SOME THEOREMS OF RANDOM OPERATOR EQUATIONS

ZHU CHUANXI and XU ZONGBEN

Received 17 January 2002

We investigate a class of random operator equations, generalize a famous theorem, and obtain some new results.

2000 Mathematics Subject Classification: 60H25, 47H10.

Let E be a separable real Banach space, (\mathbf{E}, \mathbf{B}) a measurable space, where \mathbf{B} denotes the σ-algebra generated by all open subsets in E, let (Ω, U, γ) be a complete probability measure space, where $\gamma(\Omega)=1$, let D be a bounded open set in X and ∂D the boundary of D in X. Let X be a cone in E, and let " \leq ", " $<$ " be partial order of E.

Lemma 1. When $y>1, \alpha>0, x \in X$, and $x \neq \theta$, the following inequality holds:

$$
\begin{equation*}
(y-1)^{\alpha+1} x<y^{\alpha+1} x-x \tag{1}
\end{equation*}
$$

Proof. Letting $f(y)=y^{\alpha+1}-1-(y-1)^{\alpha+1}$, where $\alpha>0$, then

$$
\begin{align*}
f^{\prime}(y) & =(\alpha+1) y^{\alpha}-(\alpha+1)(y-1)^{\alpha} \\
& =(\alpha+1)\left[y^{\alpha}-(y-1)^{\alpha}\right]>0 \tag{2}
\end{align*}
$$

(since $y>1$, then $0<y-1<y$, and $\alpha>0$, obtaining $0<(y-1)^{\alpha}<y^{\alpha}$, i.e., $y^{\alpha}-$ $\left.(y-1)^{\alpha}>0\right)$.
Therefore $f(y)$ is a monotonous increasing function. When $y>1$, we have $f(y)>$ $f(1)$, and $f(1)=0$. Hence $f(y)>0$, that is, $y^{\alpha+1}-1-(y-1)^{\alpha+1}>0$, that is,

$$
\begin{equation*}
(y-1)^{\alpha+1}<y^{\alpha+1}-1 . \tag{3}
\end{equation*}
$$

When $x \in X, x \neq \theta$, that is, $x>\theta$, we have $(y-1)^{\alpha+1} x<y^{\alpha+1} x-x$.
Lemma 2 (see [1]). Let X be a closed convex subset of E, D a bounded open subset in X, and $\theta \in D$. Suppose that $A: \Omega \times \bar{D} \rightarrow X$ is a random semiclosed 1 -set-contractive operator. Meanwhile, such that $x \neq(t / \mu) A(\omega, x)$ a.s., for every $\omega \in \Omega$, for every $x \in$ ∂D, where $t \in(0,1], \mu \geq 1$. Then the random operator equation $A(\omega, x)=\mu x$, (for every $(\omega, x) \in \Omega \times \bar{D}, \mu \geq 1$) has a random solution in D.

Theorem 3. Let D be a bounded open subset in X and $\theta \in D$. Suppose that A : $\Omega \times \bar{D} \rightarrow X$ is a random semiclosed 1-set-contractive operator, such that

$$
\begin{align*}
& {\left[\lambda\|\mu x\|+\|A(\omega, x)-\mu x\|^{\alpha}\right]\|A(\omega, x)-\mu x\| x} \tag{4}\\
& \quad \geq\left[\lambda\|\mu x\|+\|A(\omega, x)\|^{\alpha}\right]\|A(\omega, x)\| x-\lambda\|\mu x\|^{2} x-\|\mu x\|^{\alpha+1} x
\end{align*}
$$

for every $(\omega, x) \in \Omega \times \partial D, \lambda \geq 0, \mu \geq 1, \alpha>0$. Then the random operator equation $A(\omega, x)=\mu x$ (for every $(\omega, x) \in \Omega \times \bar{D}$, where $\mu \geq 1$) has a random solution in \bar{D}.

Proof. Assume that $A(\omega, x)=\mu x$ has no random solution on ∂D (otherwise, the theorem has obtained proof), that is, $A(\omega, x) \neq \mu x$ a.s., for every $(\omega, x) \in \Omega \times \partial D$, where $\mu \geq 1$. That is,

$$
\begin{equation*}
x \neq \frac{1}{\mu} A(\omega, x) \quad \text { a.s. } \tag{5}
\end{equation*}
$$

We prove that

$$
\begin{equation*}
x \neq t \frac{1}{\mu} A(\omega, x), \tag{6}
\end{equation*}
$$

where $\mu \geq 1, t \in(0,1)$, for every $(\omega, x) \in \Omega \times \partial D$.
Suppose that (6) is not true, that is, there exists a $t_{0} \in(0,1)$, an $\omega_{0} \in \Omega$, and an $x_{0} \in \partial D$, such that $x_{0}=t_{0}(1 / \mu) A\left(\omega_{0}, x_{0}\right)$. That is, $A\left(\omega_{0}, x_{0}\right)=\left(\mu / t_{0}\right) x_{0}$, where $\mu \geq 1$, $t_{0} \in(0,1), \omega_{0} \in \Omega$, and $x_{0} \in \partial D$.

Inserting $A\left(\omega_{0}, x_{0}\right)=\left(\mu / t_{0}\right) x_{0}$ into (4), obtaining

$$
\begin{align*}
& {\left[\lambda\left\|\mu x_{0}\right\|+\left\|\frac{\mu}{t_{0}} x_{0}-\mu x_{0}\right\|^{\alpha}\right]\left\|\frac{\mu}{t_{0}} x_{0}-\mu x_{0}\right\| x_{0}} \\
& \quad \geq\left[\lambda\left\|\mu x_{0}\right\|+\left\|\frac{\mu}{t_{0}} x_{0}\right\|^{\alpha}\right]\left\|\frac{\mu}{t_{0}} x_{0}\right\| x_{0}-\lambda\left\|\mu x_{0}\right\|^{2} x_{0}-\left\|\mu x_{0}\right\|^{\alpha+1} x_{0} \tag{7}
\end{align*}
$$

where $\lambda \geq 0, \mu \geq 1, \alpha>0, t_{0} \in(0,1)$, and $x_{0} \in \partial D$. This implies that

$$
\begin{align*}
& \lambda\left\|\mu x_{0}\right\|\left\|\frac{\mu}{t_{0}} x_{0}-\mu x_{0}\right\| x_{0}+\left\|\frac{\mu}{t_{0}} x_{0}-\mu x_{0}\right\|^{\alpha+1} x_{0} \\
& \quad \geq \lambda\left\|\mu x_{0}\right\|\left\|\frac{\mu}{t_{0}} x_{0}\right\| x_{0}+\left\|\frac{\mu}{t_{0}} x_{0}\right\|^{\alpha+1} x_{0}-\lambda\left\|\mu x_{0}\right\|^{2} x_{0}-\left\|\mu x_{0}\right\|^{\alpha+1} x_{0} \tag{8}
\end{align*}
$$

that is,

$$
\begin{align*}
\lambda\left(\frac{1}{t_{0}}-1\right)\left\|\mu x_{0}\right\|^{2} x_{0}+\left(\frac{1}{t_{0}}-1\right)^{\alpha+1}\left\|\mu x_{0}\right\|^{\alpha+1} x_{0} \tag{9}\\
\quad \geq \lambda\left(\frac{1}{t_{0}}-1\right)\left\|\mu x_{0}\right\|^{2} x_{0}+\frac{1}{t_{0}^{\alpha+1}}\left\|\mu x_{0}\right\|^{\alpha+1} x_{0}-\left\|\mu x_{0}\right\|^{\alpha+1} x_{0}
\end{align*}
$$

since $\mu \geq 1, x_{0} \in \partial D$, thus $\mu x_{0} \neq 0$.
Therefore $\left\|\mu x_{0}\right\|^{\alpha+1} \neq 0$, by (9), we obtain

$$
\begin{equation*}
\left(\frac{1}{t_{0}}-1\right)^{\alpha+1} x_{0} \geq \frac{1}{t_{0}^{\alpha+1}} x_{0}-x_{0} \tag{10}
\end{equation*}
$$

Letting $y=1 / t_{0}$, by (10), we have

$$
\begin{equation*}
(y-1)^{\alpha+1} x_{0} \geq y^{\alpha+1} x_{0}-x_{0} \tag{11}
\end{equation*}
$$

where $y>1, \alpha>0, x_{0} \in X$, and $x_{0} \neq \theta$.
This is in contradiction with Lemma 1. Hence

$$
\begin{equation*}
x \neq t \frac{1}{\mu} A(\omega, x) \tag{12}
\end{equation*}
$$

for every $(\omega, x) \in \Omega \times \partial D$, where $t \in(0,1), \mu \geq 1$.
By (5) and (12), we know that

$$
\begin{equation*}
x \neq t \frac{1}{\mu} A(\omega, x) \quad \text { a.s. } \tag{13}
\end{equation*}
$$

where $\mu \geq 1, t \in(0,1)$, for every $(\omega, x) \in \Omega \times \partial D$.
According to Lemma 2, we obtain that the random operator equation $A(\omega, x)=\mu x$ (where $\mu \geq 1$, for every $(\omega, x) \in \Omega \times \bar{D}$) has a random solution in D.

REMARK 4. In Theorem 3, when $\lambda=0, \alpha=1, \mu=1$, and $A(\omega, \cdot)=A$, (4) is that $\|A x-x\|^{2} \geq\|A x\|^{2}-\|x\|^{2}$. Thus, Theorem 3 is a generalization of the famous Altman theorem.

We can see that Lemma 5 holds easily.
LEMMA 5. When $y>1, \alpha>0, x \in X$, and $x \neq \theta$, the following inequality holds:

$$
\begin{equation*}
(y+1)^{\alpha+1} x>y^{\alpha+1} x+x \tag{14}
\end{equation*}
$$

THEOREM 6. Let D be a bounded open subset in X and $\theta \in D$. Suppose that A : $\Omega \times \bar{D} \rightarrow X$ is a random semiclosed 1 -set-contractive operator, such that

$$
\begin{align*}
& {\left[\lambda\|\mu x\|+\|A(\omega, x)+\mu x\|^{\alpha}\right]\|A(\omega, x)+\mu x\| x} \\
& \quad \leq\left[\lambda\|\mu x\|+\|A(\omega, x)\|^{\alpha}\right]\|A(\omega, x)\| x+\lambda\|\mu x\|^{2} x+\|\mu x\|^{\alpha+1} x \tag{15}
\end{align*}
$$

where $\lambda \geq 0, \mu \geq 1, \alpha>0$, for every $(\omega, x) \in \Omega \times \partial D$. Then the random operator equation $A(\omega, x)=\mu x$ (where $\mu \geq 1$, for every $(\omega, x) \in \Omega \times \bar{D}$) has a random solution in D.

Proof. From (15), we can easily prove that $A(\omega, x)=\mu x$ has no random solution on ∂D, by virtue of Lemma 5, see Theorem 3 for other section.

Lemma 7. When $y>1, \alpha>0, x \in X$, and $x \neq \theta$, the following inequality holds:

$$
\begin{equation*}
(y+1)^{\alpha+1} x-(y-1)^{\alpha+1} x>2 x \tag{16}
\end{equation*}
$$

Proof. By Lemmas 1 and 5, we have

$$
\begin{align*}
(y-1)^{\alpha+1} x & <y^{\alpha+1} x-x \tag{17}\\
y^{\alpha+1} x+x & <(y+1)^{\alpha+1} x \tag{18}
\end{align*}
$$

summing (17) and (18) we obtain

$$
\begin{equation*}
(y-1)^{\alpha+1} x+y^{\alpha+1} x+x<y^{\alpha+1} x-x+(y+1)^{\alpha+1} x \tag{19}
\end{equation*}
$$

That is,

$$
\begin{equation*}
(y+1)^{\alpha+1} x-(y-1)^{\alpha+1} x>2 x \tag{20}
\end{equation*}
$$

where $\alpha>0, y>1, x \in X$, and $x \neq \theta$.
Theorem 8. Let D be a bounded open subset in X and $\theta \in D$. Suppose that A : $\Omega \times \bar{D} \rightarrow X$ is a random semiclosed 1-set-contractive operator, such that

$$
\begin{equation*}
\|A(\omega, x)+\mu x\|^{\alpha+1} x-\|A(\omega, x)-\mu x\|^{\alpha+1} x \leq 2\|\mu x\|^{\alpha+1} x \tag{21}
\end{equation*}
$$

where $\alpha>0, \mu \geq 1$, for every $(\omega, x) \in \Omega \times \partial D$. Then the random operator equation $A(\omega, x)=\mu x$ (where $\mu \geq 1$, for every $(\omega, x) \in \Omega \times \bar{D}$) has a random solution in D.

Proof. The theorem can be proved using Lemma 7, see also Theorems 3 and 6 .

Remark 9. Since X is a cone in E, then X is a closed convex subset of E.
Acknowledgment. This work was funded by the Natural Science Foundation of China.

References

[1] C. X. Zhu, Some theorems on random operator equations of 1 -set-contractive type, Adv. in Math. (China) 27 (1998), no. 5, 464-468.

Zhu Chuanxi: Research Center for Applied Mathematics and Institute for information and System Science, Xi'an Jiaotong University, Xi'an 710049, China; Institute of MAthematics, Nanchang University, Nanchang 330029, China

Xu Zongben: Research Center for Applied Mathematics and Institute for Information and System Science, Xi'an Jiaotong University, Xi'an 710049, China

