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Let {cj} be a null sequence of bounded variation. We give appreciate smoothness and
growth conditions on {cj} to obtain the pointwise convergence as well as Lr -convergence

of Laguerre series
∑
cj�aj . Then, we prove a Hardy-Littlewood type inequality

∫∞
0 |f(t)|r dt≤

C
∑∞
j=0 |cj|r j̄1−r/2 for certain r ≤ 1, where f is the limit function of

∑
cj�aj . Moreover, we

show that if f(x) ∼ ∑cj�aj is in Lr , r ≥ 1, we have the converse Hardy-Littlewood type

inequality
∑∞
j=0 |cj|r j̄β ≤ C

∫∞
0 |f(t)|r dt for r ≥ 1 and β <−r/2.

2000 Mathematics Subject Classification: 42C10, 42C15.

1. Introduction. Given complex numbers {cj}j∈Z satisfying
∑ |cj|r (|j|+1)r−2 <∞

for some r ≥ 2, Hardy and Littlewood [4] (see also [14, Theorem 3.19, page 109])

proved in 1926 that cj ’s are the Fourier coefficients of an f in Lr , and

∫ 2π

0

∣∣f(t)∣∣rdt ≤Ar
∞∑

j=−∞

∣∣cj∣∣r (|j|+1
)r−2. (1.1)

Also, they proved that if f(x)∼∑cjeijx is in Lr , 1< r ≤ 2, then

∞∑
j=−∞

∣∣cj∣∣r (|j|+1
)r−2 ≤Ar

∫ 2π

0

∣∣f(t)∣∣rdt. (1.2)

Later on, Paley [10] (see also [14, Theorem 5.1, page 121]) extended Hardy and Little-

wood’s results to general systems of orthonormal and uniformly bounded functions

over an interval. In this paper, we concentrate on the Laguerre system, and prove the

similar inequalities

∫∞
0

∣∣f(t)∣∣rdt ≤ C ∞∑
j=0

∣∣cj∣∣r j̄1−r/2 for certain r ≤ 1,

∞∑
j=0

∣∣cj∣∣r j̄β ≤ C
∫∞

0

∣∣f(t)∣∣rdt for r ≥ 1, β <−r
2
,

(1.3)

where ξ̄ means max{ξ,1}.
For a>−1, the Laguerre polynomials of type a are defined by the formula

Lan(t)=
1
n!
t−aet

dn

dtn
(
tn+ae−t

)
, n= 0,1,2, . . . . (1.4)
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Each Lan is a polynomial of degree n, whose explicit expression is

Lan(t)=
n∑
k=0

(−1)k

k!

(
n+a
n−k

)
tk. (1.5)

The Laguerre polynomials form a complete orthogonal system in L2(R+, tae−tdt).
Hence, if we define �a

n(t) by

�a
n(t)=

√
n!

Γ(n+a+1)
e−t/2ta/2Lan(t), (1.6)

then they form an orthonormal basis in L2(R+,dt) with the inner product 〈f ,g〉 =∫∞
0 f(t)g(t)dt.

A number of authors have studied the problems of pointwise convergence and

mean convergence for different types of Laguerre series. Of particular interest are

the results of Askey and Wainger [1], Chen and Lin [2], Długosz [3], Muckenhoupt

[7, 8, 9], and Stempak [11, 12, 13]. However, all of them started at a given function f
to get the Laguerre coefficients {cj}, and proved the pointwise convergence or mean

convergence of the series
∑
cj�a

j . In this paper, we start from {cj} satisfying

∞∑
j=0

∣∣∆pcj∣∣j̄p/2−1/4 <∞, (1.7)

∣∣cj∣∣j̄p/2−1/4(logj
)1+ε =O(1) as j �→∞, (1.8)

for some p ∈ N and ε > 0, and prove the pointwise convergence of Laguerre series∑
cj�a

j . Here, ∆pcj denotes the finite-order difference

∆0cj = cj, ∆pcj =∆p−1cj−∆p−1cj+1 for p ∈N. (1.9)

Then, we strengthen the assumptions on {cj} such that the Laguerre series
∑
cj�a

j
converges not only pointwise but also in Lr -metric. In addition, we obtain the Hardy-

Littlewood type inequalities.

Theorem 1.1. Let a≥ 0. Assume that {cj : j ≥ 0} satisfies

∞∑
j=0

∣∣∆pcj∣∣r j̄1−r/2 <∞, (1.10)

∣∣cj∣∣j̄2/r−3/2+ε =O(1) as j �→∞, (1.11)

for some p ∈N, ε > 0, and r ≤min{1,4/(1+2p)}. Then, the Laguerre series
∑
cj�a

j (t)
converges to f ∈ Lr (R+) pointwise and in Lr -metric, where

f(t)= e−t/2ta/2
∞∑
j=0

(
∆pbj

)
La+pj (t) (1.12)

and bj = cj
√
j!/Γ(j+a+1).
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Corollary 1.2. Under the same assumptions of Theorem 1.1, there is a constant

C independent of f such that

∫∞
0

∣∣f(t)∣∣rdt ≤ C ∞∑
j=0

∣∣cj∣∣r j̄1−r/2. (1.13)

We also prove the above converse inequality in the following theorem.

Theorem 1.3. Leta≥ 0. If f ∈ Lr (R+), r ≥ 1, then there is a constantC independent

of f , such that

∞∑
j=0

∣∣cj∣∣r j̄β ≤ C
∫∞

0

∣∣f(t)∣∣rdt ∀β <−r
2
, (1.14)

where cj ≡
∫∞
0 f(t)�

a
j (t)dt.

Remark 1.4. For 1 ≤ r < 4/3, we can find a β < −r/2 such that β > r −2. Thus,

Theorem 1.3 improves Paley’s result for Laguerre system {�a
j }. Moreover, Kanjin [5]

showed that, for f(t)∼∑∞
j=0 cj�

a
j (t) inH1(R+),

∑∞
j=0 cj(j+1)−1 ≤ C‖f‖H1(R+), which

is the special case of Theorem 1.3 for r = 1 and β=−1.

In the next section, we first give some estimates of Laguerre functions and talk

about the pointwise convergence and Lr -convergence of Laguerre series. Then we

prove Corollary 1.2 and Theorem 1.3 in Section 3. Finally, we mention that C , possibly

with subscripts, denotes a constant which may stand for a different number from one

appearance to another.

2. Pointwise convergence and mean convergence. It is known that the Laguerre

functions satisfy the estimates

∣∣�a
j (t)

∣∣≤




Cta/2νa/2, if 0≤ t ≤ 1
ν

;

Ct−1/4ν−1/4, if
1
ν
< t ≤ ν

2
;

Cν−1/4(ν1/3+|t−ν|)−1/4, if
ν
2
< t ≤ 3ν

2
;

Ce−γt, if
3ν
2
< t <∞,

(2.1)

where ν = 4j+2a+2, and both C and γ are positive constants independent of j and

t (cf. [1, 9]). Hence, by a straightforward calculation, we have

∣∣Lαj (t)∣∣≤ Cet/2t−α/2−1/4 j̄α/2−1/4(1+t)1/6 (2.2)

for all j ≥ 0, all t ≥ 0, and α= a,a+1, . . . ,a+p. Also,

∫∞
0

∣∣t−p/2�
a+p
j (t)

∣∣rdt ≤ Cj̄1−r/2−pr/2 (2.3)
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for r/2+pr ≤ 2, r ≠ 4, a>−2/r , and all j ≥ 0. In particular, ‖�a
j ‖rLr (R+) ≤ Cj̄1−r/2 for

0 < r < 4, a > −2/r , and all j ≥ 0. As to r ≥ 4, it follows from [6, Lemma 1] that, for

a≥ 0,

∥∥�a
j
∥∥
Lr (R+) =



O
(
j1/r−1/2), for 1≤ r < 4;

O
(
j1/r−1/2(logj)1/r

)
, for r = 4;

O
(
j−1/r ), for r > 4.

(2.4)

Let sn(t) denote the partial sums of Laguerre series defined by

sn(t)=
n∑
j=0

cj�a
j (t). (2.5)

Set bj = cj
√
j!/Γ(j+a+1). Then

sn(t)= e−t/2ta/2
n∑
j=0

bjLaj (t). (2.6)

For t > 0 and n∈N, the well-known equation

La+1
j (t)−La+1

j+1 (t)=−Laj+1(t) (2.7)

and the summation by parts yield

sn(t)= e−t/2ta/2

 n∑
j=0

(
∆bj

)
La+1
j (t)+bn+1La+1

n (t)


. (2.8)

Repeating the same process, we get

sn(t)= e−t/2ta/2
n∑
j=0

(
∆pbj

)
La+pj (t)+e−t/2ta/2

p−1∑
j=0

(
∆jbn+1

)
La+j+1
n (t)

≡ I1(t)+I2(t).
(2.9)

Using the inequality 1−√1−y ≤y for y ∈ [0,1], we have

∣∣∣∣∣∆k
(√

j!
Γ(j+a+1)

)∣∣∣∣∣≤ Cp
√

j!
Γ(j+a+1)

a
j+a+1

≤ aCpj̄−a/2−1 for 1≤ k≤ p,
(2.10)

which with Leibniz’s rule implies

∣∣∆pbj∣∣=
∣∣∣∣∣∆p

(
cj

√
j!

Γ(j+a+1)

)∣∣∣∣∣

≤
√

(j+p)!
Γ(j+p+a+1)

∣∣∆pcj∣∣+Capj̄−a/2−1
p−1∑
i=0

(
p
i

)∣∣∆icj∣∣

≤ Cap
{
j̄−a/2

∣∣∆pcj∣∣+ j̄−a/2−1
(

max
j≤k≤j+p−1

∣∣ck∣∣
)}
.

(2.11)
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Thus,

∣∣I1(t)∣∣≤ Cape−t/2ta/2
n∑
j=0

{
j̄−a/2

∣∣∆pcj∣∣+ j̄−a/2−1
(

max
j≤k≤j+p−1

∣∣ck∣∣
)}∣∣La+pj (t)

∣∣.
(2.12)

Condition (1.8) says that the inequality |cj|j̄p/2−1/4 ≤ C(logj)−1−ε holds for all j’s with

sufficiently large C . Hence, conditions (1.7), (1.8), and estimate (2.2) yield

∣∣I1(t)∣∣≤ Ct
n∑
j=0

{
j̄−a/2

∣∣∆pcj∣∣+ j̄−a/2−1
(

max
j≤k≤j+p−1

∣∣ck∣∣
)}
j̄(a+p)/2−1/4

≤ Ct
n∑
j=0

j̄p/2−1/4∣∣∆pcj∣∣+
∞∑
j=0

j̄−1 max
j≤k≤j+p−1

k̄p/2−1/4∣∣ck∣∣

≤ Ct
( n∑
j=0

j̄p/2−1/4∣∣∆pcj∣∣+
∞∑
j=0

1

j̄
(
logj

)1+ε

)

<∞ ∀n∈N.

(2.13)

On the other hand, (1.8), (2.2), and the equality

∆jbn =
j∑
i=0

(
j
i

)
(−1)ibn+i (2.14)

imply

∣∣I2(t)∣∣≤ e−t/2ta/2
p−1∑
j=0

{ j∑
i=0

(
j
i

)
(n+1+i)−a/2∣∣cn+1+i

∣∣}∣∣La+j+1
n (t)

∣∣

≤ Cap
p−1∑
j=0

{ j∑
i=0

(
j
i

)
(n+1+i)(j+1)/2−1/4∣∣cn+1+i

∣∣t−(j+1)/2−1/4(1+t)1/6
}

≤ Cap sup
k>n

{
kp/2−1/4∣∣ck∣∣}

p−1∑
j=0

t−(j+1)/2−1/4(1+t)1/6

�→ 0 as n �→∞.

(2.15)

Hence, sn(t) converges pointwise to

f(t)≡ e−t/2ta/2
∞∑
j=0

(
∆pbj

)
La+pj (t) (2.16)

provided (1.7) and (1.8) hold. Hence, we have the following lemma.

Lemma 2.1. Let a ≥ 0. Assume that {cj : j ≥ 0} satisfies conditions (1.7) and (1.8).

Then, the Laguerre series
∑
cj�a

j (t) converges pointwise to the function f(t) in (2.16),

t ∈R+.
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Now we are ready to prove Theorem 1.1. Since r ≤ 1 and r/2+pr ≤ 2, p/2−1/4≤
2/r −3/2 which says that (1.11) is stronger than (1.8). Also, we have

∞∑
j=0

(∣∣∆pcj∣∣jp/2−1/4)r ≤ ∞∑
j=0

∣∣∆pcj∣∣r j1−r/2. (2.17)

Thus, condition (1.10) yields

∞∑
j=0

(∣∣∆pcj∣∣jp/2−1/4)r <∞, (2.18)

which implies the validity of (1.7) since �r ⊆ �1. By Lemma 2.1, we get the pointwise

convergence.

To finish the proof of Theorem 1.1, we still need to check its Lr -convergence. From

(2.9) and inequality

‖g+h‖rr ≤ ‖g‖rr +‖h‖rr for 0< r ≤ 1, (2.19)

we have

∫∞
0

∣∣sn(t)−f(t)∣∣rdt ≤
∞∑

j=n+1

∫∞
0

{
e−t/2ta/2

∣∣(∆pbj)La+pj (t)
∣∣}rdt

+
p−1∑
j=0

∫∞
0

{
e−t/2ta/2

∣∣(∆jbn+1
)
La+j+1
n (t)

∣∣}rdt
≡ I3+I4.

(2.20)

The definition of �a
j , (1.10), (1.11), (2.3), and (2.11) give us

I3 ≤ Cap
∞∑

j=n+1

∣∣ja/2∆pbj∣∣r jpr/2
∫∞

0

∣∣t−p/2�
a+p
j (t)

∣∣rdt

≤ Cap
∞∑

j=n+1

(∣∣∆pcj∣∣+j−1 max
j≤k≤j+p−1

∣∣ck∣∣
)r
j1−r/2

�→ 0 as n �→∞,

I4 ≤ Cap
p−1∑
j=0

∣∣na/2∆jbn+1

∣∣rn(j+1)r/2
∫∞

0

∣∣t−(j+1)/2�
a+j+1
n (t)

∣∣rdt
≤ Cap max

n≤k≤n+p
∣∣ck∣∣rn1−r/2

�→ 0 as n �→∞.

(2.21)

Hence, Theorem 1.1 follows immediately.

3. Proofs of Hardy-Littlewood type inequalities. From the previous arguments,

conditions (1.10) and (1.11) imply that the series
∑
cj�a

j (t) converges pointwise and

in Lr -metric to f(t). We show the Hardy-Littlewood type inequalities as follows.
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Proof of Corollary 1.2. The hypotheses of Corollary 1.2, the monotone con-

vergence theorem, (2.4), and (2.19) can be used to show that

∫∞
0

∣∣f(t)∣∣rdt =
∫∞

0

∣∣∣∣∣
∞∑
j=0

cj�a
j (t)

∣∣∣∣∣
r

dt

≤
∞∑
j=0

∣∣cj∣∣r
∫∞

0

∣∣�a
j (t)

∣∣rdt

≤ C
∞∑
j=0

∣∣cj∣∣r j̄1−r/2.

(3.1)

Proof of Theorem 1.3. Let f ∈ Lr (R+), r ≥ 1, and cj =
∫∞
0 f(t)�

a
j (t)dt. Hölder’s

inequality and (2.4) yield

∣∣cj∣∣r j̄β =
∣∣∣∣
∫∞

0
f(t)�a

j (t)dt
∣∣∣∣
r
j̄β

≤ ‖f‖rr
(∫∞

0

∣∣�a
j (t)

∣∣r ′dt)r/r
′

j̄β

≤




C‖f‖rLr (R+)j̄r/r
′−r/2+β, for r >

4
3
,

C‖f‖rLr (R+)j̄−1/3+β( log j̄
)1/3, for r = 4

3
,

C‖f‖rLr (R+)j̄−r/r
′+β, for r <

4
3
,

(3.2)

where 1/r +1/r ′ = 1. Since β <−r/2 implies r/r ′ −r/2+β <−1,

∞∑
j=0

∣∣cj∣∣r j̄β ≤ C‖f‖rr . (3.3)
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