WEAKLY COMPATIBLE MAPS IN 2-NON-ARCHIMEDEAN MENGER PM-SPACES

RENU CHUGH and SANJAY KUMAR

Received 19 March 2001

The aim of this paper is to introduce the concept of weakly compatible maps in 2-non-Archimedean Menger probabilistic metric (PM) spaces and to prove a theorem for these mappings without appeal to continuity. We also provide an application.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction. In 1999, Chugh and Sumitra [2] introduced the concept of 2-N.A. Menger PM-space as follows.

DEFINITION 1.1. Let *X* be any nonempty set and *L* the set of all left continuous distribution functions. An ordered pair (X, F) is said to be a 2-non-Archimedean probabilistic metric space (briefly 2-N.A. PM-space) if *F* is a mapping from $X \times X \times X$ into *L* satisfying the following conditions (where the value of *F* at $x, y, z \in X \times X \times X$ is represented by $F_{x,y,z}$ or F(x, y, z) for all $x, y, z \in X$):

(i) $F_{x,y,z}(t) = 1$ for all t > 0 if and only if at least two of the three points are equal,

(ii)
$$F_{X,Y,Z} = F_{X,Z,Y} = F_{Z,Y,X}$$
,

- (iii) $F_{x,y,z}(0) = 0$,
- (iv) if $F_{x,y,s}(t_1) = F_{x,s,z}(t_2) = F_{s,y,z}(t_3) = 1$, then $F_{x,y,z}(\max\{t_1, t_2, t_3\}) = 1$.

DEFINITION 1.2. A *t*-norm is a function $\Delta : [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ which is associative, commutative, nondecreasing in each coordinate and $\Delta(a,1,1) = a$ for every $a \in [0,1]$.

DEFINITION 1.3. A 2-N.A. Menger PM-space is an order triplet (X, F, Δ) where Δ is a *t*-norm and (X, F) is 2-N.A. PM-space satisfying the following condition:

(v) $F_{x,y,z}(\max\{t_1, t_2, t_3\}) \ge \Delta(F_{x,y,s}(t_1), F_{x,s,z}(t_2), F_{s,y,z}(t_3))$ for all $x, y, z, s \in X$ and $t_1, t_2, t_3 \ge 0$.

DEFINITION 1.4. Let (X, F, Δ) be a 2-N.A. Menger PM-space and Δ a continuous *t*-norm, then (X, F, Δ) is a Hausdorff in the topology induced by the family of neighbourhoods of *x*

$$\{U_{x}(\epsilon,\lambda,a_{1},a_{2},...,a_{n}), x, a_{i} \in X, \epsilon > 0, i = 1,2,...,n, n \in \mathbb{Z}^{+}\},$$
(1.1)

where \mathbb{Z}^+ is the set of all positive integers and

$$U_{x}(\epsilon,\lambda,a_{1},a_{2},\ldots,a_{n}) = \{ \mathcal{Y} \in X; F_{x,\mathcal{Y},a_{i}}(\epsilon) > 1-\lambda, 1 \le i \le n \}$$
$$= \bigcap_{i=1}^{n} \{ \mathcal{Y} \in X; F_{x,\mathcal{Y},a_{i}}(\epsilon) > 1-\lambda, 1 \le i \le n \}.$$
(1.2)

DEFINITION 1.5. A 2-N.A. Menger PM-space (X, F, Δ) is said to be of type $(C)_g$ if there exists a $g \in \Omega$ such that

$$g(F_{x,y,z}(t)) \le g(F_{x,y,a}(t)) + g(F_{x,a,z}(t)) + g(F_{a,y,z}(t))$$
(1.3)

for all $x, y, z, a \in X$ and $t \ge 0$, where $\Omega = \{g; g : [0,1] \rightarrow [0,\infty)\}$ is continuous, strictly decreasing, g(1) = 0 and $g(0) < \infty$.

DEFINITION 1.6. A 2-N.A. Menger PM-space (X, F, Δ) is said to be of type $(D)_g$ if there exists a $g \in \Omega$ such that

$$g(\Delta(t_1, t_2, t_3)) \le g(t_1) + g(t_2) + g(t_3) \quad \forall t_1, t_2, t_3 \in [0, 1].$$

$$(1.4)$$

DEFINITION 1.7. Let (X, F, Δ) be a 2-N.A. Menger PM-space where Δ is a continuous *t*-norm and $A, S : X \to X$ be mappings. The mappings *A* and *S* are said to be weakly compatible if they commute at the coincidence point, that is, the mappings *A* and *S* are weakly compatible if and only if Ax = Sx implies ASx = SAx.

REMARK 1.8. (1) If 2-N.A. PM-space (X, F, Δ) is of type $(D)_g$, then (X, F, Δ) is of type $(C)_g$.

(2) If (X, F, Δ) is a 2-N.A. PM-space and $\Delta \ge \Delta_m$, where $\Delta_m(r, s, t) = \max\{r + s + t - 1, 0, 0\}$, then (X, F, Δ) is of type $(D)_g$ for $g \in \Omega$ defined by g(t) = 1 - t.

Throughout this paper, let (X, F, Δ) be a complete 2-N.A. Menger PM-space of type $(D)_g$ with a continuous strictly increasing *t*-norm Δ .

Let $\phi : [0, \infty) \to [0, \infty)$ be a function satisfying the condition (Φ) :

(Φ) ϕ is upper semi-continuous from right and $\phi(t) < t$ for all t > 0.

LEMMA 1.9 (see [1]). If a function $\phi : [0, \infty) \to [0, \infty)$ satisfies the condition (Φ) , then (1) for all $t \ge 0$, $\lim_{n\to\infty} \phi^n(t) = 0$ where $\phi^n(t)$ is the nth iteration of $\phi(t)$;

(2) if $\{t_n\}$ is a nondecreasing sequence of real numbers and $t_{n+1} \leq \phi(t_n)$, n = 1, 2, ..., then $\lim_{n \to \infty} t_n = 0$. In particular, if $t \leq \phi(t)$ for all $t \geq 0$, then t = 0.

LEMMA 1.10 (see [1]). Let $\{y_n\}$ be a sequence in X such that $\lim_{n\to\infty} F_{y_n,y_{n+1},a}(t) = 1$ for all t > 0. If the sequence $\{y_n\}$ is not Cauchy sequence in X, then there exist $\epsilon_0 > 0$, $t_0 > 0$, and two sequences $\{m_i\}$ and $\{n_i\}$ of positive integers such that

(i) $m_i > n_i + 1$ and $n_i \to \infty$ as $i \to \infty$,

(ii) $F_{\mathcal{Y}_{m_i},\mathcal{Y}_{n_i},a}(t_0) < 1 - \epsilon_0 \text{ and } F_{\mathcal{Y}_{m_i}-1,\mathcal{Y}_{n_i},a}(t_0) > 1 - \epsilon_0, i = 1, 2, \dots$

Chugh and Sumitra [2] proved the following theorem.

THEOREM 1.11. Let A, B, S, $T : X \to X$ be mappings satisfying the following conditions:

(i) $A(X) \subset T(X)$ and $B(X) \subset S(X)$;

- (ii) the pairs A, S and B, T are weak compatible of type (A);
- (iii) *S* and *T* are continuous;

(iv) for all $a \in X$ and t > 0,

$$g(F_{Ax,By,a}(t)) \leq \phi \bigg(\max \bigg\{ g(F_{Sx,Ty,a}(t)), g(F_{Sx,Ax,a}(t)), g(F_{Ty,By,a}(t)), \\ \frac{1}{2} \big(g(F_{Sx,By,a}(t)) + g(F_{Ty,Ax,a}(t)) \big) \bigg\} \bigg),$$
(1.5)

where a function $\phi : [0, \infty) \to [0, \infty)$ satisfies the condition (Φ).

Then A, B, S, and T have a unique common fixed points in X.

Now we prove the following theorem.

THEOREM 1.12. Let A, B, S, $T: X \rightarrow X$ be mappings satisfying

$$A(X) \subset T(X), \qquad B(X) \subset S(X), \tag{1.6}$$

the pairs A, S and B, T are weakly compatible, (1.7)

$$g(F_{Ax,By,a}(t)) \leq \phi\left(\max\left\{g(F_{Sx,Ty,a}(t)), g(F_{Sx,Ax,a}(t)), g(F_{Ty,By,a}(t)), \\ \frac{1}{2}(g(F_{Sx,By,a}(t)) + g(F_{Ty,Ax,a}(t)))\right\}\right)$$
(1.8)

for all t > 0, $a \in X$ where a function $\phi : [0, \infty) \to (0, \infty)$ satisfies the condition (Φ) . Then *A*, *B*, *S*, and *T* have a unique common fixed point in *X*.

PROOF. By (1.6) since $A(X) \subset T(X)$, for any $x_0 \in X$, there exists a point $x_1 \in X$ such that $Ax_0 = Tx_1$. Since $B(X) \subset S(X)$, for this x_1 , we can choose a point $x_2 \in X$ such that $Bx_1 = Sx_2$ and so on, inductively, we can define a sequence $\{y_n\}$ in X such that

$$y_{2n} = Ax_{2n} = Tx_{2n+1}, \quad y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}, \quad \text{for } n = 0, 1, 2, \dots$$
 (1.9)

First we prove the following lemma.

LEMMA 1.13. Let A, B, S, T : $X \to X$ be mappings satisfying conditions (1.6) and (1.8), then the sequence $\{y_n\}$ defined by (1.9), such that $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all t > 0, $a \in X$, is a Cauchy sequence in X.

PROOF. Since $g \in \Omega$, it follows that $\lim_{n\to\infty} (F_{y_n,y_{n+1},a}(t)) = 0$ for all $a \in X$ and t > 0 if and only if $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all $a \in X$ and t > 0. By Lemma 1.10, if $\{y_n\}$ is not a Cauchy sequence in X, there exist $\epsilon_0 > 0$, $t_0 > 0$, and two sequences $\{m_i\}, \{n_i\}$ of positive integers such that

(A) $m_i > n_i + 1$ and $n_i \to \infty$ as $i \to \infty$,

(B) $g(F_{y_{m_i},y_{n_i},a}(t_0)) > g(1-\epsilon_0)$ and $g(F_{y_{m_i}-1,y_{n_i},a}(t_0)) \le g(1-\epsilon_0), i = 1, 2, ...$ Thus we have

$$g(1-\epsilon_{0}) < g(F_{\mathcal{Y}m_{i},\mathcal{Y}n_{i},a}(t_{0})) \leq g(F_{\mathcal{Y}m_{i},\mathcal{Y}n_{i},\mathcal{Y}m_{i}-1}(t_{0})) + g(F_{\mathcal{Y}m_{i},\mathcal{Y}m_{i}-1,a}(t_{0})) + g(F_{\mathcal{Y}m_{i}-1,\mathcal{Y}n_{i},a}(t_{0})) \leq g(F_{\mathcal{Y}m_{i},\mathcal{Y}m_{i}-1}(t_{0})) + g(F_{\mathcal{Y}m_{i},\mathcal{Y}m_{i}-1,a}(t_{0})) + g(1-\epsilon_{0}).$$

$$(1.10)$$

Letting $i \to \infty$ in (1.10), we have

$$\lim_{n \to \infty} g(F_{\mathcal{Y}_{m_i}, \mathcal{Y}_{n_i}, a}(t_0)) = g(1 - \epsilon_0).$$
(1.11)

369

On the other hand, we have

$$g(1-\epsilon_0) < g(F_{\mathcal{Y}_{m_i},\mathcal{Y}_{n_i},a}(t_0)) \le g(F_{\mathcal{Y}_{m_i},\mathcal{Y}_{n_i},y_{n_i+1}}(t_0)) + g(F_{\mathcal{Y}_{m_i},\mathcal{Y}_{n_i}+1,a}(t_0)) + g(F_{\mathcal{Y}_{n_i}+1,\mathcal{Y}_{n_i},a}(t_0)).$$
(1.12)

Now, consider $g(F_{ym_i,yn_i+1,a}(t_0))$ in (1.12), without loss of generality, assume that both n_i and m_i are even.

Then by (1.8), we have

$$g(F_{y_{m_{i}},y_{n_{i}}+1,a}(t_{0})) = g(F_{Axm_{i},Bxn_{i}+1,a}(t_{0}))$$

$$\leq \phi \left(\max \left\{ g(F_{Sxm_{i},Txn_{i}+1,a}(t_{0})), g(F_{Txn_{i}+1,Bxn_{i}+1,a}(t_{0})), g(F_{Sxm_{i},Axm_{i},a}(t_{0})), g(F_{Txn_{i}+1,Bxn_{i}+1,a}(t_{0})), \frac{1}{2}(g(F_{Sxm_{i},Bxn_{i}+1,a}(t_{0})) + g(F_{Txn_{i}+1,Axm_{i}+1,a}(t_{0}))) \right\} \right)$$

$$= \phi \left(\max \left\{ g(F_{y_{m_{i}},-1,y_{n_{i}},a}(t_{0})), g(F_{y_{n_{i}},y_{n_{i}}+1,a}(t_{0})), \frac{1}{2}(g(F_{y_{m_{i}},-1,y_{n_{i}},a}(t_{0})), g(F_{y_{n_{i}},y_{n_{i}},a}(t_{0})), \frac{1}{2}(g(F_{y_{m_{i}},-1,y_{n_{i}}+1,a}(t_{0})) + g(F_{y_{n_{i}},y_{m_{i}},a}(t_{0}))) \right\} \right).$$
(1.13)

By (1.11), (1.12), and (1.13), letting $i \to \infty$ in (1.13), we have

$$g(1-\epsilon_0) \le \phi(\max\{g(1-\epsilon_0), 0, 0, g(1-\epsilon_0)\}) = \phi(g(1-\epsilon_0)) < g(1-\epsilon_0)$$
(1.14)

which is a contradiction. Therefore, $\{y_n\}$ is a Cauchy sequence in *X*.

Now, we are ready to prove our main theorem.

If we prove $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all $a \in X$ and t > 0, then by Lemma 1.13, the sequence $\{y_n\}$ defined by (1.9) is a Cauchy sequence in *X*. First we prove that $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all $a \in X$ and t > 0. In fact, by (1.8) and (1.9), we have

$$\begin{split} g(F_{y_{2n},Y_{2n+1},a}(t)) &= g(F_{Ax_{2n},Bx_{2n+1},a}(t)) \\ &\leq \phi \Big(\max \left\{ g(F_{Sx_{2n},Tx_{2n+1},a}(t)), \\ g(F_{Sx_{2n},Ax_{2n},a}(t)), g(F_{Tx_{2n+1},Bx_{2n+1},a}(t)), \\ &\frac{1}{2} (g(F_{Sx_{2n},Bx_{2n+1},a}(t)) + g(F_{Tx_{2n+1},Ax_{2n},a}(t))) \right\} \Big) \\ &= \phi \Big(\max \left\{ g(F_{y_{2n-1},y_{2n},a}(t)), g(F_{y_{2n-1},y_{2n},a}(t)), \\ g(F_{y_{2n},y_{2n+1},a}(t)), \frac{1}{2} (g(F_{y_{2n-1},y_{2n+1},a}(t)) + g(1)) \right\} \Big) \\ &\leq \phi \Big(\max \left\{ g(F_{y_{2n-1},y_{2n},a}(t)), g(F_{y_{2n},y_{2n+1},a}(t)) + g(1)) \right\} \Big) \\ &\leq \phi \Big(\max \left\{ g(F_{y_{2n-1},y_{2n},a}(t)), g(F_{y_{2n},y_{2n+1},a}(t)), \\ &\frac{1}{2} (g(F_{y_{2n-1},y_{2n},a}(t)) + g(F_{y_{2n},y_{2n+1},a}(t))) \right\} \Big). \end{split}$$

$$(1.15)$$

370

If $g(F_{y_{2n-1},y_{2n},a}(t)) \le g(F_{y_{2n},y_{2n+1},a}(t))$ for all t > 0, then by (1.8),

$$g(F_{y_{2n},y_{2n+1},a}(t)) \le \phi(g(F_{y_{2n},y_{2n+1},a}(t)))$$
(1.16)

and thus, by Lemma 1.9, $g(F_{y_{2n},y_{2n+1},a}(t)) = 0$ for all $a \in X$ and t > 0. Similarly, we have $g(F_{y_{2n+1}, y_{2n+2}, a}(t)) = 0$, thus we have $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all $a \in X$ and t > 0. On the other hand, if $g(F_{y_{2n-1},y_{2n},a}(t)) \ge g(F_{y_{2n},y_{2n+1},a}(t))$, then by (1.8), we have

$$g(F_{y_{2n},y_{2n+1},a}(t)) \le \phi(g(F_{y_{2n-1},y_{2n},a}(t))) \quad \forall a \in X, \ t > 0.$$
(1.17)

Similarly, $g(F_{y_{2n+1},y_{2n+2},a}(t)) \leq \phi(g(F_{y_{2n},y_{2n+1},a}(t)))$ for all $a \in X$ and t > 0. Thus we have $g(F_{y_n,y_{n+1},a}(t)) \leq \phi(g(F_{y_{n-1},y_{n},a}(t)))$ for all $a \in X$ and t > 0 and n = 1,2,3,..., therefore by Lemma 1.9, $\lim_{n\to\infty} g(F_{y_n,y_{n+1},a}(t)) = 0$ for all $a \in X$ and t > 0, which implies that $\{y_n\}$ is a Cauchy sequence in X by Lemma 1.13. Since (X,F,Δ) is complete, the sequence $\{y_n\}$ converges to a point $z \in X$ and so the subsequences $\{Ax_{2n}\}$, $\{Bx_{2n+1}\}$, $\{Sx_{2n}\}$, $\{Tx_{2n+1}\}$ of $\{y_n\}$ also converge to the limit z. Since $B(X) \subset S(X)$, there exists a point $u \in X$ such that z = Su.

Now

$$g(F_{Au,z,a}(t)) \le g(F_{Au,Bx_{2n+1},Z}(t)) + g(F_{Bx_{2n+1},z,a}(t)) + g(F_{Au,Bx_{2n+1},a}(t)).$$
(1.18)

From (1.8), we have

$$g(F_{Au,Bx_{2n+1},a}(t)) \leq \phi \bigg(\max \bigg\{ g(F_{Su,Tx_{2n+1},a}(t)), g(F_{Su,Au,a}(t)), g(F_{Tx_{2n+1},Bx_{2n+1},a}(t)), \frac{1}{2} \big(g(F_{Su,Bx_{2n+1},a}(t)) + g(F_{Tx_{2n+1},Au,a}(t)) \big) \bigg\} \bigg).$$

$$(1.19)$$

From (1.18) and (1.19), letting $n \rightarrow \infty$, we have

$$g(F_{Au,z,a}(t)) \leq \phi \left(\max \left\{ g(F_{Su,z,a}(t)), g(F_{Su,Au,a}(t)), g(F_{z,z,a}(t)), \frac{1}{2} (g(F_{Su,z,a}(t)) + g(F_{z,Au,a}(t))) \right\} \right)$$
(1.20)
= $\phi (g(F_{z,Au,a}(t))) \quad \forall a \in X, \ t > 0,$

which means z = Au = Su. Since $A(X) \subset T(X)$, there exists a point $v \in X$ such that z = Tv. Then, again using (1.8), we have

$$g(F_{z,Bv,a}(t)) = g(F_{Au,Bv,a}(t))$$

$$\leq \phi \left(\max \left\{ g(F_{Su,Tv,a}(t)), g(F_{Su,Au,a}(t)), g(F_{Tv,Bv,a}(t)), \frac{1}{2} (g(F_{Su,Bv,a}(t)) + g(F_{Tv,Au,a}(t))) \right\} \right)$$

$$= \phi (g(Fz,Bv,a(t))), \quad \forall a \in X, t > 0,$$

$$(1.21)$$

which implies that Bv = z = Tv.

Since pairs of maps *A* and *S* are weakly compatible, then ASu = SAu, that is, Az = Sz. Now we show that *z* is a fixed point of *A*. If $Az \neq z$, then by (1.8),

$$g(F_{Az,z,a}(t)) = g(F_{Az,Bv,a}(t))$$

$$\leq \phi \left(\max \left\{ g(F_{Sz,Tv,a}(t)), g(F_{Sz,Az,a}(t)), g(F_{Tv,Bv,a}(t)), \frac{1}{2} (g(F_{Sz,Bv,a}(t)) + g(F_{Tv,Az,a}(t))) \right\} \right)$$

$$= \phi \left(\max \left\{ g(F_{Az,z,a}(t)) \right\} \right), \quad \text{implies } Az = z.$$
(1.22)

Similarly, pairs of maps *B* and *T* are weakly compatible, we have Bz = Tz. Therefore,

$$g(F_{Az,z,a}(t)) = g(F_{Az,Bz,a}(t))$$

$$\leq \phi \left(\max \left\{ g(F_{Sz,Tz,a}(t)), g(F_{Sz,Az,a}(t)), g(F_{Tz,Bz,a}(t)), \\ \frac{1}{2} (g(F_{Sz,Bz,a}(t)) + g(F_{Tz,Az,a}(t))) \right\} \right)$$

$$= \phi \left(\max \left\{ g(F_{z,Tz,a}(t)) \right\} \right).$$
(1.23)

Thus we have Bz = Tz = z.

Therefore, Az = Bz = Sz = Tz and z is a common fixed point of A, B, S, and T. The uniqueness follows from (1.8).

2. Application

THEOREM 2.1. Let (X, F, Δ) be a complete 2-N.A. Menger PM-space and A, B, S, and T be the mappings from the product $X \times X$ to X such that

$$A(X \times \{y\}) \subseteq T(X \times \{y\}), \qquad B(X \times \{y\}) \subseteq (X \times \{y\}), g(F_{A(T(x,y),y),T(A(x,y),y),a}(t)) \leq g(F_{A(x,y),T(x,y),a}(t)), g(F_{B(S(x,y),y),S(B(x,y),y),a}(t)) \leq g(F_{B(x,y),S(x,y),a}(t))$$
(2.1)

for all $a \in X$ and t > 0 and

$$g(F_{A(x,y),B(x',y'),a}(t)) \leq \phi\left(\max\left\{g(F_{S(x,y),T(x',y'),a}(t)),g(F_{S(x,y),A(x,y),a}(t)),g(F_{T(x',y'),B(x',y'),a}(t)), (2.2)\right\}\right)$$

$$\frac{1}{2}\left(g(F_{S(x,y),B(x',y'),a}(t)) + g(F_{T(x',y'),A(x,y),a}(t))\right)\right\}$$

for all $a \in X$, t > 0, and x, y, x', y' in X, then there exists only one point b in X such that

$$A(b, y) = S(b, y) = B(b, y) = T(b, y) \quad \forall y \text{ in } X.$$
(2.3)

PROOF. By (2.2),

$$g(F_{A(x,y),B(x',y')}(t)) \leq \phi\left(\max\left\{g(F_{S(x,y),T(x',y'),a}(t)),g(F_{S(x,y),A(x,y),a}(t)),g(F_{T(x',y'),B(x',y'),a}(t)), \left(2.4\right)\right. \\ \left.\frac{1}{2}\left(g(F_{S(x,y),B(x',y'),a(t)})+g(F_{T(x',y'),A(x,y),a}(t))\right)\right\}\right)$$

372

for all $a \in X$ and t > 0; therefore by Theorem 1.12, for each y in X, there exists only one x(y) in X such that

$$A(x(y), y) = S(x(y), y) = B(x(y), y) = T(x(y), y) = x(y)$$
(2.5)

for every y, y' in X,

$$g(F_{x(y),x(y'),a}(t)) = g(F_{A(x(y),y),A(x(y'),y'),a}(t))$$

$$\leq \phi \left(\max \left\{ g(F_{A(x,y),A(x',y'),a}(t)), g(F_{A(x,y),A(x,y),a}(t)), g(F_{T(x',y'),A(x',y'),a}(t)), (2.6) \right.$$

$$\left. \frac{1}{2} \left(g(F_{A(x,y),A(x',y'),a}(t)) + g(F_{A(x',y'),A(x,y),a}(t)) \right) \right\} \right)$$

$$= g(F_{x(y),x(y'),a}(t)).$$

This implies x(y) = x(y') and hence x(y) is some constant $b \in X$ so that

$$A(b, y) = b = T(b, y) = S(b, y) = B(b, y) \quad \forall y \text{ in } X.$$
(2.7)

References

- Y. J. Cho, K. S. Ha, and S. S. Chang, *Common fixed point theorems for compatible mappings* of type (A) in non-Archimedean Menger PM-spaces, Math. Japon. 46 (1997), no. 1, 169–179.
- [2] R. Chugh and Sumitra, Common fixed point theorems in 2 non-Archimedean Menger PMspace, Int. J. Math. Math. Sci. 26 (2001), no. 8, 475-483.

Renu Chugh: Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India

SANJAY KUMAR: DEPARTMENT OF MATHEMATICS, MAHARSHI DAYANAND UNIVERSITY, ROHTAK-124001, INDIA

E-mail address: prajapatiji@sify.com