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We study the existence of bounded solutions to the elliptic system −∆pu = f(u,v)+h1

in Ω, −∆qv = g(u,v)+h2 in Ω, u = v = 0 on ∂Ω, non-necessarily potential systems. The
method used is a shooting technique. We are concerned with the existence of a negative
subsolution and a nonnegative supersolution in the sense of Hernandez; then we construct
some compact operator T and some invariant set K where we can use the Leray Schauder’s
theorem.
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1. Introduction. The aim of this paper is to study the existence of solutions for the

following system:

−∆pu= f(u,v)+h1, −∆qv = g(u,v)+h2 in Ω,

u= v = 0 on ∂Ω,
(1.1)

whereΩ is a smooth bounded domain ofRN , whereN ≥ 1,p,q > 1, f ,g are continuous

functions of R2 into R and h1,h2 are the functions given in L+∞(Ω).
System (1.1) results from the study of the nonlinear phenomena, such as the evo-

lution of population, of chemical reaction, and so forth. A great attention was given

to the existence of the solutions for a system of the (1.1) type, by using various ap-

proaches (cf. [3, 4, 5, 7, 13]). When the system has a variational structure, the existence

of the solutions for (1.1) can be established by means of the variational approaches un-

der adapted conditions (cf. [9, 13]). When (1.1) does not have a variational structure, as

in Vélin and de Thélin [13], where the authors obtained some results for the existence

of solutions to problem (1.1) with the following growth conditions of nonlinearity f
and g: ∣∣f(u,v)∣∣≤ a1|u|α0 |v|β0+1+a2|u|α1−1+a3|v|β1−1,∣∣g(u,v)∣∣≤ a4|u|α0+1|v|β0+a5|u|α2−1+a6|v|β2−1,

(1.2)

where ai (i= 1, . . . ,6) are positive constants and αi and βi (i= 0,1,2) satisfy

α0+1
p

+ β0+1
q

< 1,

1<α1 <p; 0< β1−1<
q
p∗
,

1<α2−1<
p
q∗

; 0< β2 < q.

(1.3)
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Always in the case of a system, we can notice the existence results obtained in Baoyao

[2], and Brézis and Lieb [4].

The case of a scalar equation has been studied by many authors, see de Figueiredo

and Gossez [6], Fernandes et al. [10] and Fonda et al. [11]. More recently, some in-

teresting results have been obtained by Gossez and El Hachimi [12] and Anane and

Chakrone [1]. Those authors derived the solvability of the following problem:

−∆mu= f(u)+h in Ω,

u= 0 on ∂Ω,
(1.4)

under the following condition:

lim
u→∞ inf

pF(u)
um

< µ′m, (1.5)

where

µ′m = (m−1)
[

2
R(Ω)

∫ 1

0

ds
m√1−sm

]m
, (1.6)

and R(Ω) denotes the radius of the smallest open ball B(0,R) containing Ω. The par-

ticular cases N = 1 and m = 2 were considered in [10]. It was shown there that (1.4)

is solvable for any h∈ L∞(Ω) if

lim
u→∞ inf

2F(u)
u2

< λ1,2, (1.7)

where λ1,2 is the first eigenvalue of −∆ and Ω =]a,b[. Observe that for N > 1, we

have µ′2 < λ1,2(Ω). Then, the question naturally arises whether µ′m can be replaced by

λ1,m(Ω) in (1.5), where λ1,m is the first eigenvalue of−∆m. This problem remains open.

The goal of this paper is to show that the same approach in [12] can be applied

for some quasilinear elliptic systems with the constants µp and µq, defined below,

associated, respectively, with the operators −∆p and −∆q, and where µm (m = p,q),
better than µ′m, is presented in (1.5). In this case, we treat the question of the existence

of the solutions for system (1.1) without imposing variational structures, which is

often the case for system (1.1) and without necessarily the growth conditions for f
and g.

2. Main result. We make the following assumptions:

(H1) (i) The function f(u,·) is a nonincreasing function on R for all u in R,

(ii) The function g(·,v) is a nonincreasing function on R for all v in R.

(H2) There exists some unbounded increasing subsequence (mk)k, satisfying

lim
k→+∞

pF
(
m1/p
k ,m1/q

k

)
mk

< µp, lim
k→+∞

qG
(
m1/p
k ,m1/q

k

)
mk

< µq, (2.1)

lim
k→+∞

pF
(
−m1/p

k ,−m1/q
k

)
mk

< µp, lim
k→+∞

qG
(
−m1/p

k ,−m1/q
k

)
mk

< µq, (2.2)
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where F and G are the following functions:

F(u,v)=
∫ u

0
f(s,v)ds, G(u,v)=

∫ v
0
g(u,t)dt, (2.3)

and where we denote by µp and µq the following constants:

µp = (p−1)
[

2
b−a

∫ 1

0

ds
p√1−sp

]p
, µq = (q−1)

[
2

b−a
∫ 1

0

dt
q√1−tq

]q
, (2.4)

with b−a=min(bi−ai) and P =Π[ai,bi] is the smallest cube such that P ⊃Ω.

Observe that for N = 1, µp and µq are, respectively, the first eigenvalue of −∆p and

−∆q when Ω=]a,b[. It is clear that µp is better than µ′p defined in (1.5). In particular,

it is interesting when Ω is a rectangle or a triangle, because µp
 µ′p and µp ≈ λ1,p(Ω).
The main result of this paper is the following statement.

Theorem 2.1. Under hypotheses (H1) and (H2). Problem (1.1) has a solution (u,v)
in (W 1,p

0 (Ω)×W 1,q
0 (Ω))∩(L+∞(Ω)×L+∞(Ω)) for any (h1,h2) in L+∞(Ω)×L+∞(Ω).

Example 2.2. Consider

f(u,v)= a(x)u|u|α−1|v|β+1, g(u,v)= b(x)|u|γ+1v|v|δ−1. (2.5)

(1) Assume that ‖a‖∞ < µp , ‖b‖∞ < µq, and

α+1
p

+ β+1
q

≤ 1,
γ+1
p

+ δ+1
q

≤ 1. (2.6)

Then we conclude the existence of solutions.

(2) If

α+1
p

+ β+1
q

< 1,
γ+1
p

+ δ+1
q

< 1, (2.7)

we have the existence for all (a,b) in L+∞(Ω).

The method used in this paper is a shooting technique. In Section 3, we are con-

cerned with the existence of a negative subsolution (u0,v0) and a nonnegative super-

solution (u0,v0) in the sense of Hernandez’s definition [13]. In Section 4, we consider

some compact operator T and some invariant set K. And, we look for solutions of

problem (1.1) as fixed points of the operator T . We will be in the conditions of the

Schauder fixed point theorem.

3. Construction of sub-supersolutions

Definition 3.1. A pair [(u0,v0),(u0,v0)] is a weak sub-supersolution for the

Dirichlet problem (1.1), if the following conditions are satisfied:
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(
u0,v0

)∈ (W 1,p(Ω)×W 1,q(Ω)
)∩(L+∞(Ω)×L+∞(Ω)),

(
u0,v0)∈ (W 1,p(Ω)×W 1,q(Ω)

)∩(L+∞(Ω)×L+∞(Ω)),
−∆pu0−f

(
x,u0,v

)≤ 0≤−∆pu0−f (x,u0,v
)

in Ω, ∀v ∈ [v0,v0],
−∆qv0−f

(
x,u,v0

)≤ 0≤−∆qv0−f (x,u,v0) in Ω, ∀u∈ [u0,u0],
u0 ≤u0, v0 ≤ v0 in Ω, u0 ≤ 0≤u0, v0 ≤ 0≤ v0 on ∂Ω.

(3.1)

Similar definitions can be found in Diaz and Hernández [7], and Diaz and Herrero [8].

For all M > 0, we note that

f̂ (u,v)= f(u,v)+M, ĝ(u,v)= g(u,v)+M,
F̂(u,v)= F(u,v)+Mu, Ĝ(u,v)=G(u,v)+Mv.

(3.2)

Notice that if F and G satisfy the assumption (2.1) of (H2), then the same holds for F̂
and Ĝ.

Proposition 3.2 [6]. Under hypothesis (2.1) of (H2), there exist two sequences dk
and d′k such that

(a) m1/p
k ≥ dk ≥ 0, for all k∈N and

∫ dk
0

ds
p
√
pF̂
(
dk,m

1/q
k

)
−pF̂

(
s,m1/q

k

) >
∫ 1

0

ds
p√1−sp

[
µp
]−1/p. (3.3)

(b) m1/p
k ≥ d′k ≥ 0, for all k∈N and

∫ d′k
0

dt
q
√
qĜ
(
m1/p
k ,d′k

)
−qĜ

(
m1/p
k ,t

) >
∫ 1

0

dt
q√1−tq

[
µq
]−1/q. (3.4)

Remark 3.3. We have

p
√
p−1

∫ 1

0

ds
p√1−sp

[
µp
]−1/p = q

√
q−1

∫ 1

0

dt
q√1−tq

[
µq
]−1/q = b−a

2
. (3.5)

Proof of Proposition 3.2. We only prove (a); the proof of (b) is similar.

(1) From (2.1) of hypothesis (H2), there exists some µ > 0 such that

lim
k→+∞

pF̂
(
m1/p
k ,m1/q

k

)
mk

< µ < µp, (3.6)

then

lim
k→+∞

µmk−pF̂
(
m1/p
k ,m1/q

k

)
=+∞. (3.7)
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(2) We consider the functions [H(·,mk)]k, where

H
(
s,mk

)= µs−pF̂(s1/p,m1/q
k

)
. (3.8)

For all k > 0, we have

H
(
0,mk

)=−pF̂(0,m1/q
k

)
= 0,

H
(
mk,mk

)= µmk−pF̂
(
m1/p
k ,m1/q

k

)
> 0.

(3.9)

Then for all k∈N there exists dk > 0 such that dpk ≤mk and for all s ∈ [0,dpk ], we have

H
(
s,mk

)≤H(dpk ,mk
)
, (3.10)

that is,

µs−pF̂
(
s1/p,m1/q

k

)
≤ µdpk −pF

(
dk,m

1/q
k

)
, (3.11)

then

pF̂
(
dk,m

1/q
k

)
−pF̂

(
s1/p,m1/q

k

)
≤ µ(dpk −s). (3.12)

Let s =ωp , where ω∈ [0,dk]⊂ [0,m1/p
k ]. We obtain

pF̂
(
dk,m

1/q
k

)
−pF̂

(
ω,m1/q

k

)
≤ µ(dpk −ωp), (3.13)

that is,
1

p
√
dpk −ωp

[µ]−1/p ≤ 1

p
√
pF̂
(
dk,m

1/q
k

)
−pF̂

(
ω,m1/q

k

) . (3.14)

Then integrating on [0,dk] we obtain

∫ 1

0

dω
p√1−ωp [µ]

−1/p ≤
∫ dk

0

dω
p
√
pF̂
(
dk,m

1/q
k

)
−pF̂

(
ω,m1/q

k

) . (3.15)

This proves (a).

3.1. Construction of supersolution (u0,v0). In the following step we suppose that

for all k∈N and for all s ∈ [0,m1/p
k ]

f
(
s,m1/q

k

)
+M ≥ 0. (3.16)

Denote by (f̂k)k the sequence of functions defined by

f̂k(s)=




f
(
m1/p
k ,m1/q

k

)
+M for s in

[
m1/p
k ,+∞

[
,

f
(
s,m1/q

k

)
+M for s in

[
0,m1/p

k

]
,

f
(
0,m1/q

k

)
+M for s in ]−∞,0].

(3.17)
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For all k∈N, we associate to the function f̂k, the following problem:

−(|u′|p−2u′
)′(t)= f̂k(u(t)), u(t)≥ 0 for t in [a,b]. (3.18)

For all k∈N, we define the nonlinear operator Tk such that

Tk : C
(
[a,b]

)
�→ C([a,b]) (3.19)

in the following way:

Tk(u)(t)= dk−
∫ t
a

[∫ r
a
f̂k
(
u(s)

)
ds
]1/(p−1)

dr . (3.20)

Since f̂k is a nonnegative function, the operator Tk is well defined.

Lemma 3.4. For all k≥ 0,

(i) the operator Tk is completely continuous,

(ii) there exists a fixed point for Tk.

Proof. Let k∈N,

(1) the continuity is immediate,

(2) let (un)n be a bounded sequence in C([a,b]) such that the sequence (Tk(un))n
is also bounded in C([a,b]).

By the continuity of the function f̂k, there exists some constant Ck such that

t′ ∈ [a,b], ∀t, (3.21)

for all n∈N we have

∣∣Tk(un)(t)−Tk(un)(t′)∣∣≤ Ck∣∣t−t′∣∣. (3.22)

So (Tk(un))n is uniformly equicontinuous and by Ascoli theorem the sequence

(Tk(un))n is relatively compact in C([a,b]).
(3) Using the Leray-Schauder theorem we deduce that Tk has a fixed point uk ∈

C([a,b]), that is, Tk(uk)=uk.
Remark 3.5. By definition of the operator Tk, we have

(i) −|u′k|p−2u′k(t)=
∫ t
a f̂k(uk(s))ds,

(ii) u′k(a)= 0,

(iii) uk(a)= dk.
Since f̂k is a nonnegative function we have

(iv) u′k(t)≤ 0 for t in [a,b].
That is, uk is a nonincreasing function on [a,b].

Lemma 3.6. From (2.1), choose (dk)k such that

uk(t)≥ 0 in
[
a,
a+b

2

]
∀k∈N, (3.23)

where uk is the fixed point of the operator Tk.
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Proof. Let (dk)k be some sequence such that dk ∈ [0,m1/p
k ] for all k∈N.

We denote by tk a real number such that uk(tk)= 0 and uk(t)≥ 0 on [a,tk].
Then, from Remark 3.5, since uk is a nonincreasing function and dk ∈ [0,m1/p

k ], we

have

m1/p
k ≥uk ≥ 0 ∀t ∈ [a,tk]. (3.24)

Consequently, for all t ∈ [a,tk] we have

−
(∣∣u′k∣∣p−2u′k

)′
(t)= f̂k

(
uk(t)

)= f(uk(t),m1/q
k

)
+M. (3.25)

Multiplying (3.25) by u′k we obtain

p−1
p

(−∣∣u′k(t)∣∣p)′ = d
dt

(
F̂
(
uk(t),m

1/q
k

))
, (3.26)

where

F̂
(
u,m1/q

k

)
= F(u,v)+Mu. (3.27)

Integrating (3.26) on [a,t]⊂ [a,tk], we obtain

− p
√
p−1u′k(t)= p

√
pF̂
(
dk,m

1/q
k

)
−pF̂

(
uk(t),m

1/q
k

)
. (3.28)

Integrating (3.28) again on [a,tk] we deduce that

p
√
p−1

∫ tk
a

−u′k(t)
p
√
pF̂
(
dk,m

1/q
k

)
−pF̂

(
uk(t),m

1/q
k

)dt ≤ tk−a. (3.29)

Then, we obtain

p
√
p−1

∫ dk
0

1

p
√
pF̂
(
dk,m

1/q
k

)
−pF̂

(
s,m1/q

k

)ds ≤ tk−a. (3.30)

It follows from Proposition 3.2 and Remark 3.3 that one can choose the sequence (dk)
such that for all k≥ k0 we have

b−a
2

< p
√
p−1

∫ dk
0

1

p
√
pF̂
(
dk,m

1/q
k

)
−pF̂

(
s,m1/q

k

)ds. (3.31)

Consequently, from (3.30) and (3.31), we obtain that for all k ≥ k0, there exists tk
satisfying tk > (b+a)/2.

Proposition 3.7. Suppose that the sequence (mk)k satisfies (2.1), and that for all

k > 0 we have

inf
s∈[0,m1/p

k ]
f
(
s,m1/q

k

)
+M ≥ 0. (3.32)
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Then, there exists some number k0 ∈N such that for all k≥ k0 the problem

−(|u′|p−2u′
)′ = f(u,m1/q

k

)
+M in (a,b),

u≥ 0 on [a,b],
(3.33)

has a solution ûk satisfying ûk ∈ C1([a,b]), (|û′k|p−2û′k)′ ∈C([a,b]) andm1/p
k ≥ûk≥0

for all k≥ k0.

Proof. Let (uk)k be the sequence defined in Lemma 3.6. This sequence satisfies

that for all k≥ k0,

uk ∈ C1
([
a,
a+b

2

])
,

(∣∣u′k∣∣p−2u′k
)′ ∈ C([a, a+b

2

])
,

−
(∣∣u′k∣∣p−2u′k

)′
(t)= f

(
uk(t),m

1/q
k

)
+M in

[
a,
a+b

2

]
, (3.34)

m1/p
k ≥ ûk ≥ 0 in

[
a,
a+b

2

]
,

u′k(a)= 0. (3.35)

We denote by ûk the following function:

ûk(t)=



uk
(

3a+b
2

−t
)

if t ∈
[
a,
a+b

2

]
,

uk
(
t− a+b

2

)
if t ∈

[
a+b

2
,b
]
.

(3.36)

Then, from (3.34), it is easy to see that

∀k≥ k0, ûk ∈ C1([a,b]), (∣∣û′k∣∣p−2û′k
)′ ∈ C([a,b]),

−
(∣∣û′k∣∣p−2û′k

)′
(t)= f

(
ûk(t),m

1/q
k

)
+M in [a,b],

m1/p
k ≥ ûk ≥ 0 in [a,b].

(3.37)

Then the conclusion holds.

Proposition 3.8. Let M > 0. From (2.1), there exist some m > 0 and (ûm,v̂m) ∈
(C1([a,b]))2 such that

((∣∣û′m∣∣p−2û′m
)′
,
(∣∣v̂′m∣∣p−2v̂′m

)′)∈ (C[a,b])2,

−
(∣∣û′m∣∣p−2û′m

)′ ≥ f (ûm,m1/q)+M in (a,b),

−
(∣∣v̂′m∣∣q−2v̂′m

)′ ≥ g(m1/p, v̂m
)+M in (a,b),

m1/p ≥ ûm ≥ 0, m1/q ≥ v̂m ≥ 0 on [a,b].

(3.38)
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Proof. We study three cases.

Case 1. We suppose that for all k∈N we have

inf
s∈g[0,m1/p

k ]
f
(
s,m1/q

k

)
+M < 0, inf

t∈[0,m1/q
k ]
g
(
m1/p
k ,t

)
+M < 0. (3.39)

Then for all k∈N, there exist smk ∈ [0,m1/p
k ] and tmk ∈ [0,m1/q

k ] satisfying

f
(
smk,m

1/q
k

)
+M < 0, g

(
m1/p
k ,tmk

)
+M < 0. (3.40)

Consequently, for m=mk, the couple (ûm,v̂m)= (smk,tmk) satisfies the result.

Case 2. Assume that for all k∈N we have,

inf
s∈[0,m1/p

k ]
f
(
s,m1/q

k

)
+M ≥ 0, (3.41)

inf
t∈[0,m1/q

k ]
g
(
m1/p
k ,t

)
+M < 0. (3.42)

(a) From (3.41) and Proposition 3.7 there exist some k0 ∈ N and some sequence

(ûk)k such that, for all k≥ k0, we have

ûk ∈ C1([a,b]), (∣∣û′k∣∣p−2û′k
)′ ∈ C([a,b]),

−
(∣∣û′k∣∣p−2û′k

)′ ≥ f(ûk,m1/q
k

)
+M in (a,b),

m1/p
k ≥ ûk ≥ 0 in [a,b].

(3.43)

(b) From (3.42), there exists a sequence (tmk)k such that

m1/p
k ≥ tmk ≥ 0, g

(
m1/p
k ,tmk

)
+M < 0 ∀k≥ k0. (3.44)

Consequently, for m=mk with k > k0, the pair (ûmk,tmk) satisfies the result.

Case 3. Assume that for all k∈N, we have

inf
s∈[0,m1/p

k ]
f
(
s,m1/q

k

)
+M ≥ 0, inf

t∈[0,m1/q
k ]
g
(
m1/p
k ,t

)
+M ≥ 0. (3.45)

Then, from Proposition 3.7, for all k ≥ k0, there exists (ûk, v̂k) ∈ (C1([a,b]))2 such

that ((∣∣û′k∣∣p−2û′k
)′
,
(∣∣v̂′k∣∣p−2v̂′k

)′)∈ (C[a,b])2,

−
(∣∣û′k∣∣p−2û′k

)′ ≥ f(ûk,m1/q
k

)
+M in (a,b),

−
(∣∣v̂′k∣∣p−2v̂′k

)′ ≥ g(m1/p
k , v̂k

)
+M in (a,b),

m1/p
k ≥ ûk ≥ 0, m1/q

k ≥ v̂k ≥ 0 on [a,b].

(3.46)

This proves the results.

Now, for problem (1.1), we consider a smooth bounded domain Ω in RN, and we

have the following result.
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Proposition 3.9. Under hypotheses (H1) and (2.1) of (H2), problem (1.1) has a non-

negative supersolution (u0,v0) in W 1,p(Ω)×W 1,q(Ω).

Proof. Let M ≥‖ h1 ‖∞ + ‖ h2 ‖∞ ·P =
∏
[ai,bi] is a cube containing Ω and

b−a= inf
1≤i≤N

bi−ai = b1−a1. (3.47)

From (2.1) of hypothesis (H2) and Proposition 3.8, there exist m> 0 and (ûm,v̂m) ∈
(C1([a,b]))2 such that((∣∣û′m∣∣p−2û′m

)′
,
(∣∣v̂′m∣∣p−2v̂′m

)′)∈ (C[a,b])2, (3.48)

and (ûm,v̂m) satisfies

−
(∣∣û′m∣∣p−2û′m

)′ ≥ f(ûm,m1/q
)
+M in (a,b),

−
(∣∣v̂′m∣∣q−2v̂′m

)′ ≥ g(m1/p, v̂m
)+M in (a,b),

m1/p ≥ ûm ≥ 0, m1/q ≥ v̂m ≥ 0 on [a,b].

(3.49)

We denote by u0 and v0 the functions such that for all x ∈Ω with x = (x1,x2, . . . ,xN)

u0(x)= ûm
(
x1
)
, v0(x)= v̂m

(
x1
)
, (3.50)

where (u0,v0) is clearly inW 1,p(Ω)×W 1,q(Ω), moreover by hypothesis (H1), we easily

obtain
−∆pu0 ≥ f (u0,v

)+h1 for v ≤ v0 a.e. on Ω,

−∆qv0 ≥ g(u,v0)+h2 for u≤u0 a.e. on Ω,

u0 ≥ 0, v0 ≥ 0 on Ω.

(3.51)

Then the result follows.

3.2. Construction of a subsolution (u0,v0). Similar to the construction of a super-

solution we can prove the following result.

Proposition 3.10. Under hypotheses (H1) and (2.2) of (H2), problem (1.1) has a

subsolution (u0,v0) in W 1,p(Ω)×W 1,q(Ω).

4. Proof of Theorem 2.1. We proceed in the following steps.

(i) From Propositions 3.9 and 3.10, there exists a pair [(u0,v0);(u0,v0)] of sub-

supersolution of problem (1.1).

(ii) Construction of an invariant set. In order to apply Schauder’s fixed point

theorem, we introduce the set K = [u0,u0]× [v0,v0]. Next we define the following

nonlinear operator T : for all (u1,v1) ∈ W 1,p(Ω)×W 1,q(Ω), we associate (u2,v2) =
T((u1,v1)), where (u2,v2) is the solution of the system

−∆pu= f̂
(
x,u,v1

)
, −∆qv = ĝ

(
x,u1,v

)
in Ω,

u= 0, v = 0 on ∂Ω,
(4.1)

where

f̂ (x,u,v)= f(U,V)+h1(x), ĝ(x,u,v)= g(U,V)+h2(x), (4.2)
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with
U(x)=u(x)+(u0−u

)
+−

(
u−u0)

+,

V(x)= v(x)+(v0−v
)
+−

(
v−v0)

+.
(4.3)

The functions f̂ and ĝ are bounded, so the operator T is well defined. Furthermore,

K is an invariant set for T . Let (u1,v1)∈K and (u2,v2)= T((u1,v1)).
We show, for example, that u2 ≤u0. From (3.51), (4.1), and (4.2) we have

0≥−∆pu2− f̂
(
x,u2,v1

)≥−∆pu2−f
(
U2,V1

)−h1(x)

≥ [−∆pu2+∆pu0]+[f (u0,v1
)−f (U2,V1

)]
,

(4.4)

multiplying (4.4) by (u2−u0)+ and integrating over Ω, we obtain

0≥
∫
Ω

[∣∣�u2|p−2�u2−
∣∣�u0

∣∣p−2�u0]�(u2−u0)
+dx

+
∫
Ω

[
f
(
u0,v1

)−f (U2,V1
)](
u2−u0)

+dx.
(4.5)

Since v1 ∈ [v0,v0], we have V1 = v1, where V1 is associated with v1 as in (4.3).

Denote by Ω+ the set

Ω+ =
{
x ∈Ω; u2−u0 > 0

}
. (4.6)

We have U2 =u0 in Ω+. Then

∫
Ω

[
f
(
u0,v1

)−f (U2,V1
)](
u2−u0)

+dx

=
∫
Ω

[
f
(
u0,v1

)−f (u0,v1
)](
u2−u0)

+dx = 0.
(4.7)

By the monotonicity of −∆p in Lp(Ω), we get that 0≥ ‖ (u2−u0)+ ‖Lp(Ω).
Thus u2 ≤ u0 on Ω and similarly v2 ≤ v0 on Ω. So that the property, T(K) ⊂ K,

holds.

(iii) The operator T is completely continuous.

(a) We prove that T is compact; let (uj1,v
j
1)j be a bounded sequence in Lp(Ω)×

Lq(Ω). Let (uj2,v
j
2)= T((uj1,vj1)), so multiplying (4.1) by uj2, we obtain

∫
Ω

∣∣∣�uj2
∣∣∣p dx =

∫
Ω
f̂
(
x,uj2,v

j
1

)
uj2dx ≤ C

[∫
Ω

∣∣∣uj2
∣∣∣p dx

]1/p

. (4.8)

Therefore, (uj2)j is bounded in W 1,p(Ω) and it possesses a convergent subsequence

in Lp(Ω). Analogously for (vj2)j in Lq(Ω).
(b) Now we prove the continuity of the operator T ; from the continuity of the func-

tions f and g associated at the bounded functions f̂ , ĝ, and by the dominated con-

vergence theorem, we deduce easily the continuity of the operator T .

Since K is a convex, bounded, and closed subset, we apply Schauder’s fixed point

theorem and we obtain the existence of a fixed point for T which gives the existence

of one solution of (1.1).
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