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This paper presents a class of Lp-type Opial inequalities for generalized fractional deriva-
tives for integrable functions based on the results obtained earlier by the first author for
continuous functions (1998). The novelty of our approach is the use of the index law for
fractional derivatives in lieu of Taylor’s formula, which enables us to relax restrictions on
the orders of fractional derivatives.
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1. Introduction and preliminaries. The Opial inequality, which appeared in [8], is

of great interest in differential equations and other areas of mathematics, and has

attracted a great deal of attention in the recent literature. For classical derivatives it

has been generalized in several directions (see, e.g., [1, 3, 9]), and was a subject of

a monograph by Agarwal and Pang [2]. Love [7] gave a generalization for fractional

integrals. The present paper takes its inspiration from an earlier paper [4] by Anas-

tassiou. In the present work, we consider Lebesgue integrable functions, whereas [4]

dealt with continuous functions using a different definition of fractional derivative.

Our brief survey of basic facts about fractional derivatives is based on the mono-

graph [10] by Samko et al. Most of the results needed in the sequel are contained in

[10, Chapter 1]. The crucial result is Theorem 1.4, which replaces Taylor’s formula in

the derivation of various estimates.

Throughout the paper, x denotes a fixed positive number. By Cm[0,x] we denote

the space of all functions on [0,x] which have continuous derivatives up to order

m, and AC[0,x] is the space of all absolutely continuous functions on [0,x]. By

ACm[0,x], we denote the space of all functions g ∈ Cm[0,x] with g(m−1) ∈AC[0,x].
For any α ∈ R, we denote by [α] the integral part of α (the integer k satisfying

k≤α< k+1). Ifp ∈R,p > 0, and by Lp(0,x), we denote the space of all Lebesgue mea-

surable functions f for which |f |p is Lebesgue integrable on the interval (0,x), and by

L∞(0,x) the set of all functions measurable and essentially bounded on (0,x). For any

f ∈ L∞(0,x) we write ‖f‖∞ = esssupt∈[0,x] |f(t)|. We also write L(0,x)= L1(0,x). We

observe that L∞(0,x) ⊂ Lp(0,x) for all p > 0. For any a ∈ R we write a+ =max(a,0)
and a− = (−a)+.

For the sake of completeness, we give a proof of the following known result which

provides a basis for the existence of fractional integrals and is needed in another

context in the paper.
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Lemma 1.1. Let f ∈ L(0,x) and let α>−1 be a real number. Then

F(s)=
∫ s

0
(s−t)αf(t)dt (1.1)

exists for almost all s ∈ [0,x] and F ∈ L(0,x).
Proof. Define k :Ω := [0,x]×[0,x]→R by k(s,t)= (s−t)α+, that is,

k(s,t)=

(s−t)

α if 0≤ t < s ≤ x,
0 if 0≤ s ≤ t ≤ x. (1.2)

Then k is measurable on Ω, and

∫ x
0
k(s,t)ds =

∫ t
0
k(s,t)ds+

∫ x
t
k(s,t)ds

=
∫ x
t
(s−t)αds = (α+1)−1(x−t)α+1.

(1.3)

Since the repeated integral

∫ x
0
dt
∫ x

0
k(s,t)

∣∣f(t)∣∣ds = (α+1)−1
∫ x

0
(x−t)α+1

∣∣f(t)∣∣dt (1.4)

exists and is finite, the function (s,t) � k(s,t)f (t) is integrable over Ω by Tonelli’s

theorem, and the conclusion follows from Fubini’s theorem.

Let α> 0. For any f ∈ L(0,x) the Riemann-Liouville fractional integral of f of order

α is defined by

Iαf (s)= 1
Γ(α)

∫ s
0
(s−t)α−1f(t)dt, s ∈ [0,x]. (1.5)

By Lemma 1.1, the integral on the right-hand side of (1.5) exists for almost all s ∈ [0,x]
and Iαf ∈ L(0,x). The Riemann-Liouville fractional derivative of f ∈ L(0,x) of order

α is defined by

Dαf(s)=
(
d
ds

)m
Im−αf(s)= 1

Γ(m−α)
(
d
ds

)m ∫ s
0
(s−t)m−α−1f(t)dt, (1.6)

where m= [α]+1, provided that the derivative exists. In addition, we stipulate

D0f := f =: I0f ,

I−αf :=Dαf if α> 0,

D−αf := Iαf if 0<α≤ 1.

(1.7)

If α is a positive integer, then Dαf = (d/ds)αf .
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A more general definition of fractional integrals and derivatives uses an anchor

point other than 0: let f ∈ L(a,b), where −∞<a< b <∞. For any s ∈ [a,b], set

Iαa+f(s) := 1
Γ(α)

∫ s
a
(s−t)α−1f(t)dt,

Iαb−f(s) := 1
Γ(α)

∫ b
s
(s−t)α−1f(t)dt.

(1.8)

The two fractional derivatives are then defined by an obvious modification of (1.6). All

our results stated for the specialized fractional derivative (1.6) have an interpretation

for the fractional derivatives with a general anchor point.

Let α > 0 and m = [α]+ 1. A function f ∈ L(0,x) is said to have an integrable

fractional derivative Dαf (see [10, Definition 2.4, page 44]) if

Im−αf ∈ACm[0,x]. (1.9)

We define the space Iα(L(0,x)) as the set of all functions f on [0,x] of the form

f = Iαϕ for some ϕ ∈ L(0,x) (see [10, Definition 2.3, page 43]). We express these

conditions in terms of fractional derivatives.

Lemma 1.2. Let α > 0 and m = [α]+1. A function f ∈ L(0,x) has an integrable

fractional derivative Dαf if and only if

Dα−kf ∈ C[0,x], k= 1, . . . ,m, Dα−1f ∈AC[0,x]. (1.10)

Further, f ∈ Iα(L(0,x)) if and only if f has an integrable fractional derivative Dαf
and satisfies the condition

Dα−kf (0)= 0 for k= 1, . . . ,m. (1.11)

Proof. Note that

(
d
ds

)k
Im−αf =

(
d
ds

)k
Ik−(α−m+k)f =Dα−m+kf (1.12)

in view of the definition of fractional derivative and the equation [α−m+k]+1= k.

Then (1.10) is equivalent to (1.9) and (1.11) is equivalent to [10, condition (2.56), page

43]. (For k=m we use the stipulation Dα−mf = Im−αf in (1.10).)

We will need the following result on the law of indices for fractional integration and

differentiation using the unified notation (1.7).

Lemma 1.3 (see [10, Theorem 2.5, page 46]). The law of indices

IµIνf = Iµ+νf (1.13)

is valid in the following cases:

(i) ν > 0, µ+ν > 0, and f ∈ L(0,x);
(ii) ν < 0, µ > 0, and f ∈ I−ν(L(0,x));

(iii) µ < 0, µ+ν < 0, and f ∈ I−µ−ν(L(0,x)).
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The following theorem is a powerful analogue of Taylor’s formula with vanishing

fractional derivatives of lower orders. In this paper, it is used as the main tool for

deriving inequalities. Observe that we do not require α≥ β+1 but merely α> β.

Theorem 1.4. Letα> β≥ 0, let f ∈ L(0,x) have an integrable fractional derivative

Dαf , and let Dα−kf (0)= 0 for k= 1, . . . ,[α]+1. Then

Dβf(s)= 1
Γ(α−β)

∫ s
0
(s−t)α−β−1Dαf(t)dt, s ∈ [0,x]. (1.14)

Proof. Set µ =α−β > 0 and ν=−α< 0. According to Lemma 1.2, f ∈I−ν(L(0,x)).
Then, Lemma 1.3(ii) guarantees that the law of indices holds for this choice of µ,ν ,

namely

Iα−βDαf = IµIνf = Iµ+νf = I−βf =Dβf ; (1.15)

this proves the result. Note that, the existence of the integral on the right-hand side

of (1.14) is guaranteed by Lemma 1.1.

2. Main results. We assume throughout that x,ν are positive real numbers, and

that f ∈ L(0,x). The standard assumption on f is that f ∈ Iν(L(0,x)); this is equiva-

lent to f having an integrable fractional derivative Dνf satisfying (1.10). In addition,

we require thatDνf is essentially bounded to guarantee thatDνf ∈ Lp(0,x) for p > 0.

The following notations are used in this section. (The inequalities between ν and µi
are assumed throughout.)

l: a positive integer

x, ν , ri: positive real numbers, i= 1, . . . , l
r =∑l

i=1 ri
µi : real numbers satisfying 0≤ µi < ν , i= 1, . . . , l
αi = ν−µi−1, i= 1, . . . , l
α=max{(αi)− : i= 1, . . . , l}
β=max{(αi)+ : i= 1, . . . , l}
ω1, ω2: continuous positive weight functions on [0,x]
ω: continuous nonnegative weight function on [0,x]
sk, s′k: sk > 0 and 1/sk+1/s′k = 1, k= 1,2.

For brevity, we write µ = (µ1, . . . ,µl) for a selection of the orders µi of fractional

derivatives, and r = (r1, . . . ,rl) for a selection of the constants ri.
We derive a very general Opial type inequality involving fractional derivatives of an

integrable function f , which is analogous to [9, Theorem 1.3] for ordinary derivatives

and to [4, Theorem 2] for fractional derivatives.

Theorem 2.1. Let f ∈ L(0,x) have an integrable fractional derivative Dνf ∈
L∞(0,x) such that Dν−jf (0) = 0 for j = 1, . . . ,[ν]+ 1. For k = 1,2, let sk > 1 and

p ∈R satisfy

αs2 < 1, p >
s2

1−αs2
, (2.1)
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and let σ = 1/s2−1/p. Finally, let

Q1 =
(∫ x

0
ω1(τ)s

′
1 dτ

)1/s′1
, Q2 =

(∫ x
0
ω2(τ)−s

′
2/p dτ

)r/s′2
. (2.2)

Then,

∫ x
0
ω1(τ)

l∏
i=1

∣∣Dµif (τ)∣∣ri dτ ≤Q1Q2C1xρ+1/s1
(∫ x

0
ω2(τ)

∣∣Dνf(τ)∣∣p dτ)r/p, (2.3)

where ρ :=∑l
i=1αiri+σr and

C1 = C1
(
ν,µ,r,p,s1,s2

)
:= σrσ∏l

i=1 Γ
(
ν−µi

)ri(αi+σ)riσ (ρs1+1
)1/s1

. (2.4)

Proof. First, we show that the conditions on s2 and p guarantee that, for i =
1, . . . , l,

p > s2 > 1, (2.5a)

αis2 >−1, (2.5b)

αi+σ > 0. (2.5c)

This is clear if α = 0. If α > 0, then 0 < 1−αs2 < 1 and p > s2/(1−αs2) > s2 > 1. For

each i∈ {1, . . . , l}, αi ≥−α, and αis2 ≥−αs2 >−1; further,

αi+σ =αi+ 1
s2
− 1
p
= 1+αis2

s2
− 1
p
≥ 1−αs2

s2
− 1
p
> 0. (2.6)

For brevity, we write

ki(τ,t)= (τ−t)αi+ , i= 1, . . . , l,

Φ(t)= ∣∣Dνf(t)∣∣, 0≤ τ, t ≤ x. (2.7)

From (2.5), it follows that

ki(τ,·)∈ Ls2(0,x), ki(τ,·)∈ L1/σ (0,x). (2.8)

Let i ∈ {1, . . . , l} and τ ∈ [0,x]. We then apply Hölder’s inequality twice (with the

conjugate indices s′2, s2, and p/s2, p/(p− s2)) taking into account (2.8) and the fact

that ω−1
2 , ω2, and Φ are (essentially) bounded,

∫ x
0
ki(τ,t)Φ(t)dt =

∫ x
0
ω2(t)−1/pω2(t)1/pΦ(t)ki(τ,t)dt

≤
(∫ x

0
ω2(t)−s

′
2/p dt

)1/s′2(∫ x
0
ω2(t)s2/pΦ(t)s2ki(τ,t)s2 dt

)1/s2

≤Q1/r
2

(∫ x
0
ω2(t)Φ(t)p dt

)1/p(∫ x
0
ki(τ,t)1/σ dt

)σ

=Q1/r
2

(∫ x
0
ω2(t)Φ(t)p dt

)1/p σσταi+σ

(αi+σ)σ .
(2.9)
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By Theorem 1.4,

Γ
(
ν−µi

)∣∣Dµif (τ)∣∣≤
∫ τ

0
(τ−t)αiΦ(t)dt =

∫ x
0
ki(τ,t)Φ(t)dt. (2.10)

Therefore,

∫ x
0
ω1(τ)

l∏
i=1

∣∣Dµif (τ)∣∣ri dτ

≤
∫ x

0
ω1(τ)

l∏
i=1

1
Γ(ν−µi)ri

(∫ x
0
ki(τ,t)Φ(t)dt

)ri
dτ

≤
∫ x

0
ω1(τ)

l∏
i=1

1
Γ(ν−µi)ri Q

ri/r
2

(∫ x
0
ω2(t)Φ(t)p dt

)ri/p

· σriσ

(αi+σ)riσ τ
(αi+σ)ri dτ

= σrσ∏l
i=1 Γ(ν−µi)ri

(
αi+σ

)riσ Q2

(∫ x
0
ω2(t)Φ(t)p dt

)r/p

·
∫ x

0
ω1(τ)


 l∏
i=1

τ(αi+σ)ri


dτ

=∆Q2

(∫ x
0
ω2(t)Φ(t)p dt

)r/p ∫ x
0
ω1(τ)τρ dτ

≤∆Q2

(∫ x
0
ω2(t)Φ(t)p dt

)r/p(∫ x
0
ω1(τ)s

′
1 dτ

)1/s′1(∫ x
0
τρs1 dτ

)1/s1

= ∆(
ρs1+1

)1/s1
Q2

(∫ x
0
ω2(t)Φ(t)p dt

)r/p
Q1xρ+1/s1 ,

(2.11)

where ∆ := σrσ/(∏l
i=1 Γ(ν−µi)ri(αi+σ)riσ ). This completes the proof.

Next, we consider the extreme case p =∞ in analogy with [4, Proposition 1].

Theorem 2.2. Let f ∈ L(0,x) have an integrable fractional derivative Dνf ∈
L∞(0,x), such that Dν−jf (0)= 0 for j = 1, . . . ,[ν]+1. Then,

∫ x
0
ω(τ)

l∏
i=1

∣∣Dµif (τ)∣∣ri dτ ≤
∥∥ω∥∥∞xρ

ρ
∏l
i=1 Γ

(
ν−µi+1

)ri ∥∥Dνf∥∥r∞, (2.12)

where ρ =∑l
i=1(ν−µi)ri+1.

Proof. By Theorem 1.4,

∣∣Dµif (τ)∣∣≤ 1
Γ
(
ν−µi

) ∫ τ
0
(τ−t)αi∣∣Dνf(t)∣∣dt, (2.13)

which implies ∣∣Dµif (τ)∣∣≤
∥∥Dνf∥∥∞
Γ
(
ν−µi

) τν−µi
ν−µi =

∥∥Dνf∥∥∞τν−µi
Γ
(
ν−µi+1

) . (2.14)
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The result then follows when we raise (2.14) to the power ri, take the product from

i= 1 to l, multiply by ω(τ), and integrate with respect to τ from 0 to x.

We have the following counterpart of Theorem 2.1 with s1,s2 ∈ (0,1) andp negative.

Theorem 2.3. Let f ∈ L(0,x) have an integrable fractional derivative Dνf ∈
L∞(0,x)which is of the same sign a.e. in (0,x) and satisfiesDν−jf (0)=0, j=1, . . . ,[ν]+
1. For k= 1,2, let 0< sk < 1, let p < 0, and let σ = 1/s2−1/p. Then,

∫ x
0
ω1(τ)

l∏
i=1

∣∣Dµif (τ)∣∣ri dτ
≥Q1Q2C1xρ+1/s1

(∫ x
0
ω2(τ)

∣∣Dνf(τ)∣∣p dτ)r/p,
(2.15)

where ρ =∑l
i=1αiri+σr , Q1, and Q2 are defined by (2.2), and C1 is defined by (2.4).

Proof. Combining Theorem 1.4 with the hypotheses on Dνf , we have

Γ
(
ν−µi

)∣∣Dµif (τ)∣∣=
∫ τ

0
(τ−t)αiΦ(t)dt =

∫ x
0
ki(τ,t)Φ(t)dt, (2.16)

where Φ(t)=Dνf or Φ(t)=−Dνf (depending on the sign of Dνf in (0,x)).
Since αi > −1 and 0 < s2 < 1, we have αis2 > −1. Further, σ = 1/s2 − 1/p > 0.

Writing ki(τ,t)= (τ−t)αi+ (i= 1, . . . , l), we have

ki(τ,·)∈ Ls2(0,x), ki(τ,·)∈ L1/σ (0,x). (2.17)

We can now retrace the proof of Theorem 2.1, relying on (2.17) and using the reverse

Hölder’s inequality in place of Hölder’s inequality proper (as 0 < sk < 1 for k = 1,2
and p < 0).

A possible choice of p in this theorem is p = (s1s2
2)/(s1s2−1). This results in an

inequality similar to the one obtained earlier by Anastassiou [4, Theorem 3].

We obtain yet another counterpart of Theorem 2.1 if we assume that s1, s2, and p
lie in the interval (0,1). In this case, the hypotheses on s1, s2, and p are of necessity

more restrictive.

Theorem 2.4. Let f ∈ L(0,x) have an integrable fractional derivative Dνf ∈
L∞(0,x)which is of the same sign a.e. in (0,x) and satisfiesDν−jf (0)=0, j=1, . . . ,[ν]+
1. For k= 1,2, let 0< sk < 1, let rs1 ≤ 1, p ∈R,

s2

1−αs2+s2
<p <

s2

1+βs2
, (2.18)

and let σ = 1/s2−1/p. Then, (2.15) holds where ρ = ∑l
i=1αiri+σr , Q1 and Q2 are

defined by (2.2), and C1 is defined by (2.4).

Proof. We show that condition (2.18) guarantees that, for i= 1, . . . , l,

0<p < s2 < 1, (2.19a)

−1<αi+σ < 0. (2.19b)

Since 1−αs2+ s2 > 0 and 1+βs2 ≥ 1, inequality (2.19a) follows directly from (2.18).
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Further, we have αi+σ = (1+αis2)/s2−1/p, and

−1<
1−αs2

s2
− 1
p
≤ 1+αis2

s2
− 1
p
<

1+βs2

s2
− 1
p
< 0. (2.20)

This proves (2.19b).

Since αi > −1 and 0 < s2 < 1, we have αis2 > −1. Further, σ < 0, and αi/σ > −1.

Writing ki(τ,t)= (τ−t)αi+ (i= 1, . . . , l), we have

ki(τ,·)∈ Ls2(0,x), ki(τ,·)∈ L1/σ (0,x). (2.21)

As in the proof of Theorem 2.3, we have

Γ(ν−µi)
∣∣Dµif (τ)∣∣=

∫ τ
0
(τ−t)αiΦ(t)dt =

∫ x
0
ki(τ,t)Φ(t)dt, (2.22)

where Φ(t)=Dνf or Φ(t)=−Dνf (depending on the sign of Dνf in (0,x)).
We can now retrace the proof of Theorem 2.1, relying on (2.21) and using the reverse

Hölder’s inequality in place of Hölder’s inequality proper (as 0 < sk < 1 for k = 1,2
and 0<p < 1). For the last application of Hölder’s inequality, we need τρ ∈ Ls1(0,x).
This follows from

ρs1 =
l∑
i=1

(
αi+σ

)
ris1 >−rs1 ≥−1, (2.23)

taking into account the assumption rs1 ≤ 1.

We present a version of Opial’s inequality with l = 2 motivated by Pang and Agar-

wal’s extension [9, Theorem 1.1] of an inequality due to Fink [5] for classical deriva-

tives. This was further extended in [4, Theorem 4] to fractional derivatives. Our proof

is similar to the one given in [9]. In view of the auxiliary inequalities used, in particular

of (2.26), the theorem does not extend easily to l > 2.

Theorem 2.5. Let f ∈ L(0,x) have an integrable fractional derivative Dνf ∈
L∞(0,x) such that, Dν−jf (0) = 0 for j = 1, . . . ,[ν]+ 1. Let ν > µ2 ≥ µ1 + 1 ≥ 1. If

p,q > 1 are such that 1/p+1/q = 1, then

∫ x
0

∣∣Dµ1f(τ)
∣∣∣∣Dµ2f(τ)

∣∣dτ ≤ C2x2ν−µ1−µ2−1+2/q
(∫ x

0

∣∣Dνf(τ)∣∣p dτ)2/p
, (2.24)

where C2 = C2(ν,µ1,µ2,p) is given by

C2 := (1/2)1/p

Γ
(
ν−µ1

)
Γ
(
ν−µ2+1

)((
ν−µ1

)
q+1

)1/q((
2ν−µ1−µ2−1

)
q+2

)1/q . (2.25)

Proof. First an auxiliary inequality. Write αi = ν−µi−1 for i= 1,2; in view of the

hypothesis µ2 ≥ µ1+1 we have α1−α2−1≥ 0. Let 0≤ t ≤ s ≤ x. Then,

∫ x
0

[
(τ−t)α1+ (τ−s)α2+ +(τ−s)α1+ (τ−t)α2+

]
dτ

≤ 1(
ν−µ2

) (x−t)α1(x−s)α2+1.
(2.26)
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This is verified by estimating the integrand in (2.26) (with τ ≥ s ≥ t):
(τ−t)α1(τ−s)α2+(τ−s)α1(τ−t)α2

= (τ−t)α1−α2−1(τ−t)α2+1(τ−s)α2+(τ−s)α1−α2−1(τ−s)α2+1(τ−t)α2

≤ (x−t)α1−α2−1[(τ−t)α2+1(τ−s)α2+(τ−s)α2+1(τ−t)α2
]
,

(2.27)

(where the last inequality requires α1−α2−1≥ 0); (2.26) follows from∫ x
0

[
(τ−t)α2+1

+ (τ−s)α2+ +(τ−s)α2+1
+ (τ−t)α2+

]
dτ

= 1
α2+1

[
(x−t)(x−s)]α2+1.

(2.28)

In the following calculation, we abbreviate

c1 := (Γ(ν−µ2
)
Γ
(
ν−µ1

))−1, c2 := (Γ(ν−µ2+1
)
Γ
(
ν−µ1

))−1,

c3 := (ν−µ2
)
q+1, ε := 2ν−µ1−µ2−1+1/q.

(2.29)

By Theorem 1.4,

Dµif (τ)= 1
Γ
(
ν−µi

) ∫ x
0
(τ−t)αi+ Dνf(t)dt, i= 1,2. (2.30)

Using this representation, the auxiliary inequality (2.26), and Hölder’s inequality, we

obtain∫ x
0

∣∣Dµ1f(τ)
∣∣∣∣Dµ2f(τ)

∣∣dτ
≤ c1

∫ x
0

(∫ x
0

∣∣Dνf(t)∣∣(τ−t)α1+ dt
)(∫ x

0

∣∣Dνf(s)∣∣(τ−s)α2+ ds
)
dτ

= c1

∫ x
0

∣∣Dνf(t)∣∣(
∫ x
t

∣∣Dνf(s)∣∣(
∫ x

0
(τ−t)α1+ (τ−s)α2+ dτ

)
ds
)
dt

= c1

∫ x
0

∣∣Dνf(t)∣∣(
∫ x
t

∣∣Dνf(s)∣∣
·
(∫ x

0

[
(τ−t)α1+ (τ−s)α2+ +(τ−s)α1+ (τ−t)α2+

]
dτ
)
ds
)
dt

≤ c2

∫ x
0

∣∣Dνf(t)∣∣(
∫ x
t

∣∣Dνf(s)∣∣(x−t)α1(x−s)α2+1ds
)
dt

= c2

∫ x
0

∣∣Dνf(t)∣∣(x−t)α1

(∫ x
t

∣∣Dνf(s)∣∣(x−s)α2+1ds
)
dt

≤ c2

∫ x
0

∣∣Dνf(t)∣∣(x−t)α1

(∫ x
t

∣∣Dνf(s)∣∣p ds)1/p(∫ x
t
(x−s)q(α2+1) ds

)1/q
dt

= c2c
−1/q
3

∫ x
0

∣∣Dνf(t)∣∣(x−t)εq(
∫ x
t

∣∣Dνf(s)∣∣p ds)1/p
dt

≤ c2c
−1/q
3

(∫ x
0

∣∣Dνf(t)∣∣p(
∫ x
t

∣∣Dνf(s)∣∣p ds)dt)1/p(∫ x
0
(x−t)εq dt

)1/q

≤ c2c
−1/q
3 (εq+1)−1/qx(εq+1)/q

(
1
2

(∫ x
0

∣∣Dνf(t)∣∣p dt)2
)1/p

.

(2.31)

This implies (2.24).
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In the following theorem, we address the case when the function |Dνf | is mono-

tonic.

Theorem 2.6. Let f ∈ L(0,x) have an integrable fractional derivative Dνf ∈
L∞(0,x) such that Dν−jf (0) = 0 for j = 1, . . . ,[ν]+1, and that |Dνf | is decreasing

on [0,x]. Let l≥ 2. If p,q > 1 are such that 1/p+1/q = 1 and
∑l
i=1αip >−1, then

∫ x
0

l∏
i=1

∣∣Dµif (τ)∣∣dτ ≤ C3x(γp+lp+1)/p
(∫ x

0

∣∣Dνf(t)∣∣lq dt)1/q
, (2.32)

where γ :=∑l
i=1αi and

C3 = C3(ν,µ,p) := p
(γp+1)1/p(γp+p+1)

∏l
i=1 Γ

(
ν−µi

) . (2.33)

Proof. By Theorem 1.4,

∣∣Dµif (τ)∣∣≤ 1
Γ
(
ν−µi

) ∫ x
0
(τ−t)αi+

∣∣Dνf(t)∣∣dt. (2.34)

The integrand t � (τ − t)αi+ |Dνf(t)| is decreasing (and integrable) on [0,x] for all

τ ∈ [0,x]. By Chebyshev’s inequality for the product of integrals [6, page 1099],

l∏
i=1

∣∣Dµif (τ)∣∣≤ xl−1∏l
i=1 Γ

(
ν−µi

)
∫ x

0

l∏
i=1

(τ−t)αi+
∣∣Dνf(t)∣∣dt

≤ xl−1∏l
i=1 Γ

(
ν−µi

)
∫ x

0
(τ−t)γ+

∣∣Dνf(t)∣∣l dt
≤ xl−1∏l

i=1 Γ
(
ν−µi

)
(∫ τ

0
(τ−t)γp dt

)1/p(∫ x
0

∣∣Dνf(t)∣∣lq dt)1/q

≤ xl−1∏l
i=1 Γ

(
ν−µi

)
(
τγp+1

γp+1

)1/p(∫ x
0

∣∣Dνf(t)∣∣lq dt)1/q

= xl−1τ(γp+1)/p

(γp+1)1/p
∏l
i=1 Γ

(
ν−µi

)
(∫ x

0

∣∣Dνf(t)∣∣lq dt)1/q
.

(2.35)

Integrating with respect to τ from 0 to x, we get the result. Condition
∑l
i=1αip >−1

was needed in order to apply Hölder’s inequality to
∫ x
0 (τ−t)γ+|Dνf(t)|l dt.

The following extreme case of the theorem resembles [4, Proposition 4].

Theorem 2.7. Let the hypotheses of Theorem 2.6 be satisfied, but let p = 1 and

q =∞. Then, ∫ x
0

l∏
i=1

∣∣Dµif (τ)∣∣dτ ≤ C4xγ+l+1
∥∥Dνf∥∥l∞, (2.36)

where γ :=∑l
i=1αi and

C4 = C4(ν,µ) := 1

(γ+1)(γ+l+1)
∏l
i=1 Γ

(
ν−µi

) . (2.37)
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Proof. As in the proof of Theorem 2.6, we have

l∏
i=1

∣∣Dµif (τ)∣∣≤ 1∏l
i=1 Γ

(
ν−µi

) l∏
i=1

∫ τ
0

∣∣Dνf(t)∣∣(τ−t)αi dt
≤ τl−1∏l

i=1 Γ
(
ν−µi

)∥∥Dνf∥∥l∞
∫ τ

0
(τ−t)γ dt

≤ τγ+l
∥∥Dνf∥∥l∞

(γ+1)
∏l
i=1 Γ

(
ν−µi

) .

(2.38)

Integrating over [0,x] with respect to τ we obtain (2.36).
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