SUBMODULES OF SECONDARY MODULES

SHAHABADDIN EBRAHIMI ATANI

Received 31 July 2001 and in revised form 25 January 2002

Abstract

Let R be a commutative ring with nonzero identity. Our objective is to investigate representable modules and to examine in particular when submodules of such modules are representable. Moreover, we establish a connection between the secondary modules and the pure-injective, the Σ-pure-injective, and the prime modules.

2000 Mathematics Subject Classification: 13F05.

1. Introduction. In this paper, all rings are commutative rings with identity and all modules are unital. The notion of associated prime ideals and the related one of primary decomposition are classical. In a dual way, we define the attached prime ideals and the secondary representation. This theory is developed in the appendix to Section 6 in Matsumura [6] and in Macdonald [5]. Now we define the concepts that we will need.

Let R be a ring and let $0 \neq M$ be an R-module. Then M is called a secondary module (second module) provided that for every element r of R the homothety $M \xrightarrow{r \cdot} M$ is either surjective or nilpotent (either surjective or zero). This implies that nilrad $(M)=$ $P\left(\operatorname{Ann}(M)=P^{\prime}\right)$ is a prime ideal of R, and M is said to be P-secondary (P^{\prime}-second), so every second module is secondary (the concept of second module is introduced by Yassemi [14]). A secondary representation for an R-module M is an expression for M as a finite sum of secondary modules (see [5]). If such a representation exists, we will say that M is representable.

If R is a ring and N is a submodule of an R-module M, the ideal $\{r \in R: r M \subseteq N\}$ will be denoted by $(N: M)$. Then $(0: M)$ is the annihilator of M, $\operatorname{Ann}(M)$. A proper submodule N of a module M over a ring R is said to be prime submodule (primary submodule) if for each $r \in R$ the homothety $M / N \xrightarrow{r} M / N$ is either injective or zero (either injective or nilpotent), so $(0: M / N)=P\left(\operatorname{nilrad}(M / N)=P^{\prime}\right)$ is a prime ideal of R, and N is said to be P-prime submodule (P^{\prime}-primary submodule). So N is prime in M if and only if whenever $r m \in N$, for some $r \in R, m \in M$, then $m \in N$ or $r M \subseteq N$. We say that M is a prime module (primary module) if zero submodule of M is prime (primary) submodule of M, so N is a prime submodule of M if and only if M / N is a prime module. Moreover, every prime module is primary.

Let R be a ring, and let N be an R-submodule of M. Then N is pure in M if for any finite system of equations over N which is solvable in M, the system is also solvable in N. A module is said to be absolutely pure if every embedding of it into any other modules is pure embedding. A submodule N of an R-module M is called relatively divisible (or an RD-submodule) if $r N=N \cap r M$ for all $r \in R$. Every RD-submodule of a P-secondary module over a commutative ring R is P-secondary (see [2, Lemma 2.1]).

A module M is pure-injective if and only if any system of equations in M which is finitely solvable in M, has a global solution in M [7, Theorem 2.8]. The module N is a pure-essential extension of M if M is pure in N and for all nonzero submodules L of N, if $M \cap L=0$, then $(M \oplus L) / L$ is not pure in N / L. A pure-injective hull $H(M)$ of a module M is a pure essential extension of M which is pure-injective. Every module M has a pure-injective hull which is unique to isomorphism over M [12].

Given an R-module M and index set I, the direct sum of the family $\left\{M_{i}: i \in I\right\}$ where $M_{i}=M$ for each $i \in I$ will be denoted by $M^{(I)}$. Given a module property \mathscr{P}, we will say that a module M is $\sum-\mathscr{P}$ if $M^{(I)}$ satisfies \mathscr{P} for every index set I.
Let R be a commutative ring. An element $a \in R$ is said to be regular if there exists $b \in R$ such that $a=a^{2} b$, and R is said to be regular if each of its elements is regular. An important property of regular rings is that every module is absolutely pure (see [13, Theorem 37.6]).

Let R be a ring and M an R-module. A prime ideal P of R is called an associated prime ideal of M if P is the annihilator $\operatorname{Ann}(x)$ of some $x \in M$. The set of associated primes of M is written $\operatorname{Ass}(M)$. For undefined terms, we refer to $[6,7]$.
2. Secondary submodules. In general, a nonzero submodule of a representable (even secondary) R-module is not representable (secondary), but we have the following results.

Lemma 2.1. Let R be a commutative ring and let $0 \neq N$ be an RD-submodule of R-module M. Then M is P-secondary if and only if N and M / N are P-secondary.

Proof. If M is P-secondary, then N and M / N are P-secondary by [2, Lemma 2.1] and [5, Theorem 2.4], respectively. Conversely, suppose that $r \in R$. If $r \in P$, then $r^{n}(M / N)=0$ and $r^{n} N=0$ for some n, hence $r^{n} M \subseteq N$ and $0=r^{n} N=r^{n} M \cap N=$ $r^{n} M$. If $r \notin P$, then $r M+N=M, r N=N$, and $N=r N=r M \cap N$, so we have $r M=M$, as required.

Corollary 2.2. Let R be a commutative regular ring, and let $0 \neq N$ be a submodule of R-module M. Then M is P-secondary if and only if N and M / N are P-secondary.

Proof. This follows from Lemma 2.1.
Theorem 2.3. Let R be a commutative regular ring. Then every nonzero submodule of a representable R-module is representable.

Proof. Let M be a representable R-module and let $M=\sum_{i=1}^{n} M_{i}$ be a minimal secondary representation with $\operatorname{nilrad}\left(M_{i}\right)=P_{i}$. There is an element $r_{1} \in P_{1}$ such that $r_{1} \notin \cup_{i=2}^{n} P_{i}$. Otherwise $P_{1} \subseteq \cup_{i=2}^{n} P_{i}$, so by [10, Theorem 3.61], $P_{1} \subseteq P_{j}$ for some j, and hence $P_{1}=P_{j}$, a contradiction. Thus there exists a positive integer m_{1} such that $r_{1}^{m_{1}} \in \operatorname{Ann}\left(M_{1}\right)$ and the module $r_{1}^{m_{1}} M=\sum_{i=2}^{n} r_{1}^{m_{1}} M_{i}$ is representable. By using this process for the ideals P_{2}, \ldots, P_{n-1}, there are integers m_{2}, \ldots, m_{n-1} and elements $r_{2} \in P_{2}, \ldots, r_{n-1} \in P_{n-1}$ such that $s_{n} M=M_{n}$, where $0 \neq s_{n}=r_{1}^{m_{1}} r_{2}^{m_{2}} \cdots r_{n-1}^{m_{n-1}}, s_{n} \in$ $\cap_{i=1}^{n-1} P_{i}$ and $s_{n} \notin P_{n}$. Therefore by a similar argument, there are elements s_{1}, \ldots, s_{n-1}
such that $M=\sum_{i=1}^{n} s_{i} M$, where for each i, where $i=1, \ldots, n, s_{i} \notin P_{i}, s_{i} M=M_{i}$, and $s_{i} \in \cap_{i=1}^{n}{ }_{i \neq j} \operatorname{Ann}\left(M_{j}\right)$.

Let N be a nonzero submodule of M and $0 \neq a \in N$. Then $a=s_{1} b_{1}+\cdots+s_{n} b_{n}$ for some $b_{i} \in M, i=1, \ldots, n$. By assumption, there exists $t_{1}, \ldots, t_{n} \in R$ such that for each $i, s_{i}=s_{i}^{2} t_{i}$. As $0 \neq a, s_{i} b_{i} \neq 0$ for some i and $s_{i} t_{i} a=s_{i}^{2} t_{i} b_{i}=s_{i} b_{i}$, so $s_{i} N \neq 0$. We can assume that $s_{i_{1}} N \neq 0, \ldots, s_{i_{k}} N \neq 0$, where $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$. By a similar argument as above, if $a \in N$, then $a=\sum_{j=1}^{k} s_{i_{j}} t_{i_{j}} a \in \sum_{j=1}^{k} s_{i_{j}} N$, and hence $N=\sum_{j=1}^{k} s_{i_{j}} N$. Since for each j, where $j=1, \ldots, k, s_{i_{j}} N$ is pure in the $P_{i_{j}}$-secondary module $M_{i_{j}}$, it is $P_{i_{j}}$-secondary by [2, Lemma 2.1], as required.

THEOREM 2.4. Let R be a commutative ring and let N be a prime submodule of secondary R-module of M. Then N is $(N: M)$-secondary.

Proof. Suppose that M is a P-secondary module over R. Let $r \in R$. If $r \in P$, then $r^{n} N \subseteq r^{n} M=0$ for some n. If $r \notin P$, then $r M=M$. Suppose that $n \in N$, so there is an element $m \in M$ such that $n=r m$. As N is a prime submodule of M and $N \neq r M=M$, $m \in N$, so $r N=N$, hence N is P-secondary.

By [4, Lemma 1], the ideal $P^{\prime}=(N: M)=\{r \in R: r M \subseteq N\}$ is prime. Clearly, $P^{\prime} \subseteq P$. Let $s \in P$. Then $s^{n} N=s^{n} M=0$ for some n. There is an element $m \in M$ such that $m \notin N$ and $s^{n} m=0 \in N$, so $s^{n} \in P^{\prime}$, hence $s \in P^{\prime}$. Thus $P=P^{\prime}$, as required.

Proposition 2.5. Let R be a commutative ring and let N be a prime submodule of P-second R-module of M. Then N is an RD-submodule of M.

Proof. Let $r \in R$. If $r \in P$, then $r N \subseteq r M=0$, so $r N=N \cap r M=0$. If $r \notin P$, then $r M=M$, so the homothety $M / N \xrightarrow{r} M / N$ is not zero since N is prime. It follows that the above homothety is injective. If $a \in N \cap r M$, then there is $b \in M$ such that $a=r b$. Since $r(b+N)=0$, so $b \in N$, hence $r N=N \cap r M$, as required.

THEOREM 2.6. Let M be a P-second module over a commutative ring R, and let N be a prime submodule of M. Then every submodule of M properly containing N is an RD-submodule. In particular, it is P-second.

Proof. Let K be a submodule of M properly containing N. Then K / N is a prime submodule of prime and P-second module M / N, so by Proposition $2.5, K / N$ is an RDsubmodule of M / N. Now the assertion follows from [3, Consequences 18-2.2(c)] and Proposition 2.5.

LEMMA 2.7. Let M be a nonzero module over a commutative domain R. Then M is (0)-second if and only if M is (0)-secondary.

Proof. The proof is completely straightforward.
By [3, Proposition 11-3.11] and [11, Proposition 12, page 506] (see also [14]), and the definitions of secondary and primary modules, we obtain the following corollary.

COROLLARY 2.8. Let R be a commutative ring.
(i) Every Artinian primary module over R is secondary.
(ii) Every Noetherian secondary module over R is primary.
(iii) Every finitely generated secondary module is primary.

Lemma 2.9. Let R be a commutative ring. Let K and N be submodules of an R-module M such that N is prime and K is P-secondary. Then $N \cap K$ is P-secondary.

Proof. Let $r \in R$. If $r \in P$, then $r^{n}(N \cap K) \subseteq r^{n} K=0$ for some n. Suppose $r \notin P$ and $t \in N \cap K$. Then $t=r s$ for some $s \in K$ since $K P$-secondary. As N is prime, we have $s \in N$, and hence $t \in r(N \cap K)$. This gives, $N \cap K=r(N \cap K)$.

Theorem 2.10. Let M be a representable module over a commutative ring R, and let N be a prime submodule of M with $(N: M)=P$. Then the following hold:
(i) N is representable;
(ii) M / N is P-secondary.

Proof. (i) Let M be a representable R-module and let $M=\sum_{i=1}^{m} M_{i}$ be a minimal secondary representation with $\operatorname{nilrad}\left(M_{i}\right)=P_{i}$. For each $i, i=1,2, \ldots, m$, let $m_{i} \in M_{i}$ and $r_{i} \in P_{i}$. Then $r_{i}^{n_{i}} m_{i}=0$ for some n_{i}, and we have $\left(r_{i}^{n_{i}}+P\right)\left(m_{i}+M_{i}\right)=0$ and hence either $P_{i} \subseteq P$ or $M_{i} \subseteq N(i=1,2, \ldots, m)$. It follows that $M_{i} \nsubseteq N$ for some i (otherwise $M=N$). If $M_{i} \nsubseteq N$ and $M_{j} \nsubseteq N$ for $i \neq j$, then $P=P_{i}=P_{j}$, a contradiction (for if $t \in P-P_{i}$ then $M_{i}=t M_{i} \subseteq t M \subseteq N$). Therefore, without loss of generality, we can assume that $M_{1} \nsubseteq N$ and $M_{i} \subseteq N$, so $P_{1}=P$ and $P_{i} \nsubseteq P(i=2,3, \ldots, m)$. Then $M_{2}+M_{3}+\cdots+M_{m} \subseteq N$ and

$$
\begin{equation*}
N=N \cap M=N \cap\left(M_{1}+\cdots+M_{m}\right)=M_{2}+\cdots+M_{m}+\left(N \cap M_{1}\right) . \tag{2.1}
\end{equation*}
$$

Now the assertion follows from Lemma 2.9.
(ii) Since $M=M_{1}+N$, we have $M / N=\left(M_{1}+N\right) / N \cong M_{1} /\left(M_{1} \cap N\right)$, as required.

Proposition 2.11. Let R be a Dedekind domain, and let M be a $0 \neq P$-secondary R-module. Then M is a P-primary module.

Proof. Let $r \in R$. If $r \in P$, then the homothety $M \xrightarrow{r-} M$ is nilpotent since M is secondary. Suppose that $r \notin P$. If $r a=0$ for some $0 \neq a \in M$, then by [6, Theorem 6.1], there exists $0 \neq b \in M$ and $Q \in \operatorname{Ass}(M)$ such that $r \in Q$ and $Q=\left(0:_{R} b\right)$. As $(0: M) \subseteq(0: b)=Q$, we have $P=Q$, a contradiction. So the homothety $M \xrightarrow{r-} M$ is injective, as required.

Remarks. (i) Let R be a domain which is not a field. Then R is a prime R-module (since R is torsion-free) but it is not secondary (even it is not pure-injective).
(ii) Let R be a local Dedekind domain with maximal ideal $P=R p$. We show that the module $E(R / P)$ is not prime (but it is (0)-secondary). Set $E=E(R / P)$ and $A_{n}=\left(0:_{E}\right.$ $\left.P^{n}\right)(n \geq 1)$. Then by [2, Lemma 2.6], $P A_{n+1}=A_{n}, A_{n} \subseteq E$ is a cyclic R-module with $A_{n}=R a_{n}$ such that $p a_{n+1}=a_{n}$, every nonzero proper submodule L of E is of the form $L=A_{m}$ for some m and E is Artinian module with a strictly increasing sequence of submodules

$$
\begin{equation*}
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset A_{n+1} \subset \cdots . \tag{2.2}
\end{equation*}
$$

We claim that $\left(A_{n}:_{R} E\right)=0$ for every n. Suppose that $r \in\left(A_{n}:_{R} E\right)$ with $r \neq 0$. Then $r E \subseteq A_{n}$ and for all $a \in M$, we have $a=r b$ for some $b \in M$ since E is injective (= divisible). Thus $a=r b \in A_{n}$, so $E=A_{n}$, a contradiction. Therefore ($A_{n}:_{R} E$) $=0$ for
every integer $n \geq 1$. However no A_{n} is a prime submodule of E, for if m is any positive integer, then $p^{m} \notin\left(A_{n}:_{R} E\right)=0$ and $a_{n+m} \notin A_{n}$, but $p^{m} a_{m+n}=a_{n} \in A_{n}$.

THEOREM 2.12. Let R be a Dedekind domain, and let M be an R-module. Then M is $0 \neq P$-second if and only if M is P-prime.

Proof. By Proposition 2.11, it is enough to show that if M is P-prime, then M is P-second. Since $(0: M)=P$ is a maximal ideal in R, so M is a vector space over R / P, hence M is P-second.

Proposition 2.13. Let R be a Dedekind domain. Then any $0 \neq P$-prime R-module is a direct sum of copies of $R_{P} / P R_{P} \cong R / P$.

Proof. By the proof of Proposition 2.11, every element of $R-P$ acts invertibly on M, so the R-module structure of M extends naturally to a structure of M as a module over the localisation R_{P} of R at P. Therefore, we can assume that R is a commutative local Dedekind domain with maximal ideal $P=R p$. Let M_{j} denote the indecomposable summand of M, so M_{j} is P-prime. Let m_{j} be a nonzero element of M_{j}, hence $\left(0: m_{j}\right)=$ $(0: M)=P$. Then $R m_{j} \cong R / P$ is pure in M_{j} since m_{j} is not divisible by p in M_{j}, but by [1, Proposition 1.3], the module R / P is itself pure-injective, so $R m_{j}$ is a direct summand of M_{j}, and hence $M_{j} \cong R m_{j}$, as required.

3. Pure-injective modules

Proposition 3.1. Let M be a P-secondary module over a commutative ring R. Then $H=H(M)$, the pure-injective hull, is P-secondary.

Proof. Let $r \in R$. If $r \notin P$, then $r M=M$, so M satisfies the sentence for all x there exists $y(x=r y)$, and hence so does H (because any module and its pure-injective hull satisfy the same sentences [7, Chapter 4]). If $r \in R$, then $r^{n} M=0$, so M satisfies the sentence for all $x\left(r^{n} x=0\right)$, hence so does in H, as required.

THEOREM 3.2. The following conditions are equivalent for a Prufer domain R :
(i) the ring R is a Dedekind domain;
(ii) every secondary R-module is pure-injective.

Proof. Let R be a Dedekind domain and M a secondary R-module. If $\operatorname{Ann}(M)=0$, then M is divisible, hence injective. If $\operatorname{Ann}(M) \neq 0$, then M is a torsion R-module of bounded order, so that M is Σ-pure-injective (see [15]). In both cases, M is Σ-pureinjective (so pure-injective).

Conversely, let R be a Prufer domain with the property that every secondary module is pure-injective. In order to prove that R is Dedekind domain, it suffices to show that every divisible R-module is injective. Let M be a divisible R-module. Then M is secondary, Hence pure-injective. Since R is Prufer, pure-injective modules are RDinjective (see [7]). The embedding of M in its injective envelope $E(M)$ is an RD-pure monomorphism, because for every nonzero $r \in R$ we have that $M=r M$, so that $r E(M) \cap M \subseteq M \subseteq r M$. Since M is the RD-injective, M is a direct summand of $E(M)$. Thus M is injective. This shows that R is a Dedekind domain.

Remarks. (i) There is a module over a commutative regular ring which is injective but not secondary (see [9, Theorem 2.3]). The commutative regular ring $R=F \times F$, F a field, is an Artinian Gorenstein, that is, R is injective (so pure-injective) as an R module. But R is not secondary, because multiplication by $(1,0)$ is neither nilpotent nor surjective.
(ii) The above consideration thus leads us to the following question: are secondary modules pure-injective? The answer is yes because of the following reason. Every non-Noetherian Prufer domain has secondary modules that are not pure-injective. For instance, every non-Noetherian valuation domain has secondary modules that are not pure-injective.

Proposition 3.3. Let M be an R-module.
(i) M is \sum-secondary if and only if M is secondary.
(ii) Let M be a direct sum of modules $M_{i}(i \in I)$ where for each i, M_{i} is secondary and $\operatorname{Ann}\left(M_{i}\right)=\operatorname{Ann}\left(M_{j}\right)$ for all $i, j \in I$. Then M is secondary.

Proof. (i) The necessity is immediate by the definition. Conversely, suppose that M is P-secondary. Given an index set J, and let $r \in R$. If $r \in P$, then $r^{n} M=0$ for some n, so $r^{n} M^{(J)}=0$. If $r \notin P$ then $r M=M$, so $r M^{(J)}=M^{(J)}$, as required.
(ii) Since the annihilators of all direct summands coincide, we can assume that M_{i} is P-secondary (say) for all $i \in I$. Now the proof of (ii) is similar to that (i) and we omit it.

Corollary 3.4. Let M be an indecomposable Σ-pure-injective module over a commutative Prufer ring R. Then M is secondary.

Proof. Set $P=\left\{r \in R: \operatorname{Ann}_{M} r \neq 0\right\}$ and $P^{\prime}=\cap_{n} P^{n}$. Then P and P^{\prime} are prime ideals in R by [8, Fact 3.1 and Lemma 2.1]. By [8, Fact 3.2], M is either P-secondary or P^{\prime}-secondary, as required.

Corollary 3.5. Every Σ-pure-injective module over a Prufer ring is representable.
Proof. Suppose M is a Σ-pure-injective module over a commutative Prufer ring R. By [8, page 967], we can write $M=M_{1} \oplus \cdots \oplus M_{m}$ where M_{i} is secondary for all i by Proposition 3.3 and Corollary 3.4, as required.

Acknowledgment. The author thanks the referee for useful comments.

References

[1] S. E. Atani, On pure-injective modules over pullback rings, Comm. Algebra 28 (2000), no. 9, 4037-4069.
[2] , On secondary modules over Dedekind domains, Southeast Asian Bull. Math. 25 (2001), no. 1, 1-6.
[3] J. Dauns, Modules and Rings, Cambridge University Press, Cambridge, 1994.
[4] S. M. George, R. L. McCasland, and P. F. Smith, A principal ideal theorem analogue for modules over commutative rings, Comm. Algebra 22 (1994), no. 6, 2083-2099.
[5] I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. 11 (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press, London, 1973, pp. 23-43.
[6] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986.
[7] M. Prest, Model Theory and Modules, London Mathematical Society Lecture Note Series, vol. 130, Cambridge University Press, Cambridge, 1988.
[8] M. Prest and G. Puninski, Σ-pure-injective modules over a commutative Prüfer ring, Comm. Algebra 27 (1999), no. 2, 961-971.
[9] R. Y. Sharp, Secondary representations for injective modules over commutative Noetherian rings, Proc. Edinburgh Math. Soc. (2) 20 (1976), no. 2, 143-151.
[10] Steps in Commutative Algebra, London Mathematical Society Student Texts, vol. 19, Cambridge University Press, Cambridge, 1990.
[11] W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512.
[12] R. B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
[13] R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, vol. 3, Gordon and Breach Science Publishers, Pennsylvania, 1991.
[14] S. Yassemi, The dual notion of prime submodules, to appear in Arch. Math.
[15] W. Zimmermann, Rein injektive direkte Summen von Moduln, Comm. Algebra 5 (1977), no. 10, 1083-1117 (German).

Shahabaddin Ebrahimi Atani: Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran

E-mail address: ebrahimi@cd.gu.ac.ir

