
IJMMS 31:5 (2002) 259–269
PII. S0161171202108106

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

THE NONEXISTENCE OF RANK 4 IP TENSORS
IN SIGNATURE (1,3)

KELLY JEANNE PEARSON and TAN ZHANG

Received 19 August 2001 and in revised form 9 February 2002

Let V be a real vector space of dimension 4 with a nondegenerate symmetric bilinear form
of signature (1,3). We show that there exists no algebraic curvature tensor R on V so that
its associated skew-symmetric operator R(·) has rank 4 and constant eigenvalues on the
Grassmannian of nondegenerate 2-planes in V .
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1. Introduction. Let∇ be the Levi-Civita connection of a smooth connected pseudo-

Riemannian manifold (M,g) of signature (p,q). Let gR(x,y) :=∇x∇y−∇y∇x−∇[x,y]
be the Riemann curvature operator. The associated curvature tensor gR(x,y,z,w) :=
g(R(x,y)z,w) has the symmetries

gR(x,y,z,w)=−gR(y,x,z,w)=−gR(x,y,w,z),
gR(x,y,z,w)= gR(z,w,x,y),

gR(x,y,z,w)+gR(y,z,x,w)+gR(z,x,y,w)= 0.
(1.1)

We now extend the definition of curvature tensors to a more general algebraic frame-

work. Let 〈·,·〉 be a nondegenerate symmetric bilinear form of signature (p,q) on a

finite-dimensional real vector space V . A four tensor R ∈⊗4(V∗) is called an algebraic

curvature tensor if R satisfies (1.1). The associated algebraic curvature tensor R(x,y)
is then defined by 〈R(x,y)z,w〉 := R(x,y,z,w).

The curvature tensor gR of a pseudo-Riemannian manifold (M,g) is an algebraic

curvature tensor on the tangent space at every point P ofM . Conversely, (M,g) is said

to be a geometric realization of an algebraic curvature tensor R at a point P of M if

there exists an isometry Θ : TPM → V such that gR(x,y,z,w) = R(Θx,Θy,Θz,Θw),
for all x,y,z,w ∈ TPM . An important fact from differential geometry shows that every

algebraic curvature tensor has such a geometric realization.

A fundamental problem in differential geometry is to relate the algebraic properties

of the curvature tensor R to the underlying geometry and topology of the manifold

(M,g) itself. However, since the full curvature tensor R itself is quite complicated

in general, we often use the curvature tensor R to define natural endomorphisms

of the tangent bundle. The Jacobi operator, the Stanilov operator, the Szabó opera-

tor, and the skew-symmetric curvature operator are such examples. Many interesting

geometric consequences, such as local 2-point homogeneous, locally symmetric, con-

stant sectional curvature, and so forth, can be drawn once such a natural operator is
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assumed to have constant eigenvalues or constant rank on their corresponding do-

mains. We refer to [2] for detailed discussions on this subject. In the remainder of our

paper, we will discuss the skew-symmetric curvature operator.

If {v1,v2} is an oriented basis for a nondegenerate 2-planeπ in V , the skew-symmet-

ric curvature operator is defined by

R(π) :=
∣∣∣g(v1,v1

)
g
(
v2,v2

)−g(v1,v2
)2
∣∣∣−1/2

R
(
v1,v2

)
. (1.2)

It can be shown that this definition is independent of the basis chosen. A fundamental

numerical invariant of a linear transformation is its rank. We say R has rank r if

rank(R(π))= r for every oriented nondegenerate 2-plane π .

If p ≤ 2, the constant-rank algebraic curvature tensors have rank at most 2 for most

values of q. We refer to Gilkey [1], Gilkey et al. [3], and Zhang [8] for the following result.

Theorem 1.1. Let R be a nontrivial rank r algebraic curvature tensor. The rank is

determined in the following cases:

(1) let p = 0. If q ≥ 5 and q ≠ 7, then r = 2;

(2) let p = 1. If q = 5 or q ≥ 9, then r = 2;

(3) let p = 2. If q ≥ 10, then r ≤ 4. Furthermore, if neither q nor q+2 are powers of

2, then r = 2.

Theorem 1.1 played an important role in the classification of rank 2 algebraic cur-

vature tensors for q ≥ 5. We refer to [5] for the proof of the following result.

Theorem 1.2. Let R be an algebraic curvature tensor. Then R has constant rank

2 if and only if there exists a selfadjoint map φ whose kernel contains no nontrivial

spacelike vectors so that R = Rφ, where

Rφ(x,y)z =±
{〈φy,z〉φx−〈φx,z〉φy}. (1.3)

It is also shown in [5] that every rank 2 algebraic curvature tensor can be geomet-

rically realized by the germ of pseudo-Riemannian hypersurface in flat space.

We say that an algebraic curvature tensor is (Jordan) IP if the Jordan normal form

of the complexification of R(·) is constant on the Grassmannian of nondegenerate

oriented 2-planes; such a tensor necessarily has constant rank. We say that a pseudo-

Riemannian manifold (M,g) is rank r (Jordan) IP if gR is rank r Jordan IP at every

point of M ; the Jordan normal form is allowed to vary with the point but the rank is

assumed to be constant.

Remark 1.3. The notion of IP follows from the pioneering classification result in 4-

dimensional Riemannian geometry, that is, p = 0 and q = 4, due to Ivanov and Petrova

[6]. In the Riemannian setting, that is, p = 0, R is Jordan IP if and only if R(π) has

constant eigenvalues on all oriented 2-planes π .

Theorem 1.1 also played an important role in the classification of rank 2 Jordan IP

algebraic curvature tensors for q ≥ 5. The following result is found in [5].
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Theorem 1.4. Let R be an algebraic curvature tensor. Then R is a rank 2 Jordan

IP tensor if and only if R = CRφ where C > 0 and φ is a selfadjoint map which satisfies

one of the following three conditions:

(1) the map φ is an isometry, that is, 〈φx,φy〉 = 〈x,y〉 for all x, y . This is equiv-

alent to the condition φ2 = id;

(2) the map φ is a para-isometry, that is, 〈φx,φy〉 = −〈x,y〉 for all x, y . This is

equivalent to the condition φ2 =− id;

(3) the map φ satisfies φ2 = 0 and kerφ= rangeφ.

The classification of rank 2 Jordan IP pseudo-Riemannian manifolds for q ≥ 5 is

found in [4].

Theorem 1.5. Let (M,g) be a connected spacelike rank 2 Jordan IP pseudo-

Riemannian manifold of signature (p,q), where q ≥ 5. Assume that gR is not nilpo-

tent for at least one point P of M . We have the following trichotomy:

(1) for each point P ∈M , we have gRP = C(P)Rφ(P), where φ(P) is selfadjoint map

of TPM so that φ(P)2 = id; gRP is never nilpotent;

(2) if φ=± id, then (M,g) has constant sectional curvature;

(3) ifφ≠± id, then (M,g) is locally isometric to one of the warped product manifolds

of the form

M := I×Sδ(r ,s;�), f (t) := εκt2+At+B,

ds2
M := εdt2+f(t)d2

Sδ(r ,s;�), C(t) := f−2
{
fκ− 1

4
εf 2
t

}
,

φ :=− id on TSδ(r ,s;�), φ
(
∂t
)

:= ∂t,
(1.4)

where � > 0, ε = ±1, δ = ±1, Sδ(r ,s;�) is the pseudo-sphere of spacelike or

timelike vectors of length ±�−2 in a vector space of signature (r ,s). Choose

{κ,A,B} so that fκ−(1/4)εf 2
t ≠ 0 or equivalently so that A2−4εκB ≠ 0. Choose

interval I so that f(t)≠ 0 on I.

However, the classification of such tensors in dimension 4 is exceptional. Kowalski

et al. [7] showed that, in the Riemannian setting, an algebraic curvature tensor of rank

4 in dimension 4 must have both positive and negative sectional curvatures.

The study of rank 4 Jordan IP algebraic curvature tensors and manifolds adds some

more interesting aspects to the story. We refer to [2, 6, 9] for the following theorem.

Theorem 1.6. Let R be a Jordan IP algebraic curvature tensor on Rp,q. We distin-

guish the following cases:

(1) if (p,q)= (0,4) and if rankR = 2, then R is given by Theorem 1.4(1);

(2) if (p,q)= (0,4) and if rankR = 4, then R is equivalent to a nonzero multiple of

the “exotic” rank4 tensor whose nonvanishing components are

R1212 = 2, R1313 = 2, R1414 =−1, R2424 = 2, R2323 =−1,

R3434 = 2, R1234 =−1, R1324 = 1, R1423 = 2;
(1.5)

(3) if (p,q)= (2,2) and if rankR = 2, then R is given by Theorem 1.4(1), (2);
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(4) if (p,q)= (2,2) and if rankR = 4, then R is equivalent to a nonzero multiple of

the “exotic” rank4 tensor whose nonvanishing components are

R1212 = 2, R1313 =−2, R1414 = 1, R2424 =−2, R2323 = 1,

R3434 = 2, R1234 = 1, R1324 =−1, R1423 =−2.
(1.6)

However, in [6], Ivanov and Petrova further proved that such “exotic” rank4 IP ten-

sors cannot be geometrically realized by IP manifolds.

In summary, every rank 2 (Jordan) IP algebraic curvature tensor can be geometrically

realized by the germ of a rank 2 (Jordan) IP pseudo-Riemannian manifold; but not

every rank 4 (Jordan) IP algebraic curvature tensor can be geometrically realized by

the germ of a rank 4 (Jordan) IP pseudo-Riemannian manifold. So in a sense, when

(p,q) = (0,4), the algebraic IP assumption gives the geometric obstruction. It is not

known if such obstruction exists for (p,q) = (2,2). The main result of this paper is

Theorem 3.1 which deals with the remaining cases when p+q = 4.

Here is a brief outline of this paper. In Section 2, we present some notational conven-

tions and employ techniques from linear algebra to establish some preliminary results

needed for the proof of Theorem 3.1. In Section 3, we state and prove Theorem 3.1.

2. Preliminaries from linear algebra. Let O(p,q) be the group of all linear maps

from V to V which preserves the nondegenerate symmetric bilinear form 〈·,·〉 and let

so(p,q) be the associated Lie algebra. We have

O(p,q)= {A∈ End(V) : 〈Au,Av〉 = 〈u,v〉 ∀u,v ∈ V},
so(p,q)= {A∈ End(V) : 〈Au,v〉+〈u,Av〉 = 0 ∀u,v ∈ V}. (2.1)

A nonzero vector v ∈ V is said to be spacelike (or timelike) if 〈v,v〉> 0 (or 〈v,v〉<
0). A nondegenerate 2-plane π in V is said to be spacelike (or mixed) if the restriction

〈·,·〉|π on π has signature (0,2) (or (1,1)).
Let Gr+(0,2)(R1,3) (or Gr+(1,1)(R1,3)) be the Grassmannian of nondegenerate oriented

spacelike (or mixed) 2-planes in R1,3.

Throughout the remainder of our discussions, we will always fix an orthonormal

basis {e1,e2,e3,e4} for R1,3 so that 〈ei,ej〉 = 0 for i ≠ j, 〈ei,ei〉 = 1 for 1 ≤ i ≤ 3, and

〈e4,e4〉 = −1.

If π ∈ Gr+(0,2)(R1,3) (or π ∈ Gr+(1,1)(R1,3)), then R(π) ∈ so(1,3). Thus, relative to

the orthonormal basis {e1,e2,e3,e4}, there are real constants a(π), b(π), c(π), d(π),
e(π), and f(π) such that R(π) has the form

R(π)=




0 a(π) b(π) c(π)
−a(π) 0 d(π) e(π)
−b(π) −d(π) 0 f(π)
c(π) e(π) f(π) 0


 . (2.2)

We define

σR(π) := a(π)2+b(π)2+c(π)2−d(π)2−e(π)2−f(π)2,
δR(π) := a(π)f(π)−b(π)e(π)+c(π)d(π). (2.3)
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Let χR(π)(λ) := det(λ−R(π)) be the characteristic polynomial of R(π). We compute

detR(π)=−δ2
R(π), χR(π)(λ)= λ4+σR(π)λ2−δ2

R(π). (2.4)

IfR is a Jordan IP algebraic curvature tensor onR1,3, then χR(π)(λ)must be invariant

on Gr+(0,2)(R1,3) (or Gr+(1,1)(R1,3)). Thus the functions σR(π) and δ2
R(π) are invariant on

Gr+(0,2)(R1,3) (or Gr+(1,1)(R1,3)). Furthermore, R(π) has rank 4 if and only if δR(π) ≠ 0

for all nondegenerate 2-planes π .

Lemma 2.1. Let {x,y,z} be an orthonormal set of spacelike vectors in R1,3 with

π1 = Span{x,y} and π2 = Span{x,z}. If R is a rank 4 Jordan IP algebraic curvature

tensor, then δR(π1) = δR(π2).

Proof. Let θ ∈ [0,2π]. Let π(θ) := Span{x,cos(θ)y+sin(θ)z} be a 1-parameter

family of spacelike 2-planes in R1,3. We use (2.2) to see R(π(θ)) = cosθR(π1) +
sinθR(π2) has the form

R
(
π(θ)

)= cosθ




0 a
(
π1
)
b
(
π1
)
c
(
π1
)

−a(π1
)

0 d
(
π1
)
e
(
π1
)

−b(π1
)
d
(
π1
)

0 f
(
π1
)

c
(
π1
)

e
(
π1
)
f
(
π1
)

0




+sinθ




0 a
(
π2
)
b
(
π2
)
c
(
π2
)

−a(π2
)

0 d
(
π2
)
e
(
π2
)

−b(π2
)
d
(
π2
)

0 f
(
π2
)

c
(
π2
)

e
(
π2
)
f
(
π2
)

0



.

(2.5)

Thus

δR(π(θ)) =
(
cosθa

(
π1
)+sinθa

(
π2
))(

cosθf
(
π1
)+sinθf

(
π2
))

−(cosθb
(
π1
)+sinθb

(
π2
))(

cosθe
(
π1
)+sinθe

(
π2
))

+(cosθc
(
π1
)+sinθc

(
π2
))(

cosθd
(
π1
)+sinθd

(
π2
))

= cos2θδR(π1)+sin2θδR(π2)

+sinθcosθ
{
a
(
π1
)
f
(
π2
)+a(π2

)
f
(
π1
)−b(π1

)
e
(
π2
)

−b(π2
)
e
(
π1
)+c(π1

)
d
(
π2
)+c(π2

)
d
(
π1
)}
.

(2.6)

Since R is Jordan IP, we have δ2
R(π1) = δ2

R(π2) and δR(π(θ)) is independent of θ.

Suppose δR(π1) =−δR(π2), this implies that

δR(π(θ)) = cos(2θ)δR(π1)

+sinθcosθ
{
a
(
π1
)
f
(
π2
)+a(π2

)
f
(
π1
)−b(π1

)
e
(
π2
)

−b(π2
)
e
(
π1
)+c(π1

)
d
(
π2
)+c(π2

)
d
(
π1
)}
.

(2.7)
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Since δR(π(θ)) is independent of θ, for any θ ∈ [0,2π] we have

0= ∂
∂θ
(
δR(π(θ))

)=−2sin(2θ)δR(π1)

+cos(2θ)
{
a
(
π1
)
f
(
π2
)+a(π2

)
f
(
π1
)−b(π1

)
e
(
π2
)

−b(π2
)
e
(
π1
)+c(π1

)
d
(
π2
)+c(π2

)
d
(
π1
)}
.

(2.8)

By choosing θ = π/4 in (2.8), we have δR(π1) = 0, which is false. Our assertion now

follows.

We omit the proof of the following corollary since the same argument applies.

Corollary 2.2. Let {x,y,z} be an orthonormal set in R1,3 so that x is a unit time-

like vector. Letπ1 = Span{x,y} andπ2 = Span{x,z}. IfR is a rank 4 Jordan IP algebraic

curvature tensor, then δR(π1) = δR(π2).

3. The main result. Let {e1,e2,e3,e4} be the standard orthonormal basis for R1,3

discussed in Section 2. Let Rijkl := 〈R(ei,ej)ek,el〉 be the curvature components. We

need the following list of variables in the proof of our main result:

x1 := R1212, x2 := R1213, x3 := R1214,

x4 := R1223, x5 := R1224, x6 := R1234,

x7 := R1313, x8 := R1314, x9 := R1323,

x10 := R1324, x11 := R1334, x12 := R2314, (3.1)

x13 := R2323, x14 := R2324, x15 := R2334,

y1 := R1414, y2 := R1424, y3 := R1434,

y4 := R2424, y5 := R2434, y6 := R3434.

Relative to the orthonormal basis {e1,e2,e3,e4}, we have

R
(
e1,e2

)=




0 x1 x2 x3

−x1 0 x4 x5

−x2 −x4 0 x6

x3 x5 x6 0


 ,

R
(
e1,e3

)=




0 x2 x7 x8

−x2 0 x9 x10

−x7 −x9 0 x11

x8 x10 x11 0


 ,

R
(
e2,e3

)=




0 x4 x9 x12

−x4 0 x13 x14

−x9 −x13 0 x15

x12 x14 x15 0


 ,
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R
(
e1,e4

)=




0 x3 x8 y1

−x3 0 x12 y2

−x8 −x12 0 y3

y1 y2 y3 0


 ,

R
(
e2,e4

)=




0 x5 x10 y2

−x5 0 x14 y4

−x10 −x14 0 y5

y2 y4 y5 0


 ,

R
(
e3,e4

)=




0 x6 x11 y3

−x6 0 x15 y5

−x11 −x15 0 y6

y3 y5 y6 0


 .

(3.2)

Theorem 3.1. There exists no rank 4 (Jordan) IP algebraic curvature tensor if

(p,q) = (1,3) or (3,1). Consequently, there exists no rank 4 (Jordan) IP Lorentzian

manifolds.

Proof. Since we can replace the metric g by −g and reverse the roles of p and q,

we may only consider the case (p,q) = (1,3). Suppose there exists a rank 4 Jordan

IP tensor R on R1,3; we argue for a contradiction. Since R is an algebraic curvature

tensor, by the curvature symmetries (1.1), we have x6 +x12 −x10 = R1234 +R2314 +
R3124 = 0. Since R is Jordan IP, the characteristic polynomial of R(·) is invariant for the

spacelike 2-planes Span{e1,e2}, Span{e1,e3}, and Span{e2,e3}. We apply Lemma 2.1

and (2.3) to the 1-parameter families R(e1,cosθe2+ sinθe3), R(cosθe1+ sinθe3,e2),
and R(cosθe1+sinθe2,e3) to see for any θ ∈ [0,2π],

σR(e1,e2) = σR(e1,e3) = σR(e2,e3) = σR(e1,cosθe2+sinθe3)

= σR(cosθe1+sinθe3,e2) = σR(cosθe1+sinθe2,e3),

δR(e1,e2) = δR(e1,e3) = δR(e2,e3) = δR(e1,cosθe2+sinθe3)

= δR(cosθe1+sinθe3,e2) = δR(cosθe1+sinθe2,e3).

(3.3)

Thus we have

0= x2
1−x2

3+x2
4−x2

5−x2
6−x2

7+x2
8−x2

9+x2
10+x2

11,

0= x2
1+x2

2−x2
3−x2

5−x2
6−x2

9+x2
12−x2

13+x2
14+x2

15,

0= x1x6−x2x5+x3x4−x2x11−x8x9+x7x10,

0= x1x6−x2x5+x3x4−x4x15−x12x13+x9x14,

0= x1x2+x2x7−x3x8+x4x9−x5x10−x6x11,

0= x1x4+x2x9−x3x12+x4x13−x5x14−x6x15,
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0= x2x4+x7x9−x8x12+x9x13−x10x14−x11x15,

0= x1x11+x2x6+x3x9+x4x8−x2x10−x5x7,

0= x1x15+x4x6+x3x13+x4x12−x2x14−x5x9,

0= x2x15+x4x11+x8x13+x9x12−x7x14−x9x10,

0= x6−x10+x12.

(3.4)

The rank 4 condition further implies that

δR(e1,e2) = x1x6−x2x5+x3x4 ≠ 0,

δR(e1,e3) = x2x11−x7x10+x8x9 ≠ 0,

δR(e2,e3) = x4x15−x9x14+x12x13 ≠ 0.

(3.5)

We use the computer algebra system Maple to solve the system of equations (3.4)

subject to the rank conditions (3.5) to see that the only possible real solutions are

parameterized by two free variables x10 and x13 as follows:

x1 = x7 =−2x13, x6 =−x10, x12 = 2x10, x2
5 = x2

11 = 3x2
10+3x2

13,

x2 = x3 = x4 = x8 = x9 = x14 = x15 = 0.
(3.6)

Thus we have

R
(
e1,e2

)=




0 −2x13 0 0

2x13 0 0 x5

0 0 0 −x10

0 x5 −x10 0


 ,

R
(
e1,e3

)=




0 0 −2x13 0

0 0 0 x10

2x13 0 0 x11

0 x10 x11 0


 ,

R
(
e2,e3

)=




0 0 0 2x10

0 0 x13 0

0 −x13 0 0

2x10 0 0 0


 ,

R
(
e1,e4

)=




0 0 0 y1

0 0 2x10 y2

0 −2x10 0 y3

y1 y2 y3 0


 ,

R
(
e2,e4

)=




0 x5 x10 y2

−x5 0 0 y4

−x10 0 0 y5

y2 y4 y5 0


 ,
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R
(
e3,e4

)=




0 −x10 x11 y3

x10 0 0 y5

−x11 0 0 y6

y3 y5 y6 0


 .

(3.7)

Since R is Jordan IP, the characteristic polynomial of R(·) is also invariant for the

mixed 2-planes Span{e1,e4}, Span{e2,e4}, and Span{e3,e4}. We use (3.6), Corollary 2.2,

and the above six matrices to produce the following system of equations:

0=y2
1 +y2

3 −y2
4 −y2

5 +3x2
13,

0=y2
1 +y2

2 −y2
5 −y2

6 +3x2
13,

0= 2x10y1−x5y5+x10y4,

0= 2x10y1+x10y6+x11y5,

0= x2
5−3x2

10−3x2
13,

0= x2
11−3x2

10−3x2
13,

0=y1y2+y2y4+y3y5,

0=y1y3+y2y5+y3y6,

0=−x5x10+x10x11−y2y3−y4y5−y5y6,

0=−x5x10+x10x11−y2y3−y4y5−y5y6,

0= x5y3+x10y2,

0= x10y3−x11y2,

0= x5y6−2x10y5−x11y4.

(3.8)

We again use the computer algebra system MAPLE to solve the system of equations

(3.8) subject to the rank conditions (3.5) and

2x10y1 ≠ 0, x5y5−x10y4 ≠ 0, x10y6+x11y5 ≠ 0 (3.9)

to see the only possible real solutions are given by

y4 =y6 =−2y1, where y2
1 = x2

13, y2 =y3 =y5 = 0,

x5 = x11, x2
5 = 3x2

10+3x2
13.

(3.10)

For any t ∈ R,
√

2e1 + (sinht)e3 + (cosht)e4 and (1/
√

2)e2 + (cosht/
√

2)e3 +
(sinht/

√
2)e4 are orthogonal unit spacelike vectors in R1,3. So for the spacelike 2-

planes π(t) := Span{√2e1 + (sinht)e3 + (cosht)e4,(1/
√

2)e2 + (cosht/
√

2)e3 +
(sinht/

√
2)e4}, we have

R
(
π(t)

)=




0 α(t) β(t) µ(t)
−α(t) 0 ν(t) φ(t)
−β(t) −ν(t) 0 ψ(t)
ν(t) φ(t) ψ(t) 0


 , (3.11)
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where α(t) = (1/√2)x10−2x13− (cosht/
√

2)x5, β(t) = −(1/√2)x5− (2cosht)x13−
(cosht/

√
2)x10, µ(t)=(sinht)y1−(

√
2sinht)x10, ν(t)=(2sinht)x10−(sinht/

√
2)x13,

φ(t) = x5+(cosht)x10+(
√

2cosht)y1, and ψ(t) = −x10+
√

2y1+(cosht)x5. Conse-

quently, from (2.3) we have

δR(π(t)) = 3√
2
x2

10−x10y1+x10x13− 3√
2
x13y1+ 1√

2
x2

5+
(
2
√

2cosht
)
x5x10

− 1√
2

(
cosh2 t

)
x2

5+
(
3cosh2 t

)
x10x13+ 3√

2

(
cosh2 t

)
x13y1

− 3√
2

(
cosh2 t

)
x2

10+
(
3cosh2 t

)
x10y1,

(3.12)

which is independent of t. Thus (∂r /∂tr )δR(π(t)) ≡ 0 for all t ∈ R and all r ∈ N.

However, by a direct calculation, we have

∂3

∂t3
δR(π(t)) = (sinht)

(
6x10y1+6x10x13+3

√
2x13y1−3

√
2x2

10−
√

2x2
5

)
. (3.13)

Since x2
5 = 3x2

10 + 3x2
13, the identity 0 ≡ (∂3/∂t3)δR(π(t)) holds if and only if x10 =√

2x13. Since (∂2/∂t2)δR(π(t)) = 2
√

2x5x10+ (cosht)(6x10y1+6x10x13+3
√

2x13y1−
3
√

2x2
10−

√
2x2

5) and since x10 =
√

2x13, the identity 0≡ (∂2/∂t2)δR(π(t)) holds if and

only if x10 = x13 = 0. This contradicts the rank conditions (3.5), hence completes the

proof of Theorem 3.1.

References

[1] P. B. Gilkey, Riemannian manifolds whose skew-symmetric curvature operator has constant
eigenvalues. II, Differential Geometry and Applications (Brno, 1998) (Ivan Kolár et
al., eds.), Masaryk University, Brno, 1999, pp. 73–87.

[2] , Geometric Properties of Natural Operators Defined by the Riemann Curvature Ten-
sor, World Scientific Publishing, New Jersey, 2001.

[3] P. B. Gilkey, J. V. Leahy, and H. Sadofsky, Riemannian manifolds whose skew-symmetric
curvature operator has constant eigenvalues, Indiana Univ. Math. J. 48 (1999), no. 2,
615–634.

[4] P. B. Gilkey and T. Zhang, Algebraic curvature tensors for indefinite metrics whose skew-
symmetric curvature operator has constant Jordan normal form, Houston J. Math.
28 (2002), no. 2, 311–328.

[5] , Algebraic curvature tensors whose skew-symmetric curvature operator has con-
stant rank 2, Period. Math. Hungar. 44 (2002), no. 1, 7–26.

[6] S. Ivanov and I. Petrova, Riemannian manifold in which the skew-symmetric curvature
operator has pointwise constant eigenvalues, Geom. Dedicata 70 (1998), no. 3, 269–
282.

[7] O. Kowalski, M. Sekizawa, and Z. Vlášek, Can tangent sphere bundles over Riemannian
manifolds have strictly positive sectional curvature? Global Differential Geometry:
The Mathematical Legacy of Alfred Gray (Bilbao, 2000), American Mathematical So-
ciety, Rhode Island, 2001, pp. 110–118.

[8] T. Zhang, Applications of algebraic topology in bounding the rank of the skew-symmetric
curvature operator, to appear in Topology Appl.



THE NONEXISTENCE OF RANK 4 IP TENSORS IN SIGNATURE (1,3) 269

[9] , Manifolds with indefinite metrics whose skew-symmetric curvature operator has
constant eigenvalues, Steps in Differential Geometry, Proceedings of the Colloquium
on Differential Geometry (Debrecen, 2000), Institute of Mathematics and Informat-
ics, Debrecen, 2001, pp. 401–407.

Kelly Jeanne Pearson: Department of Mathematics and Statistics, Murray State

University, Murray, KY 42071-0009, USA

E-mail address: kelly.pearson@murraystate.edu

Tan Zhang: Department of Mathematics and Statistics, Murray State University,

Murray, KY 42071-0009, USA

E-mail address: tan.zhang@murraystate.edu

mailto:kelly.pearson@murraystate.edu
mailto:tan.zhang@murraystate.edu

