)
L2
s (0,b)

dt+ 1
2

∫ b
0
a(0)x

(
dϕ
dx

)2

dx

+ 1
2

∫ τ
0

∫ b
0
a′(t)x

(
∂u
∂x

)2

dxdt−
∫ τ

0

∫ b
0
a(t)x

∂u
∂x
�∗x
(
ξ
∂u
∂t

)
dxdt.

(4.4)

In light of the Cauchy inequality and inequality (3.13), the first two terms and the last

term in the right-hand side of (4.4) are then majorized as follows:

∫ τ
0

(
f(·, t), ∂u(·, t)

∂t

)
B1,∗

2,x (0,b)
dt

≤ ε1

2

∫ τ
0
‖f(·, t)‖2

B1,∗
2,x (0,b)

dt+ 1
2ε1

∫ τ
0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

B1,∗
2,x (0,b)

dt,

∫ τ
0

(
f(·, t), ∂u(·, t)

∂t

)
L2
s (0,b)

dt

≤ ε2

2

∫ τ
0
‖f(·, t)‖2

L2
s (0,b)

dt+ 1
2ε2

∫ τ
0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2
s (0,b)

dt,

−
∫ τ

0

∫ b
0
a(t)x

∂u
∂x
�∗x
(
ξ
∂u
∂t

)
dxdt

≤ bε3

2

∫ τ
0
a2(t)

∥∥∥∥∂u(·, t)∂x

∥∥∥∥
2

L2
s (0,b)

dt+ 1
2ε3

∫ τ
0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

B1,∗
2,x (0,b)

dt.

(4.5)
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Combining the inequalities (4.5) with (4.4), choosing ε1 = 3/2, ε2 = 3/4, and ε3 = 3/2,

and using Assumption 2.1, we obtain

1
3

∫ τ
0

{∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

B1,∗
2,x (0,b)

+
∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2
s (0,b)

}
dt+ c0

2

∥∥∥∥∂u(·,τ)∂x

∥∥∥∥
2

L2
s (0,b)

≤ 3
4

∫ τ
0
‖f(·, t)‖2

B1,∗
2,x (0,b)

dt+ 3
8

∫ τ
0
‖f(·, t)‖2

L2
s (0,b)

dt+ c1

2

∥∥∥∥dϕdx
∥∥∥∥

2

L2
s (0,b)

+ 3bc2
1

4

∫ τ
0

∥∥∥∥∂u(·, t)∂x

∥∥∥∥
2

L2
s (0,b)

dt.

(4.6)

Observing that

1
3

∥∥u(·,τ)∥∥2
L2
s (0,b) ≤

1
3
‖ϕ‖2

L2
s (0,b)

+ 1
3

∫ τ
0
‖u(·, t)‖2

L2
s (0,b)

dt+ 1
3

∫ τ
0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2
s (0,b)

dt,

(4.7)

it follows by using (3.13) and (3.14) that

∫ τ
0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

B1,∗
2,x (0,b)

dt+∥∥u(·,τ)∥∥2
H1
s (0,b)

≤ c3

(∫ τ
0
‖f(·, t)‖2

L2
s (0,b)

dt+‖ϕ‖2
H1
s (0,b)

)
+c4

∫ τ
0
‖u(·, t)‖2

H1
s (0,b)

dt,

(4.8)

where

c3 = max
(
c1/2,3

(
1+b3

)
/8
)

min
(
1/3,c0/2

) , c4 = max
(
1/3,3bc2

1/4
)

min
(
1/3,c0/2

) . (4.9)

We eliminate the last term on the right-hand side of (4.8). To do that we use [3,

Lemma 3.1] to obtain

∫ τ
0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

B1,∗
2,x (0,b)

dt+∥∥u(·,τ)∥∥2
H1
s (0,b)

≤ c3 exp
(
c4T

)(∫ T
0
−‖f(·, t)‖2

L2
s (0,b)

dt+‖ϕ‖2
H1
s (0,b)

)
.

(4.10)

Since the right-hand side here does not depend on τ ; we take the upper bound of the

left-hand side on τ from 0 to T ; hence (4.1) holds with c = c1/2
3 exp(c4T/2), and this

proves Theorem 4.1.

We show that the operator L admits a closure, that is, the closure of the graph

G(L)⊂ B×F of L is a graph G(L̄)=G(L) of operator L̄.

Proposition 4.2. The operator L : B→ F with domain D(L) has a closure.

Proof. For the proof, the reader should refer to [10].
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We extend the a priori estimate (4.1) to u∈D(L̄) by passing to the limit, that is,

‖u‖B ≤ c
∥∥L̄u∥∥F , ∀u∈D(L̄). (4.11)

From (4.11) we conclude the following corollaries.

Corollary 4.3. Let the conditions of Theorem 4.1 be satisfied. If problem (2.7),

(2.8), and (2.9), has a generalized solution, then this solution is unique and depends

continuously on (f ,ϕ).

Corollary 4.4. The range R(L̄) of L̄ is closed in F and R(L̄)= R(L), where R(L) is

the range of L.

5. The existence of the solution. Now we want to prove the solvability of our prob-

lem. Our existence theorem reads as follows.

Theorem 5.1. There exists a function u ∈ C(0,T ;H1
s (0,b)) with ∂u/∂t ∈ L2(0,T ;

B1,∗
2,x (0,b)) which solves problem (2.7), (2.8), and (2.9) in the sense of Definition 3.7, for

arbitrary f ∈ L2(0,T ;L2
s (0,b)) and ϕ ∈H1

s (0,b).

Proof. Corollary 4.4 shows that, to prove that (2.7), (2.8), and (2.9) has a general-

ized solution for each (f ,ϕ) ∈ F , it is sufficient to show that R(L) is dense in F . For

this we need the following proposition.

Proposition 5.2. If

∫ T
0

(
�u(·, t),ω(·, t))L2

s (0,b)dt = 0, (5.1)

for some function ω ∈ L2(0,T ;L2
s (0,b)) and all u ∈ D0(L) = {u/u ∈ D(L) : �u = 0},

then ω≡ 0 almost everywhere in Q.

Proof of the proposition. Equation (5.1) may be written in the form

∫ T
0

(
∂u(·, t)
∂t

,ω(·, t)
)
L2
s (0,b)

dt =
∫ T

0

(
A(t)u,ω(·, t))L2(0,b)dt. (5.2)

Substitute in (5.2) u by the smooth function ρ−1
ε u, hence by property (P3) it follows

that
∫ T

0

(
ρ−1
ε
∂u
∂τ
,ω(·, t)

)
L2
s (0,b)

dt =
∫ T

0

(
A(t)ρ−1

ε u,ω(·, t)
)
L2(0,b)dt. (5.3)

Applying property (P6) to the right-hand side of (5.3), we get

∫ T
0

(
ρ−1
ε
∂u
∂τ
,ω(·, t)

)
L2
s (0,b)

dt =
∫ T

0

(
ρ−1
ε A(t)u+ερ−1

ε A′(t)ρ−1
ε u,ω(·, t)

)
L2(0,b)dt.

(5.4)

According to property (P2), it follows that

∫ T
0

(
∂u(·, t)
∂t

,
(
ρ−1
ε
)∗ω

)
L2
s (0,b)

dt =
∫ T

0

(
A(t)u+εA′(t)ρ−1

ε u,
(
ρ−1
ε
)∗ω)L2(0,b)dt. (5.5)



444 ABDELFATAH BOUZIANI

The standard integration by parts with respect to t of the left-hand side of (5.5) leads to

∫ T
0

(
u(·, t), ∂

(
ρ−1
ε
)∗ω

∂t

)
L2
s (0,b)

dt =
∫ T

0

(
A(t)u+εA′(t)ρ−1

ε u,
(
ρ−1
ε
)∗ω)L2(0,b)dt. (5.6)

The operator A(t) with boundary conditions (2.9) has, on L2(0,b), a continuous in-

verse. Hence, it is easy to see that

∫ T
0

(
u(·, t), ∂

(
ρ−1
ε
)∗ω

∂t

)
L2
s (0,b)

dt

=
∫ T

0

(
A(t)u+εA′(t)ρ−1

ε A−1(t)A(t)u,
(
ρ−1
ε
)∗ω)L2(0,b)dt

=
∫ T

0

(
A(t)u+εΛε(t)A(t)u,

(
ρ−1
ε
)∗ω)L2(0,b)dt

=
∫ T

0

(
A(t)u,

(
I+εΛ∗ε

)(
ρ−1
ε
)∗ω)L2(0,b)dt.

(5.7)

The calculations of A−1(t), Λε(t), and Λ∗ε (t) are straightforward but somewhat te-

dious. We only give their definitions

A−1(t)g = 1
a(t)

∫ b
x

dξ
ξ

∫ b
ξ
g(η,t)dη+ 1

a(t)
log

x
b

∫ b
0
g(x,t)dx,

Λε(t)g = a′(t)ρ−1
ε

1
a(τ)

g(x,τ),

Λ∗ε (t)
(
ρ−1
ε
)∗ω= 1

a(t)
(
ρ−1
ε
)∗a′(τ)(ρ−1

ε
)∗ω.

(5.8)

The left-hand side of (5.7) shows that the mapping
∫ T
0 (A(t)u,Kε(t)(ρ−1

ε )∗ω)L2(0,b)dt
is a continuous linear functional of u, where

Kε(t)
(
ρ−1
ε
)∗ω= (I+εΛ∗ε (t))(ρ−1

ε
)∗ω, (5.9)

if the function Kε has the following properties:

∂Kε
∂x

∈ L2(0,T ;L2(0,b)
)
,

∂
∂x

(
x
∂Kε
∂x

)
∈ L2(0,T ;L2(0,b)

)
, (5.10)

and satisfies

Kε
∣∣
x=0 =Kε

∣∣
x=b = 0. (5.11)

Therefore, we conclude from (5.9) and (5.11) that
(
I+ε 1

a(t)
(
ρ−1
ε
)∗a′(τ)

)(
ρ−1
ε
)∗ω|x=0 = 0. (5.12)

For each fixed x ∈ [0,b] and sufficiently small ε, the operator

(
I+ε 1

a(t)
(
ρ−1
ε
)∗a′(τ)

)(
ρ−1
ε
)∗

(5.13)
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has a continuous inverse operator on L2(0,T ). Thus from (5.12) we obtain

ω|x=0 =ω|x=b = 0. (5.14)

We set

ω(x,t)= x3v−3�∗x
(
ξ2v

)
. (5.15)

From (5.14) and (5.15), we conclude that

∫ b
0
x2v(x,t)dx = 0, v(b,t)= 0. (5.16)

If we substitute (5.15) into (5.2), we obtain

∫ T
0

(
∂u(·, t)
∂t

,x4v(·, t)−3x�∗x
(
ξ2v(·, t))

)
L2(0,b)

dt

=
∫ T

0

(
A(t)u,x3v(·, t)−3�∗x

(
ξ2v(·, t)))L2(0,b)dt.

(5.17)

Now we put

u=�t
(
ecτv

)=
∫ t

0
ecτv(x,τ)dτ (5.18)

in (5.17), where c is a constant such that

cc0−c2−36b2c2
1 ≥ 0, (5.19)

and integrating by parts by taking into account (5.16), we get

∫ T
0

(
∂u(·, t)
∂t

,x4v(·, t)−3x�∗x
(
ξ2v(·, t))

)
L2(0,b)

dt

=
∫ T

0

∫ b
0
ectx4v2dxdt+ 3

2

∫ T
0

∫ b
0
ect
(�∗x(ξv))2dxdt,

∫ T
0

(
A(t)u,x3v(·, t)−3�∗x

(
ξ2v(·, t)))L2(0,b)dt

=−1
2

∫ b
0
e−cTa(T)x4

(
∂�T

(
ectv

)
∂x

)2

dx

− 1
2

∫ T
0

∫ b
0
e−ctx4(ca(t)−a′(t))

(
∂�t

(
ecτv

)
∂x

)2

dxdt

−6
∫ T

0

∫ b
0
x3a(t)v

(
∂�t

(
ecτv

)
∂x

)
dxdt.

(5.20)
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Substituting (5.20) into (5.17), yields

∫ T
0

∫ b
0
ectx4v2dxdt+ 3

2

∫ T
0

∫ b
0
ect
(�∗x(ξv))2dxdt

=−1
2

∫ b
0
e−cTa(T)x4

(
∂�T

(
ectv

)
∂x

)2

dx

− 1
2

∫ T
0

∫ b
0
e−ctx4(ca(t)−a′(t))

(
∂�t

(
ecτv

)
∂x

)2

dxdt

−6
∫ T

0

∫ b
0
x3a(t)v

(
∂�t

(
ecτv

)
∂x

)
dxdt.

(5.21)

The application of the Cauchy inequality to the last term of the above equality gives

∫ T
0

∫ b
0
ectx4v2dxdt+

∫ T
0

∫ b
0
ect
(�∗x(ξv))2dxdt

≤−1
2

∫ b
0
e−cTa(T)x4

(
∂�T

(
ectv

)
∂x

)2

dx

−
∫ T

0

∫ b
0
e−ctx4(ca(t)−a′(t)−36x2a2(t)

)(∂�t(ecτv)
∂x

)2

dxdt.

(5.22)

According to Assumption 2.1 and inequality (5.19), we get

‖v‖2
L2
r (0,T ;L2

σ (0,b))
+‖v‖2

L2
r (0,T ;B1,∗

2,x (0,b))

≤−(cc0−c2−36b2c2
1

)‖v‖2
B1

2,ρ(0,T ;L2
σ (0,b))

≤ 0,
(5.23)

and thus v ≡ 0, hence ω ≡ 0 almost everywhere in Q. This proves Proposition 5.2.

Returning to the proof of Theorem 5.1. Since F is a Hilbert space, the density of

R(L) in F is equivalent to the property that orthogonality of a vectorW = (ω,ω0)∈ F
to the range R(L), that is, the identity

∫ T
0

(
�u(·, t),ω(·, t))L2

s (0,b)dt+
(
�u,ω0

)
H1
s (0,b) = 0, ∀u∈D(L), (5.24)

impliesW ≡ 0. In particular, if u∈D0(L) then conclude by Proposition 5.2 thatω≡ 0.

Thus (5.24) implies that

(
�u,ω0

)
H1
s (0,b) = 0, u∈D(L). (5.25)

Now since R(�) is dense in H1
s (0,b), it follows that ω0 ≡ 0. Hence R(L) = F . This

completes the proof of Theorem 5.1.
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