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The aim of this paper is to construct a rotational product scheme in the product of Banach
spaces with rotational schemes. Besides we give an equivalent definition of the gener-
alized Kolmogorov diameters suggested by Aksoy and Nakamura in 1986, and give the
generalized Kolmogorov diameters of the product (

∏
i∈NDi) of bounded subsets Di in

the product of Banach spaces having schemes in terms of the generalized diameters ofDi.
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1. Introduction. In [3], Pietsch has introduced the concept of an approximation

scheme on Banach spaces. In [1], Aksoy has generalized this notion and used it to

generalize the concept of Kolmogorov diameters in Banach spaces and in [2] in p-

Banach spaces.

In this paper, we suggest a method for constructing a product scheme in the prod-

uct of Banach spaces with schemes. Besides we give an equivalent definition of the

generalized Kolmogorov diameters suggested by Aksoy and Nakamura in [2] and give

the generalized Kolmogorov diameters of the product (
∏
i∈NDi) of bounded subsets

Di in the product of Banach spaces having schemes in terms of the generalized diam-

eters of Di.
In terms of the equivalent definition of the generalized Kolmogorov diameters,

we study analogous result for a sequence of generalized Kolmogorov diameters of

bounded linear operators.

2. Notations and definitions. We denote by L(E,X) and �n(E,X) the normed

spaces of bounded and at mostn-dimensional linear operators from the normed space

E into the normed space X.

For a sequence {Xi}i∈N of Banach spaces, and for any k ∈ N, we denote by �∞(Xi)
and �kp(Xi) the Banach spaces

�∞
(
Xi
)= {x = (xi)i∈N : xi ∈Xi, sup

i∈N

∥∥xi∥∥Xi <∞
}
,

�kp
(
Xi
)= {x = (xi)i∈N : xi ∈Xi, 1≤ i≤ k

} (2.1)

equipped with the norms

‖x‖ = sup
i∈N

∥∥xi∥∥Xi , ‖x‖ =

 k∑
i=1

∥∥xi∥∥pXi



1/p

, (2.2)

respectively.
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For a natural number n∈N, we denote by βn a function from the set N of natural

numbers into the set N∗ =N∪{0} for which
∑
βn(i)=ni, it is true that βn(i)= 0 for

all i∈N except a finite number, we write βn(i)=ni.
By d(x,F)= infy∈F ‖x−y‖ we denote the distance between an element x ∈ X and

a subset F of a Banach space X.

For the families �i of subsets of the Banach spaces Xi, we denote by
∏
i∈N�i the

product family {∏i∈NAi :Ai ∈ �i} in the product space
∏
i∈NXi.

Definition 2.1 (rotational operators). An operator � from a normed space X into

itself is called a rotational operator if and only if it can be written as �= R1R2 ···Rk
with the following conditions:

(1) infn∈N‖Rni −I‖ = 0, i= 1,2, . . . ,k,

(2) ‖Ri‖ = ‖R−1
i ‖ = 1, i= 1,2, . . . ,k,

where I is the identity operator from X into itself.

Remark 2.2. In [4], Pietsch has introduced the notion of approximation scheme

(satisfying conditions (S1), (S2), and (S3) in Definition 2.3). Here we give a slight modi-

fication of that definition and call it a rotational approximation scheme.

Definition 2.3 (rotational approximation scheme). Let X be a normed space over

a field of scalars K, for each n ∈ N, let Qn = Qn(X) be a family of subsets of X
satisfying the following conditions:

(S1) {0} =Q0(X)⊂Q1(X)⊂ ··· ⊂Qn(X)⊂ ··· .
(S2) If A∈Qn(X) and λ∈K, then λA∈Qn(X) for every n∈N∗.

(S3) If A∈Qn(X) and B ∈Qm(X), then A+B ∈Qn+m for every n,m∈N∗.

(S4) If A∈Qn(X) and � is a rotational operator, then �A∈Qn(X).
Then Q(X) = {Qn(X)}n∈N∗ is called a rotational approximation scheme (invariant

under rotation).

Example 2.4. In any Banach space X, the scheme �(X) = (�n(X))n∈N consisting

of all finite-dimensional subspaces �n(X), where

�n(X)= {F ⊆X : dimF ≤n}, (2.3)

is a rotational approximation scheme in X.

Example 2.5. The class �= {�n(L(X))}n∈N of all finite-dimensional operators on

a Banach space forms a rotational approximation scheme on the Banach space L(X)
of all bounded linear operators on X, where

�n
(
L(X)

)= {T ∈ L(X) : rankT ≤n}. (2.4)

We only remark that an operator T ∈�n(L(X)) is finite dimensional (of finite rank) if

and only if T has as a representation

Tx =
n∑
i=1

fi(x)yi; fi ∈X∗, yi ∈X. (2.5)
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Example 2.6. The class of all finite subsets τ = [τn(X)]n∈N in any Banach space

X forms a rotational approximation scheme, where

τn(X)=
{
A⊆X : cardA≤ 2n

}
. (2.6)

For A∈ τn(X) and B ∈ τm(X), we note that

card(A+B)≤ (cardA)(cardB)= 2n+m. (2.7)

Hence A+B ∈ τn+m(X).
Remark 2.7. In [4], Pietsch has given a generalized definition for Kolmogorov di-

ameters as follows.

Definition 2.8. Let X be a Banach space with closed unit ball U ⊂X and equipped

with an approximation scheme Q(X). The nth Kolmogorov diameter δn(D) of a

bounded subset D of X is defined by

δn(D)= inf
{
λ > 0 :D ⊂ λU+A for some A∈Qn(X)

}
. (2.8)

In fact, in case Qn(X) is the class of all finite-dimensional subspaces �n(X), relation

(2.8) reduces to Kolmogorov diameters mentioned in [3].

Remark 2.9. In [1], Aksoy has given a slight modification for Definition 2.8 namely,

the following definition.

Definition 2.10. LetX be a Banach space with closed unit ballU ⊂X and equipped

with an approximation scheme Q(X). The nth generalized diameter νn(D) of a

bounded subset D of X is defined by

νn(D)= inf
{
λ > 0 :D ⊂ λUX+TUE : TUE ⊂A
for some Banach space E and some A∈Qn(X)

}
.

(2.9)

From now on, we are going to deal with the following notations to simplify our def-

initions and proofs: let X be a Banach space with a rotational approximation scheme

Q= (Qn(X))n∈N∗ , and let UE be the unit ball of some Banach space E. We write

�
(
Qn(X),E,X

)= {T ∈ L(E,X), T(UE)⊂A for some A∈Qn(X)
}
,

�
(
Qn(X)

)= ⋃
E∈χ

�
(
Qn(X),E,X

)
, (2.10)

where χ is the category of all Banach spaces.

Remark 2.11. Using these notations we can write the space of all finite-dimensional

operators from E to X as �(�n(X),E,X), and �(�n(X)) as the collection of all finite-

dimensional operators with range in X, that is, �(�n(X),E,X)=�n(X,E).
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Definition 2.10 can be written in terms of the previous notations as follows:

νn(D)= inf
{
λ > 0 :D ⊂ λUX+T

(
UE
)

and T ∈�
(
Qn(X)

)}
. (2.11)

In the following lemma, we give an equivalent definition for νn(D) as follows.

Lemma 2.12. For a bounded subset D of a Banach space X, it is true that

νn(D)= inf
T∈�(Qn(X))

sup
x∈D

d
(
x,TUE

)
. (2.12)

Proof. Let σn(D) = infT∈�(Qn(X)) supx∈Dd(x,TUE). From the definition of νn(D)
and for every ε > 0, there exists λ > 0 such that

νn(D)≤ λ < νn(D)+ε (2.13)

with

D ⊂ λUX+T
(
UE
)⊂ (νn(D)+ε)UX+T(UE). (2.14)

Then every element x ∈D can be written as

x = (νn(D)+ε)ux+yx for ux ∈UX, yx ∈ T
(
UE
)
. (2.15)

Then

d
(
x,TUE

)= inf
y∈TUE

‖x−y‖ ≤ ∥∥x−yx∥∥≤ νn(D)+ε. (2.16)

Therefore,

σn(D)= inf
T∈�(Qn(X))

sup
x∈D

d
(
x,TUE

)≤ νn(D)+ε. (2.17)

From the definition ofσn(D) and for any positive number ε > 0 and any T ∈�(Qn(X)),
we get

d
(
x,TUE

)≤ sup
x∈D

d
(
x,TUE

)
<σn(D)+ε. (2.18)

Then for x ∈D there exists an element Tu∈ TUE such that

σn(D) >
∥∥x−Tu∥∥. (2.19)

Since every element x ∈D can be written as x = (x−Tu)+Tu, then

D ⊂ (σn(D)+ε)U+TE, (2.20)

so

νn(D)≤ σn(D)+ε. (2.21)

From (2.17) and (2.21), we get the proof.
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Definition 2.13. For an operator S ∈ L(E,X), the sequence of Kolmogorov num-

bers {ζn(S)}n∈N is defined by

ζn(S)= νn
(
SUE

)
. (2.22)

2.1. Rotational product scheme. We suggest a construction of a rotational approx-

imation scheme in the product of Banach spaces with rotational schemes, using the

following definition of a base of a rotational approximation scheme.

2.2. Base of a rotational approximation scheme. In the Banach space �1, the

scheme of finite-dimensional subspaces consists only of the two trivial subspaces

{0}, �. However in �2, the finite-dimensional subspaces are not only the four basic

subspaces {0}×{0}, {0}×�, �×{0}, �×�, but contains also all their rotations, for

example, L= {(x,x) : x ∈�} is a finite-dimensional subspace; L= Iπ/4(�×0) where

Iπ/4 =




1√
2

− 1√
2

1√
2

1√
2


=




cos
π
4

−sin
π
4

sin
π
4

cos
π
4


 . (2.23)

So we conclude from this example that, in general, to construct an approxima-

tion scheme in the product X×Y of two Banach spaces with schemes (X,Q(X)) and

(Y ,Q(Y)), it is not sufficient to take for Qn(X×Y) the set

{
A×B :A∈Qi(X), B ∈Qn−i(Y), 0≤ i≤n}. (2.24)

In fact, we will also consider all their rotations. This motivated the following definition.

Definition 2.14. A base Q0(X)= (Qo
n(X))n∈N∗ of a rotational scheme Q(X) is a

subcollection of Q(X) satisfying the following conditions:

(1) Qo
n(X)⊆Qn(X) for every n∈N∗.

(2) For every A∈Qn(X), there exist a rotational operator RA and an element Ao ∈
Qo
n(X) such that A= RAAo.
In �2 the approximation scheme of finite-dimensional subspaces F(�2) has a base

Qo(�2)= {{0}×{0},{0}×�,�×{0},�×�
}
. (2.25)

All other subspaces of �2 can be obtained by rotations of subspaces in the base. For

example, L= {(x,x) : x ∈�} = Iπ/4�.

Definition 2.15 (rotational product scheme). Let (Xi)i∈N be a sequence of Ba-

nach spaces each of them equipped with a rotational approximation schemesQ(Xi)=
{Qn(Xi)}n∈N∗ for every i∈N.

Now to construct the product scheme Q(X) in the product space
∏
Xi we first

choose Qo
n(X) as follows:

Qo
n(X)=

{
c : c =

∏
i∈N
Ai :Ai ∈Qni

(
Xi
)

:
∑
ni ≤n

}
. (2.26)
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We take (Qo
n(X))n∈N to be a basis for a rotational scheme namely,Q(X)= (Qn(X))n∈N

where

Qn(X)=
{
B : B = RC, C ∈Qo

n(X), R ∈�(X)
}

(2.27)

and �(X) is the space of all rotational operators R ∈ L(X).
2.3. Verification of rotational approximation scheme axioms. In fact,

(S1) Qo(X)= {B : B =�C, C =∏{0} : {0} ∈Qo(Xi)} = {0} ⊂Q1(X)⊂ ··· .
(S2) Let B ∈Qn(X) and λ∈K then B = RC for some C =∏i∈NAi, with Ai ∈Qni(Xi),∑
ni ≤n. Since λC ∈Qo

n(X), then λB = λRC = R(λC)∈Qn(X).
(S3) If A ∈Qn(X), B ∈Qm(X), then there exist rotational operators R1, R2 ∈ L(X)

and Ao = ∏Ai ∈ Qo
n(X), Bo =

∏
Bi ∈ Qo

m(X) with Ai ∈ Qni(Xi),
∑
ni ≤ n and Bi ∈

Qmi(Xi),
∑
mi ≤m such that A= R1Ao, B = R2Bo. Therefore,

A+B = R1
(∏

Ai
)
+R2

(∏
Bi
)
. (2.28)

Therefore,

A+B ∈Qn+m(X). (2.29)

(S4) If A ∈ Qn(X) then A = RC = R∏i∈NAi and if S is a rotational operator, then

SA= SRC = TC , where T is a rotational operator in L(X), then SA∈Qn(X).
We need the following lemma.

Lemma 2.16. Let {Xi}i∈N be a sequence of Banach spaces, with closed unit balls

{Ui}i∈N. The unit balls of the Banach spaces �∞(Xi) and �kp(Xi) satisfy the following

conditions:

(1) U�∞(X) = �∞(Ui);
(2) (1/k1/p)�kp(Ui)⊂U�kp(Xi) ⊂ �kp(Ui).
The proof follows by simple verifications.

Theorem 2.17. For the Banach spaces �∞(Xi) and �kp(Xi),
(1) �(Qn(�∞(Xi)))=

⋃∑
ni≤n

∏
i∈N�(Qni(Xi));

(2) �(Qn(�kp(Xi)))⊃ (1/k1/p)
⋃∑

ni≤n
∏
i∈N�(Qni(Xi)).

Proof. From Remark 2.2 and Lemma 2.16 we get

�
(
Qn

(
�∞
(
Xi
)))=

{∏
i∈N
Ti :

(∏
i∈N
Ti

)(
U�∞(Ei)i∈N

)
⊂An

}

for some An ∈Qn
(
�∞
(
Xi
)
i∈N

)
=
∏
i∈N

{
Ti : Ti ∈�

(
Qni

(
Xi
)
,Ei,Xi

)
, Ti

(
UEi

)⊂Ani}

for some Ani ∈Qni
(
Xi
)
,
∑
ni ≤n

=
⋃

∑
ni≤n

∏
i∈N

�
(
Qni

(
Xi
))
,
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�
(
Qn

(
�kp
(
Xi
)))=

{ k∏
i=1

Ti :

( k∏
i=1

Ti

)(
U�kp(Ei)

)
⊂An

}

for some An ∈Qn
(
�kp
(
Xi
))

⊃ 1
k1/p

k∏
i=1

{
Ti : Ti ∈�

(
Qni

(
Xi
)
,Ei,Xi

)
, Ti

(
UEi

)⊂Ani}

for some Ani ∈Qni
(
Xi
)
,
∑
ni ≤n

= 1
k1/p

⋃
∑
ni≤n

∏
i∈N

�
(
Qni

(
Xi
))
. (2.30)

Theorem 2.18. Let {Di}i∈N be a sequence of bounded subsets of the Banach spaces

{Xi}i∈N with Di ⊂ Xi, then for the bounded subsets �∞(Di) and �kp(Di) of the Banach

spaces �∞(Xi) and �kp(Xi),
(1) σn(�∞(Di))= inf∑ni≤n supi∈Nσni(Di);
(2) inf∑ni≤n

∑k
i=1σni(Di)≤ σn(�kp(Di))≤ k1/p inf∑ni≤n

∑k
i=1σni(Di).

Proof. (1) For the bounded subset �∞(Di)i∈N of the Banach space �∞(Xi)i∈N and

by using Lemma 2.16, we get

σn
(
�∞
(
Di
))
i∈N = inf∏

i∈N Ti∈�(Qn(�∞(Xi)i∈N))
sup

x∈�∞(Di)
d
(
x,
∏
i∈N
Ti
(
U�∞(Ei)i∈N

))

= inf∏
i∈N Ti∈�(Qn(�∞(Xi)i∈N))

sup
x∈�∞(Di)

d
(
x,
∏
i∈N
Ti�∞

(
UEi

))

= inf∑
ni≤n

inf
Ti∈�(Qni (Xi))

sup
xi∈Di

sup
i∈N

d
(
xi,TiUEi

)

= inf∑
ni≤n

sup
i∈N

inf
Ti∈�(Qni (Xi))

sup
xi∈Di

d
(
xi,TiUEi

)

= inf∑
ni≤n

sup
i∈N

σni
(
Di
)
i∈N.

(2.31)

The proof of (2) is similar to (1).

Corollary 2.19. Let {Ri}i∈N be a sequence of bounded linear operators with Ri ∈
L(Ei,Xi). For the bounded linear operators (⊕i∈NRi) ∈ L(�∞(Ei)i∈N,�∞(Xi)i∈N) and

(⊕ki=1Ri)∈ L(�kp(Ei),�kp(Xi)),
(1) ζn(⊕i∈NRi)= inf∑ni≤n supi∈Nζni(Ri);
(2) inf∑ni≤n

∑k
i=1ζni(Ri)≤ ζn(⊕ki=1Ri)≤ k1/p inf∑ni≤n

∑k
i=1ζni(Ri).

Proof. (1) Let for every i∈N, the subset Mi = RiUEi be the image of the unit ball

of the Banach space Ei under the operator Ri. Then from Definition 2.13 and by using

Lemma 2.16 and Theorem 2.18, we get

ζn
(⊕i∈NRi)= σn(⊕i∈NRi(U�∞(Ei)i∈N)) (2.32)

= σn
(⊕i∈NRi(U�∞(Ei)))

= inf∑
ni≤n

sup
i∈N

σni
(
RiUEi

)
i∈N

= inf∑
ni≤n

sup
i∈N

ζni
(
Ri
)
i∈N,
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ζn
(⊕ki=1Ri

)= σn(⊕ki=1Ri
(
U�kp(Ei)

))
(2.33)

≤ σn
(
⊕ki=1Ri�

k
p
(
UEi

))

≤ k1/p inf∑
ni≤n

k∑
i=1

σkni
(
RiUEi

)

= k1/p inf∑
ni≤n

k∑
i=1

ζni
(
Ri
)
.

(2.34)

Similarly, we can prove that

inf∑
ni≤n

k∑
i=1

ζni
(
Ri
)≤ ζn(⊕ki=1Ri

)
. (2.35)
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