SOME THEOREMS OF RANDOM OPERATOR EQUATIONS

ZHU CHUANXI and XU ZONGBEN

Received 17 January 2002

We investigate a class of random operator equations, generalize a famous theorem, and obtain some new results.

2000 Mathematics Subject Classification: 60H25, 47H10.

Let *E* be a separable real Banach space, (**E**, **B**) a measurable space, where **B** denotes the σ -algebra generated by all open subsets in *E*, let (Ω , *U*, γ) be a complete probability measure space, where $\gamma(\Omega) = 1$, let *D* be a bounded open set in *X* and ∂D the boundary of *D* in *X*. Let *X* be a cone in *E*, and let " \leq ", "<" be partial order of *E*.

LEMMA 1. When y > 1, $\alpha > 0$, $x \in X$, and $x \neq \theta$, the following inequality holds:

$$(y-1)^{\alpha+1}x < y^{\alpha+1}x - x.$$

$$\tag{1}$$

PROOF. Letting $f(y) = y^{\alpha+1} - 1 - (y-1)^{\alpha+1}$, where $\alpha > 0$, then

$$f'(\boldsymbol{y}) = (\alpha+1)\boldsymbol{y}^{\alpha} - (\alpha+1)(\boldsymbol{y}-1)^{\alpha}$$
$$= (\alpha+1)[\boldsymbol{y}^{\alpha} - (\boldsymbol{y}-1)^{\alpha}] > 0$$
(2)

(since y > 1, then 0 < y - 1 < y, and $\alpha > 0$, obtaining $0 < (y - 1)^{\alpha} < y^{\alpha}$, i.e., $y^{\alpha} - (y - 1)^{\alpha} > 0$).

Therefore f(y) is a monotonous increasing function. When y > 1, we have f(y) > f(1), and f(1) = 0. Hence f(y) > 0, that is, $y^{\alpha+1} - 1 - (y-1)^{\alpha+1} > 0$, that is,

$$(y-1)^{\alpha+1} < y^{\alpha+1} - 1.$$
(3)

When $x \in X$, $x \neq \theta$, that is, $x > \theta$, we have $(y - 1)^{\alpha + 1}x < y^{\alpha + 1}x - x$.

LEMMA 2 (see [1]). Let *X* be a closed convex subset of *E*, *D* a bounded open subset in *X*, and $\theta \in D$. Suppose that $A: \Omega \times \overline{D} \to X$ is a random semiclosed 1-set-contractive operator. Meanwhile, such that $x \neq (t/\mu)A(\omega, x)$ a.s., for every $\omega \in \Omega$, for every $x \in$ ∂D , where $t \in (0,1]$, $\mu \ge 1$. Then the random operator equation $A(\omega, x) = \mu x$, (for every $(\omega, x) \in \Omega \times \overline{D}, \ \mu \ge 1$) has a random solution in *D*.

THEOREM 3. Let *D* be a bounded open subset in *X* and $\theta \in D$. Suppose that *A* : $\Omega \times \overline{D} \to X$ is a random semiclosed 1-set-contractive operator, such that

$$\begin{aligned} [\lambda \|\mu x\| + ||A(\omega, x) - \mu x||^{\alpha}] ||A(\omega, x) - \mu x||x\\ \ge [\lambda \|\mu x\| + ||A(\omega, x)||^{\alpha}] ||A(\omega, x)||x - \lambda \|\mu x\|^{2} x - \|\mu x\|^{\alpha + 1} x \end{aligned}$$
(4)

for every $(\omega, x) \in \Omega \times \partial D$, $\lambda \ge 0$, $\mu \ge 1$, $\alpha > 0$. Then the random operator equation $A(\omega, x) = \mu x$ (for every $(\omega, x) \in \Omega \times \overline{D}$, where $\mu \ge 1$) has a random solution in \overline{D} .

PROOF. Assume that $A(\omega, x) = \mu x$ has no random solution on ∂D (otherwise, the theorem has obtained proof), that is, $A(\omega, x) \neq \mu x$ a.s., for every $(\omega, x) \in \Omega \times \partial D$, where $\mu \ge 1$. That is,

$$x \neq \frac{1}{\mu}A(\omega, x)$$
 a.s. (5)

We prove that

$$x \neq t \frac{1}{\mu} A(\omega, x), \tag{6}$$

where $\mu \ge 1$, $t \in (0, 1)$, for every $(\omega, x) \in \Omega \times \partial D$.

Suppose that (6) is not true, that is, there exists a $t_0 \in (0,1)$, an $\omega_0 \in \Omega$, and an $x_0 \in \partial D$, such that $x_0 = t_0(1/\mu)A(\omega_0, x_0)$. That is, $A(\omega_0, x_0) = (\mu/t_0)x_0$, where $\mu \ge 1$, $t_0 \in (0,1)$, $\omega_0 \in \Omega$, and $x_0 \in \partial D$.

Inserting $A(\omega_0, x_0) = (\mu/t_0)x_0$ into (4), obtaining

$$\begin{aligned} \left[\lambda ||\mu x_{0}|| + \left\|\frac{\mu}{t_{0}}x_{0} - \mu x_{0}\right\|^{\alpha}\right] \left\|\frac{\mu}{t_{0}}x_{0} - \mu x_{0}\right\| x_{0} \\ &\geq \left[\lambda ||\mu x_{0}|| + \left\|\frac{\mu}{t_{0}}x_{0}\right\|^{\alpha}\right] \left\|\frac{\mu}{t_{0}}x_{0}\right\| x_{0} - \lambda ||\mu x_{0}||^{2}x_{0} - ||\mu x_{0}||^{\alpha+1}x_{0}, \end{aligned}$$

$$(7)$$

where $\lambda \ge 0$, $\mu \ge 1$, $\alpha > 0$, $t_0 \in (0, 1)$, and $x_0 \in \partial D$. This implies that

$$\lambda ||\mu x_{0}|| \left\| \frac{\mu}{t_{0}} x_{0} - \mu x_{0} \right\| x_{0} + \left\| \frac{\mu}{t_{0}} x_{0} - \mu x_{0} \right\|^{\alpha+1} x_{0}$$

$$\geq \lambda ||\mu x_{0}|| \left\| \frac{\mu}{t_{0}} x_{0} \right\| x_{0} + \left\| \frac{\mu}{t_{0}} x_{0} \right\|^{\alpha+1} x_{0} - \lambda ||\mu x_{0}||^{2} x_{0} - ||\mu x_{0}||^{\alpha+1} x_{0},$$
(8)

that is,

$$\lambda \left(\frac{1}{t_0} - 1\right) ||\mu x_0||^2 x_0 + \left(\frac{1}{t_0} - 1\right)^{\alpha + 1} ||\mu x_0||^{\alpha + 1} x_0$$

$$\geq \lambda \left(\frac{1}{t_0} - 1\right) ||\mu x_0||^2 x_0 + \frac{1}{t_0^{\alpha + 1}} ||\mu x_0||^{\alpha + 1} x_0 - ||\mu x_0||^{\alpha + 1} x_0$$
(9)

since $\mu \ge 1$, $x_0 \in \partial D$, thus $\mu x_0 \neq 0$.

Therefore $\|\mu x_0\|^{\alpha+1} \neq 0$, by (9), we obtain

$$\left(\frac{1}{t_0} - 1\right)^{\alpha+1} x_0 \ge \frac{1}{t_0^{\alpha+1}} x_0 - x_0.$$
(10)

Letting $y = 1/t_0$, by (10), we have

$$(y-1)^{\alpha+1}x_0 \ge y^{\alpha+1}x_0 - x_0, \tag{11}$$

where y > 1, $\alpha > 0$, $x_0 \in X$, and $x_0 \neq \theta$.

This is in contradiction with Lemma 1. Hence

$$x \neq t \frac{1}{\mu} A(\omega, x) \tag{12}$$

for every $(\omega, x) \in \Omega \times \partial D$, where $t \in (0, 1)$, $\mu \ge 1$. By (5) and (12), we know that

$$x \neq t \frac{1}{\mu} A(\omega, x)$$
 a.s., (13)

where $\mu \ge 1$, $t \in (0, 1)$, for every $(\omega, x) \in \Omega \times \partial D$.

According to Lemma 2, we obtain that the random operator equation $A(\omega, x) = \mu x$ (where $\mu \ge 1$, for every $(\omega, x) \in \Omega \times \overline{D}$) has a random solution in D.

REMARK 4. In Theorem 3, when $\lambda = 0$, $\alpha = 1$, $\mu = 1$, and $A(\omega, \cdot) = A$, (4) is that $||Ax - x||^2 \ge ||Ax||^2 - ||x||^2$. Thus, Theorem 3 is a generalization of the famous Altman theorem.

We can see that Lemma 5 holds easily.

LEMMA 5. When y > 1, $\alpha > 0$, $x \in X$, and $x \neq \theta$, the following inequality holds:

$$(y+1)^{\alpha+1}x > y^{\alpha+1}x + x.$$
 (14)

THEOREM 6. Let *D* be a bounded open subset in *X* and $\theta \in D$. Suppose that *A* : $\Omega \times \overline{D} \to X$ is a random semiclosed 1-set-contractive operator, such that

$$\begin{split} & [\lambda \|\mu x\| + ||A(\omega, x) + \mu x||^{\alpha}] ||A(\omega, x) + \mu x||x\\ & \leq [\lambda \|\mu x\| + ||A(\omega, x)||^{\alpha}] ||A(\omega, x)||x + \lambda \|\mu x\|^{2} x + \|\mu x\|^{\alpha+1} x, \end{split}$$
(15)

where $\lambda \ge 0$, $\mu \ge 1$, $\alpha > 0$, for every $(\omega, x) \in \Omega \times \partial D$. Then the random operator equation $A(\omega, x) = \mu x$ (where $\mu \ge 1$, for every $(\omega, x) \in \Omega \times \overline{D}$) has a random solution in D.

PROOF. From (15), we can easily prove that $A(\omega, x) = \mu x$ has no random solution on ∂D , by virtue of Lemma 5, see Theorem 3 for other section.

LEMMA 7. When y > 1, $\alpha > 0$, $x \in X$, and $x \neq \theta$, the following inequality holds:

$$(y+1)^{\alpha+1}x - (y-1)^{\alpha+1}x > 2x.$$
(16)

PROOF. By Lemmas 1 and 5, we have

$$(y-1)^{\alpha+1}x < y^{\alpha+1}x - x, \tag{17}$$

$$y^{\alpha+1}x + x < (y+1)^{\alpha+1}x,$$
(18)

513

summing (17) and (18) we obtain

$$(y-1)^{\alpha+1}x + y^{\alpha+1}x + x < y^{\alpha+1}x - x + (y+1)^{\alpha+1}x.$$
(19)

That is,

$$(y+1)^{\alpha+1}x - (y-1)^{\alpha+1}x > 2x,$$
(20)

where $\alpha > 0$, $\gamma > 1$, $x \in X$, and $x \neq \theta$.

THEOREM 8. Let *D* be a bounded open subset in *X* and $\theta \in D$. Suppose that *A* : $\Omega \times \overline{D} \to X$ is a random semiclosed 1-set-contractive operator, such that

$$||A(\omega, x) + \mu x||^{\alpha + 1} x - ||A(\omega, x) - \mu x||^{\alpha + 1} x \le 2||\mu x||^{\alpha + 1} x,$$
(21)

where $\alpha > 0$, $\mu \ge 1$, for every $(\omega, x) \in \Omega \times \partial D$. Then the random operator equation $A(\omega, x) = \mu x$ (where $\mu \ge 1$, for every $(\omega, x) \in \Omega \times \overline{D}$) has a random solution in D.

PROOF. The theorem can be proved using Lemma 7, see also Theorems 3 and 6. \Box

REMARK 9. Since *X* is a cone in *E*, then *X* is a closed convex subset of *E*.

ACKNOWLEDGMENT. This work was funded by the Natural Science Foundation of China.

REFERENCES

 C. X. Zhu, Some theorems on random operator equations of 1-set-contractive type, Adv. in Math. (China) 27 (1998), no. 5, 464–468.

ZHU CHUANXI: RESEARCH CENTER FOR APPLIED MATHEMATICS AND INSTITUTE FOR INFORMA-TION AND SYSTEM SCIENCE, XI'AN JIAOTONG UNIVERSITY, XI'AN 710049, CHINA; INSTITUTE OF MATHEMATICS, NANCHANG UNIVERSITY, NANCHANG 330029, CHINA

XU ZONGBEN: RESEARCH CENTER FOR APPLIED MATHEMATICS AND INSTITUTE FOR INFORMA-TION AND SYSTEM SCIENCE, XI'AN JIAOTONG UNIVERSITY, XI'AN 710049, CHINA