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Let ρ(x) = x− [x], χ = χ(0,1), λ(x) = χ(x) logx, and M(x) = ∑k≤x µ(k), where µ is the
Möbius function. Norms are in Lp(0,∞), 1 < p < ∞. For M1(θ) = M(1/θ) it is noted
that ζ(s) ≠ 0 in �s > 1/p is equivalent to ‖M1‖r < ∞ for all r ∈ (1,p). The space �
is the linear space generated by the functions x� ρ(θ/x) with θ ∈ (0,1]. Define Gn(x)=∫ 1
1/nM1(θ)ρ(θ/x)θ−1dθ. For all p ∈ (1,∞) we prove the two arithmetical versions of the

Nyman-Beurling theorem: (I) ‖M1‖p <∞ implies λ∈�
Lp , and λ∈�

Lp implies ‖M1‖r <∞
for all r ∈ (1,p). (II) ‖Gn−λ‖p → 0 implies ζ(s)≠ 0 in�s ≥ 1/p, and ζ(s)≠ 0 in�s > 1/p
implies ‖Gn−λ‖r → 0 for all r ∈ (1,p).
2000 Mathematics Subject Classification: 11Mxx.

1. Introduction

1.1. Preliminaries and notation. For everyp ∈ [1,∞]we canonically imbed Lp(0,1)
in Lp(0,∞). The conjugate index is always denoted by q := p/(p− 1). Let ρ(x) :=
x−[x] stand throughout for the fractional part of the real number x, and χ := χ(0,1]
is the characteristic function of the set (0,1]. We define the function λ by

λ(x) := χ(x) logx. (1.1)

For every a> 0 the operator Ka given by

Kaf(x) := f(ax), (1.2)

acts continuously on every Lp(0,∞) to itself, for 1≤ p <∞.

� is the vector space of functions f of the form

f(x)=
n∑
k=1

ckρ
(
θk
x

)
, (1.3)

with n ∈ N, ck ∈ C, θk > 0, 1 ≤ k ≤ n. For E ⊆ (0,∞), denote by �E the subspace of

� where the θk ∈ E. In particular we let � = �(0,1]. � is the subspace of � resulting

from requiring that
n∑
k=1

ckθk = 0. (1.4)

Clearly,

�⊂�⊂�⊂ Lp(0,∞) for 1<p ≤∞. (1.5)
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Note that functions in � vanish in (1,∞), so �⊂ Lp(0,1) for 1≤ p ≤∞. � is invariant

under any Ka, a> 0, while � and � are invariant under Ka for a≥ 1.

Recall the usual arithmetical functions M and g given by

M(x)=
∑
k≤x

µ(k), (1.6)

g(x) :=
∑
k≤x

µ(k)
k
, (1.7)

where µ is the Möbius function. We will denote

M1(θ) :=M
(

1
θ

)
. (1.8)

It is classical number theory that both M(x)x−1 → 0 and g(x) → 0 as x → ∞ are

elementarily equivalent to the prime number theorem. A stronger, but still elemen-

tary, estimate is M(x)
 x(logx)−2. (Heretofore elementary is to be understood in

the traditional number theoretical sense, as no analytic function theory, no Fourier

analysis.)

We also define the less common γ and Hp by

γ(x) :=
∑

k≤x−1

M(k)
k(k+1)

, (1.9)

Hp(x)=
∫ x

1
M(t)t−2/p dt. (1.10)

Summing (1.7) by parts we get

g(n)= M(n)
n

+γ(n), (n∈N), (1.11)

and trivially from |M(x)| ≤ x

g(x)= M(x)
x

+γ(x)+O
(

1
x

)
, (x ∈R). (1.12)

1.2. The weak Nyman-Beurling theorem. An easy consequence of Wiener’s L2

Tauberian theorem (cf. [19]) is that � is dense in L2(0,∞) (see [3]). Nyman [17] for

L2 and Beurling [9] for general Lp obtained the much deeper result.

Theorem 1.1 (Nyman-Beurling). The Riemann zeta-function is free from zeroes in

the half-plane σ > 1/p, 1<p <∞, if and only if � is dense in the space Lp(0,1), which

is equivalent to −χ ∈�
Lp .

To prove this theorem, Beurling first noted that � is dense in Lp if and only if

−χ ∈ �
Lp , then showed, quite simply, that −χ ∈ �

Lp implies ζ(s) ≠ 0 for �s > 1/p.

The proof of the converse, which, in his own words, is less trivial, is by contradiction.

If −χ �∈ �
Lp , then � is not dense in the space Lp(0,1). But this, by a highly involved

functional analysis argument, implies the existence of a zero with real part greater

than 1/p. Later proofs of this fact are illuminating, but just as difficult (see [7, 8, 11]).
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The degree to which the apparent depth of the two sides of the proof is so starkly

contrasting has led some authors to doubt the usefulness of the Nyman-Beurling ap-

proach (see, e.g., [15]), yet, it has led others to attempt to level off the two sides of the

proof.

We say that φ is a generator if φ∈ Lp(0,∞) for all p ∈ (1,∞) and

Lp(0,1)⊆ spanLp
{
Kaφ

}
a≥1, (1<p <∞). (1.13)

These generators are called strong generators in [3], and the term generator is applied

whena is allowed to range in (0,∞) in (1.13).−χ is the simplest example of a generator

(the minus sign is immaterial, but more convenient). The function λ defined in (1.1) is

also a generator since

1
a−1

(
Ka−I

)
λ

Lp
������������������������������������������������������������������→ χ, (a ↓ 1), (1≤ p <∞). (1.14)

Clearly, any generator φ may well take the place of −χ in Theorem 1.1. These consid-

erations, together with the fact that

f(x)= 1
x

n∑
k=1

ckθk, (x > 1), (1.15)

for every f ∈� as in (1.3), allow the following minor extension of the Nyman-Beurling

theorem (Theorem 1.1), where reference to density of � or � is dropped.

Theorem 1.2. Let φ be a generator and p ∈ (1,∞). Then ζ(s)≠ 0 for �s > 1/p if

and only if φ∈�
Lp .

Obviously the above theorem implies the following weaker version.

Theorem 1.3 (weak Nyman-Beurling theorem). Letp ∈ (1,∞) andφ be a generator.

Then ζ(s)≠ 0 for �s > 1/p if and only if φ∈�
Lr for all r ∈ (1,p).

Direct proofs of this theorem for φ = −χ, not depending on deep functional anal-

ysis results, were achieved independently by Lee [14], and Balazard and Saias [6].

These proofs only make use of standard number theoretical techniques. Thus Lee,

perhaps not altogether inappropriately, calls the weak Nyman-Beurling theorem an

arithmetical version of Beurling’s theorem. The only if part of these proofs depends

on identifying natural approximations fn, which we define as sequences in � or �,

such that this weak implication holds for all p ∈ (1,∞):
(
ζ(s)≠ 0,

(
�s > 1

p

))
�⇒ (∥∥fn−φ∥∥r �→ 0, ∀r ∈ (1,p)). (1.16)

Balazard and Saias [6] asked the following natural question.

Question 1.4. For a given specific natural approximation {fn}, is it true for some

or all p ∈ (1,∞) that the weak implication (1.16) can be substituted for the strong

implication

(
ζ(s)≠ 0, (�s > 1/p)

)
�⇒ (∥∥fn−φ∥∥p �→ 0

)
? (1.17)
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We will answer this question, mostly in the negative, in Section 4. The first such natural

approximation {Bn} ⊂� appeared in [2] defined by

Bn(x) :=
n∑
k=1

µ(k)ρ
(

1
kx

)
−ng(n)ρ

(
1
nx

)
. (1.18)

This sequence arises rather naturally in more than one way: it is the unique answer to

the problem of finding f ∈ � as in (1.3) with θk = 1/k, and f(k/n) = −1 for 1 ≤ k ≤
n−1. Or it can also be seen as a truncation of the fundamental identity

−1=
∞∑
k=1

µ(k)ρ
(

1
kx

)
, (x > 0). (1.19)

It is easily seen that Bn(x)=−1 in [1/n,1], and using the prime number theorem [2,

Theorem 2.1] we proved that ∥∥χ+Bn∥∥1 �→ 0, (1.20)

which led us to ask whether the strong or the weak implications, (1.16), and (1.17),

were true for fn = Bn, 1 < p ≤ 2. A mild positive answer was [2, Proposition 2.4]

that ζ(s) has a nontrivial zero-free half-plane if and only if ‖χ+Bn‖p → 0 for some

p > 1, which conferred some legitimacy to the question. In related work Vasyunin [21],

referring to earlier results of Nikolski [16], took up the study of the L2 case in quite

some depth for a Bn-related sequence {Vn} ⊂� defined by

Vn(x) :=
n∑
k=1

µ(k)ρ
(

1
kx

)
−g(n)ρ

(
1
x

)
. (1.21)

Vasyunin also conducted numerical studies leading him to state (sic) we can hardly

hope that the series converges in the L2-norm. That this is indeed the case was first

proved in [3]. The sequence {Sn} ⊂� defined by

Sn(x) :=
n∑
k=1

µ(k)ρ
(

1
kx

)
, (1.22)

perhaps the most natural in view of (1.19), is obviously L2-equivalent to {Vn} since

g(n)→ 0. The relationship with Bn is more complicated, however, since by Corollary

2.5 below the Lp-norm of ng(n)ρ(1/nx) is of order |g(n)|n1/q which does not tend

to zero if ζ(s) has a zero with real part 1/p, such being the case, of course if p = 2.

Furthermore Bn is not a series, as defined in (4.24), while Vn is the most natural series.

Lee [14] proved Theorem 1.3 using Vn, 1<p ≤ 2, and, independently, Balazard and

Saias [6] did likewise for Bn and Sn, 1<p <∞.

A further approximating sequence {Fn} ⊂ � promoted in [2] as the dual approxi-

mation, given by

Fn(x) :=
n∑
k=1

(
M
(
n
k

)
−M

(
n
k+1

))
ρ
(
k
nx

)
−ρ

(
1
nx

)
, (1.23)

is of a different nature, as the θk are uniformly distributed in (0,1) as n → ∞. It

is proved in [2] that ‖Fn +χ‖1 → 0, and it can also be shown that Fn(x) → −1 for

0<x ≤ 1. The following question is however open.
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Question 1.5. Is Fn a natural approximation?

1.3. Description of main results. It is classical knowledge that the Riemann hy-

pothesis, an analytical statement about the location of the zeroes of the zeta func-

tion, is equivalent to purely arithmetical statements relative to the distribution of the

prime numbers. A classical example is Littlewood’s criterion: the Riemann hypothe-

sis is equivalent to M(x) = O(x1/2+ε) for all ε > 0. This criterion generalized to the

half-planes �s > 1/p leads to the following equivalence proved in Section 2.

Proposition 1.6. For any p ∈ (1,∞) the following are equivalent:

(i) ζ(s)≠ 0 for �s > 1/p;

(ii) ‖M1‖p <∞ for all r ∈ (1,p).
It is this condition (ii) on the Möbius function, which in effect, if not always in

name, takes the place of the Riemann hypothesis in this paper. This together with

their simple and quasi-elementary proofs given in Section 3 has led us to characterize

the following two theorems as arithmetical versions of the Nyman-Beurling theorem, in

contrast with which, furthermore, the proofs for both the if and the only if implications

are of nearly equivalent difficulty. These two theorems stand somewhere between the

strong Theorem 1.2 and the weak Theorem 1.3.

Theorem 1.7 (arithmetical Nyman-Beurling’s theorem I). The following statements

are true for all p ∈ (1,∞):
(a) ‖M1‖p <∞ implies λ∈�

Lp ;

(b) λ∈�
Lp implies ‖M1‖r <∞ for all r ∈ (1,p).

Next we introduce a new “natural approximation” Gn which will be seen to belong

in every �(1/n,1]
Lp , p ∈ (1,∞), defined by

Gn(x) :=
∫∞

1/n
M1(θ)ρ

(
θ
x

)
dθ
θ
. (1.24)

Gn arises very naturally from an integrated form of the basic identity for the Möbius

numbers which we will prove in Section 3, namely,

λ(x)=
∫ 1

0
M1(θ)ρ

(
θ
x

)
dθ
θ
. (1.25)

The above formula can be seen as a formal proof of the Riemann hypothesis since

the integral shows the generator λ as a limit of functions of �. Then our second main

result is the following theorem.

Theorem 1.8 (arithmetical Nyman-Beurling theorem II). The following statements

are true for all p ∈ (1,∞):
(c) ζ(s)≠ 0, �s > 1/p implies ‖Gn−λ‖r → 0 for all r ∈ (1,p);
(d) ‖Gn−λ‖p → 0 implies ζ(s)≠ 0, �s ≥ 1/p.

Finally, in Section 4, we explore the delicate gap between the weak and strong forms

of the Nyman-Beurling theorem. We will show that all the natural approximations

Bn, Vn, Sn, Fn, and Gn diverge in L2. We also study the general Lp case. The most
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interesting conclusion is this: if the Riemann hypothesis were not true, and 1/p =
sup{�s | ζ(s)= 0}, then Sn, Vn, and Gn would also diverge in Lp provided there is a

zero of real part 1/p. We have not decided the question for Bn and Fn.

2. Technical lemma and preliminary propositions. Throughout this section 1 <
p <∞. Some of the results herein may be part of the common folklore and/or stated

in less general form than is possible. They are listed here however for the sake of

completeness and readability. We thank A. M. Odlyzko for his generous help in these

matters.

2.1. Technical lemma. It is assumed that f is a locally bounded complex-valued

function defined on [1,∞), whose Mellin transform f̃ , defined here as

f̃ (s) :=
∫∞

1
f(x)x−s−1dx, (2.1)

has a finite abscissa of convergence α=αf .

Lemma 2.1 (order lemma). If f̃ (s) has a pole at s0 = σ0 + it0 in a meromorphic

extension to a possibly larger half-plane, then f(x)≠ o(xσ0).

Proof. This is just an adaptation of the proof of M(x) ≠ o(
√
x) in [20]. Assume

by contradiction that f(x)= o(xσ0). A fortiori f(x)=O(xσ0), so that the integral in

(2.1) would actually converge in �s > σ0. Now let s = σ +it0 with σ ↓ σ0. If m ≥ 1 is

the order of the pole, then we have

f̃
(
σ +it0

)∼ C(
σ −σ0

)m , (
σ �→ σ0

)
, (2.2)

for some C ≠ 0. On the other hand the little o condition implies there is an A> 1 such

that |f(x)| < (|C|/2)xσ0 for x > A, so that splitting the right-hand side integral in

(2.1) as
∫A
1 +

∫∞
A we obtain

∣∣∣f̃ (σ +it0)∣∣∣≤OA(1)+ |C|
2
(
σ −σ0

) , (2.3)

which contradicts (2.2).

Lemma 2.2 (oscillation lemma). Let f be real valued. If α = αf is not a singularity

of f̃ (s) then for any ε > 0

limsup
x→∞

f(x)x−α+ε =+∞, (2.4)

liminf
x→∞ f(x)x−α+ε =−∞. (2.5)

In particular, f(x) changes sign an infinite number of times as x→∞.

Proof. It is obviously enough to deal with only one of the above relations. So

assume that (2.5) is false. Then for some ε > 0 there is a C such that

Cxα−ε−f(x)≥ 0, (x > 1). (2.6)
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Therefore, ∫∞
1

(
Cxα−ε−f(x))x−s−1dx = B

s−α+ε − f̃ (s) (2.7)

is not singular at s = α, but clearly α is also the abscissa of convergence of the left-

hand side integral above, which contradicts the theorem that the Laplace transform

of a positive measure has a singularity on the real axis at the abscissa of convergence

[22, Theorem 5.b].

Lemma 2.3. Let F : [1,∞) → C be locally integrable. If
∫ x
1 F(t)dt ≠ o(x1/q), then

‖F‖p =∞.

Proof. It is obviously enough to consider that F ≥ 0. By hypothesis there exists

some ε > 0, and an unbounded set E ⊂ [1,∞) such that

∫ y
1
F(t)dt > εy1/q, (∀y ∈ E). (2.8)

Now take an arbitrary x > 1. It is easy to see that there exists y ∈ E such that y > x
and

2
∫ x

1
F(t)dt < εy1/q <

∫ y
1
F(t)dt, (2.9)

so that ∫ y
x
F(t)dt >

ε
2
y1/q. (2.10)

But Hölder’s inequality gives

∫ y
x
F(t)dt ≤ (y−x)1/q

(∫ y
x

(
F(t)

)p dt
)1/p

, (2.11)

which, introduced in (2.10), yields

∫ y
x

(
F(t)

)p dt > ε
2

(
y

y−x
)1/q

>
ε
2
. (2.12)

2.2. Some preliminary propositions

Proposition 2.4. The following Mellin transforms are valid at least in the half-

planes indicated:

∫∞
1
M(x)x−s−1dx = 1

sζ(s)
, (�s > 1), (2.13)

∫∞
1

(
xg(x)

)
x−s−1dx = 1

(s−1)ζ(s)
, (�s > 1), (2.14)

∫∞
1

(
xγ(x)

)
x−s−1dx = 1

s(s−1)ζ(s)
+ω(s), (�s > 1), (2.15)

∫∞
1
Hp(x)x−s−1dx = 1

s(s+2/p−1)ζ(s+2/p−1)
,
(
�s > 2

q

)
, (2.16)

where ω(s) is analytic in �s > 0.



394 LUIS BÁEZ-DUARTE

Proof. As in Titchmarsh’s monograph [20] we write for �s > 1

1
ζ(s)

=
∞∑
n=1

(
M(n)−M(n−1)

)
n−s

=
∞∑
n=1

M(n)
(
n−s−(n+1)−s

)

= s
∞∑
n=1

M(n)
∫ n+1

n
x−s−1dx

= s
∫∞

1
M(x)x−s−1dx.

(2.17)

This proves (2.13). Proceed likewise with

1
ζ(s)

=
∞∑
n=1

(
g(n)−g(n−1)

)
n−s+1, (�s > 1), (2.18)

to obtain (2.14). Now using relation (1.12) between M(x), g(x), and γ(x) subtract

the preceding two Mellin transforms to get (2.15). Finally, from definition (1.10) and

the trivial |M(x)| ≤ x we deduce Hp(x)
 x2/q. Next note that Hp is continuous and

piecewise differentiable, which justifies the following integration by parts at least for

�s > 2/q: ∫∞
1
Hp(x)x−s−1dx = 1

x

∫∞
1
M(x)x−s−2/p dx. (2.19)

Now apply (2.13) to arrive at (2.16).

The following corollary is an immediate consequence of the above Mellin trans-

forms, and the order and oscillation lemmas (Lemmas 2.1 and 2.2).

Corollary 2.5. Each one of the functions M(x), g(x), γ(x), Hp(x), change sign

infinitely often as x → ∞. Furthermore, if ζ(s) has some zero on the line �s = 1/p,

then M(x)≠ o(x1/p), g(x)≠ o(x−1/q), γ(x)≠ o(x−1/q), and Hp(x)≠ o(x1/q).

Remark 2.6. In particular, M(x)≠ o(
√
x) (see [20]). Sharper results are of course

known, for example, that the Mertens hypothesis is false, withM(x) oscillating beyond

±√x. This was proven by Odlyzko and te Riele [18].

Some further properties of γ(x) needed later are gathered here.

Lemma 2.7. The function γ satisfies:

(i) γ(n)→ 0 as n→∞,

(ii) γ(n)= ∫n1 M(t)t−2dt, (n∈N),
(iii)

∫∞
1 M1(θ)dθ =

∫∞
1 M(t)t−2dt = 0. This integral converges absolutely.

Remark 2.8. In [4] we showed that the existence of limn→∞γ(n) is elementarily

equivalent to the prime number theorem.

Proof of Lemma 2.7. The prime number theorem and (1.11) yield (i). Decompos-

ing the integral in (ii) in the intervals (k,k+ 1) one gets (ii). Letting n → ∞ in (ii)

yields (iii). The absolute convergence follows from the elementary estimate M(x)

x(logx)−2.
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The result on Hp(x) in Corollary 2.5 begets some important consequences for the

norms of M1.

Proposition 2.9. If ζ(s) has a zero on the line �s = 1/p, then

∥∥M1

∥∥
p =∞. (2.20)

Remark 2.10. Note therefore that

∥∥M1

∥∥
p <∞ implies

(
ζ(s)≠ 0 for �s ≥ 1/p

)
. (2.21)

Proof of Proposition 2.9. Take F(x) := M(x)x−2/p . Then F(x) ≠ o(x1/q) by

Corollary 2.5, so the divergent integral lemma (Lemma 2.3) yields

∥∥M1

∥∥p
p =

∫∞
1

∣∣M(x)∣∣px−2dx =∞. (2.22)

Remark 2.11. Since ζ(s) has roots in the critical line the above corollary tells us

that ∥∥M1

∥∥
2 =∞. (2.23)

Using far more refined techniques Konyagin and Popov [13] have shown a stronger

result in the case p = 2, namely

∫ x
1

∣∣M(t)∣∣2t−2dt� logx. (2.24)

Now we can prove Proposition 1.6 to the effect that ζ(s) ≠ 0 in �s > 1/p if and

only if ‖M1‖p <∞.

Proof of Proposition 1.6. An extension of Littlewood’s well-known criterion for

the Riemann hypothesis is that condition (i) is equivalent to

M(x)
 x1/p′ ∀p′ ∈ (1,p), (2.25)

(see [10, Proposition IV.21]), so choose p′ with r < p′ <p, and then it is obvious how

(i) implies (ii). Now we prove that not (i) implies not (ii). So assume there is an s0 with

�s0 = 1/p1 > 1/p and ζ(s0)= 0. Then by Proposition 2.9

∥∥M1

∥∥
p1
=∞, (2.26)

but (probability space) ‖M1‖p1 ≤ ‖M1‖r since p1 < r < p.

Define the Riemann abscissa β by

β := sup
ζ(s)=0

�s. (2.27)

Nothing is known beyond 1/2 ≤ β ≤ 1. We do know however that, on the one hand

there are no zeroes on the line �s = 1 and ‖M1‖1 <∞, since M(t)
 t(logt)−2, and,

on the other hand there are zeroes on the line �s = 1/2 and ‖M1‖2 = ∞. One could

rightly ask the following question.
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Question 2.12. For β∈ (1/2,1), is it true that ‖M1‖1/β <∞ if and only if ζ(s)≠ 0

for �s = β?

3. Arithmetical versions of the Nyman-Beurling theorem. We define an operator

T acting on all Lp(0,∞), p ∈ (1,∞), by

Tf(x) :=
∫∞

0
f(θ)ρ

(
θ
x

)
dθ
θ
, (3.1)

noting that the above integral converges absolutely for f ∈ Lp(0,∞) by Hölder’s in-

equality. Now we show that T is of type (p,p). This does not follow, as could be

expected, from the convolution form of the operator, on account of the difference

between the measures dx and dx/x in (0,∞).
Lemma 3.1. For every p ∈ (1,∞) the operator T is a continuous operator from

Lp(0,∞) to itself.

Proof. Let f ≥ 0 and x > 0, then splitting the range of integration at x in (3.1) we

get

Tf(x)≤ 1
x

∫ x
0
f(θ)dθ+

∫∞
x
f(θ)

dθ
θ
. (3.2)

The result now emerges from the well-known, elementary Hardy inequalities (see [12,

Theorems 327, 328]).

The next result establishes the relevance of T for the Nyman-Beurling approach.

Proposition 3.2. For any p ∈ (1,∞), and an interval E ⊆ (0,∞) the range of T
satisfies

TLp(E)
Lp =�E

Lp . (3.3)

Remark 3.3. For every f ∈ Lp(0,∞), Tf is continuous, so the closure operation on

the left-hand side above is necessary. However, for the purpose immediately at hand

of proving Theorem 1.7 we only need

TLp
(
(0,1]

)⊂�
Lp . (3.4)

Remark 3.4. If f ∈ Lp(0,1) for some p ∈ (1,∞) and

∫ 1

0
f(θ)dθ = 0, (3.5)

then Tf ∈�
Lp . This is the case for f =M1 by Lemma 2.7(iii).

Proof of Proposition 3.2. Fix p ∈ (1,∞). For any bounded interval [a,b]⊆ E

Tχ[a,b](x)=
∫ b
a
ρ
(
θ
x

)
dθ
θ

(3.6)

is a proper Riemann integral for each x > 0. Let θn,k := a+(b−a)(k/n), and

sn(x) := b−a
n

n∑
k=1

1
θn,k

ρ
(
θn,k
x

)
. (3.7)
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The Riemann sums sn(x)∈� and sn(x)→ Tχ[a,b](x) for each x > 0. Furthermore, it

is trivial to see that sn(x) ≤ (b−a)/a for all x > 0, whereas sn(x) = (b−a)/x when

x > b, so that

sn(x)≤ b−aa χ(0,b](x)+ b−ax χ(b,∞)(x). (3.8)

Hence ‖sn−Tχ[a,b]‖p → 0. By Proposition 3.2 we conclude

Tχ[a,b] ∈�E
Lp , (3.9)

which the time honored density argument and the continuity of T convert into (3.4),

and, a fortiori, TLp(E)
Lp ⊆ �E

Lp . To finish the proof of (3.1) we need to show that

each function ρ(α/x), α ∈ E is in TLp(E)
Lp

. This is achieved as follows: for α ≠ a
take 1>h ↓ 0. Clearly

1
max(α,x)

≥ 1
αh

∫ α
α(1−h)

ρ
(
θ
x

)
dθ
θ

�→ ρ
(
α
x

)
, (a.e. x). (3.10)

By (3.9) (αh)−1Tχ[α(1−h),α] ∈�E
Lp , and the above inequalities show it converges in Lp-

norm to the function ρ(α/x). If α= a the modification to the above proof is obvious.

We next introduce the essential, elementary identity.

Lemma 3.5. For every x > 0,

χ(1,∞)(x) logx =
∫ x

1
M(t)

[
x
t

]
dt
t
. (3.11)

Proof. Here we denote χ(S)= 1 if the statement S is true, otherwise χ(S)= 0. We

start from the well-known elementary identity

χ[1,∞)(t)=
∞∑
n=1

M
(
t
n

)
, (3.12)

which we multiply by 1/t and integrate, thus

χ[1,∞)(x) logx =
∫ x

0

∞∑
n=1

M
(
t
n

)
dt
t

=
∞∑
n=1

∫ x
0
M
(
t
n

)
dt
t

=
∞∑
n=1

∫ x/n
0

M(t)
dt
t

=
∫ x

0
M(t)

∞∑
n=1

χ
(
t ≤ x

n

)
dt
t

=
∫ x

0
M(t)

[
x
t

]
dt
t
.

(3.13)
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Proposition 3.6. For every x > 0, the following identity holds true as an absolutely

convergent integral, without any assumptions on the Lp-norms of M1:

λ(x)=
∫ 1

0
M1(θ)ρ

(
θ
x

)
dθ
θ
. (3.14)

Proof. The upper limit of integration in (3.11) can trivially be substituted by ∞,

so we get

χ(1,∞)(x) logx =
∫∞

1
M(t)

(
x
t
−ρ

(
x
t

))
dt
t

=−
∫∞

1
M(t)ρ

(
x
t

)
dt
t

(3.15)

from Lemma 2.7(iii), and the (absolute) convergence of the last integral, again due to

M(t) 
 t(logt)−2. Now make the change of variables t = 1/θ, and in the formula

obtained substitute x� 1/x.

Remark 3.7. In [4] we show that the existence of

lim
ε→0

∫ 1

ε
M1(θ)ρ

(
θ
x

)
dθ
θ

(3.16)

is elementarily equivalent to the prime number theorem.

3.1. The proofs of the main theorems. We now prove our first main result,

Theorem 1.7.

Proof. We prove statement (a): if ‖M1‖p <∞, then λ= TM1 ∈ TLp(0,1)⊂�(0,1)
Lp

= �
Lp by (3.14), Lemma 3.1, and (3.4). To prove (b), note that if λ ∈ �

Lp , then χ ∈
�
Lp as remarked in (1.14). Then by the easy sufficiency part of the Nyman-Beurling

theorem (Theorem 1.2) ζ(s)≠ 0 for�s > 1/p, and this implies by Proposition 1.6 that

‖M1‖r <∞ for all r ∈ (1,p).
Remark 3.8. The proof of (a) is elementary, and, interestingly, it corresponds to

the hard necessity part of the Nyman-Beurling theorem (Theorem 1.2). Note however

that the strong form of (a) is connected with the fact that the hypothesis implies by

(2.21) that there are no zeroes of ζ(s) in �s ≥ 1/p. On the other hand (b), a weak

statement, corresponding to the easy sufficiency part of the Nyman-Beurling theorem

(Theorem 1.2), is proved essentially by the traditional argument.

We now prove our second main result, Theorem 1.8.

Proof. It is easy to see from Proposition 3.2 that Gn ∈�(1/n,1]
p

for all p ∈ (1,∞).
Now let us prove statement (c). If ζ(s) ≠ 0 for �s > 1/p, then, by Proposition 1.6,

‖M1‖r < ∞ for all r ∈ (1,p). It is then clear that Gn = T(M1χ(1/n,1])
Lr�����������������������������→ λ by the

Lp-continuity of T (Lemma 3.1). To prove (d) we proceed by contradiction. Assume

there is s0 such that ζ(s0)= 0 and �s0 = 1/p1 ≥ 1/p. Therefore γ(n)≠ o(n−1/q1) by
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Corollary 2.5. Now by definition (1.24) of Gn and (ii) in Lemma 2.7 we have

∥∥Gn−λ∥∥pp =
∫∞

0

∣∣∣∣∣
∫ 1/n

0
M1(θ)ρ

(
θ
x

)
dθ
θ

∣∣∣∣∣
p

dx

≥
∫∞

1/n

∣∣∣∣∣
∫ 1/n

0
M1(θ)ρ

(
θ
x

)
dθ
θ

∣∣∣∣∣
p

dx

=
∫∞

1/n

∣∣∣∣∣ 1
x

∫ 1/n

0
M1(θ)dθ

∣∣∣∣∣
p

dx

= (p−1)−1
∣∣γ(n)∣∣pnp−1,

(3.17)

so that ∥∥Gn−λ∥∥p ≥ (p−1)−1/p∣∣γ(n)∣∣n1/q1 � 0. (3.18)

Remark 3.9. The proof of (c), a weak statement corresponding to the hard necessity

part of the Nyman-Beurling theorem (Theorem 1.2), is easy and quasi elementary.

On the other hand the proof of (d), a strong statement, corresponding to the easy

sufficiency part of the Nyman-Beurling theorem, is rather easy, but not elementary.

Remark 3.10. At least, formally we can apply the operators

�h := 1
h
(
K(1+h)−I

)
(3.19)

to (c), and let h ↓ 0 to obtain the corresponding Balazard-Saias result for Sn in [6]. The

difficulty in formalizing this argument stems from the fact that, for �h as an operator

from Lp to itself, ‖�h‖→∞ except when p = 1. A rigorous proof would be desirable.

3.2. Behavior of Gn in L1. Gn also behaves nicely pointwise and in L1, as the orig-

inal natural approximations. To see this we first need a lemma.

Lemma 3.11. For θ >n,

∫∞
n
ρ
(
x
θ

)
dx
x2

 logθ

θ
. (3.20)

Proof of the lemma. For θ >n, we have

∫∞
n
ρ
(
x
θ

)
dx
x2
= 1
θ

∫ θ
n

dx
x
+
∫∞
θ
ρ
(
x
θ

)
dx
x2

≤ logθ
θ
+ 1
θ
.

(3.21)

Proposition 3.12. Gn satisfies the properties

Gn(x)−λ(x) �→ 0, (∀x > 0),∫ 1

0

∣∣Gn(x)−λ(x)∣∣dx �→ 0.
(3.22)
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Proof. The first statement follows easily from the fact that the integral in (3.14) is

absolutely convergent. Changing variables in the first iterated integral below, we get

∥∥Gn−λ∥∥1 =
∫ 1

0

∣∣∣∣∣
∫ 1/n

0
M1(θ)ρ

(
θ
x

)
dθ
θ

∣∣∣∣∣dx =
∫∞

1

∣∣∣∣∣
∫∞
n
M(θ)ρ

(
x
θ

)
dθ
θ

∣∣∣∣∣dxx2
. (3.23)

Now we split the outer integral on the right-hand side as
∫n
1 +

∫∞
n . The first one easily

evaluates to |γ(n)| logn taking into account Lemma 2.7(ii) and (iii). This term con-

verges to zero in view of (1.11) and an elementary error term in the prime number

theorem. The second one is bounded by

∫∞
n

∫∞
n

∣∣M(θ)∣∣ρ(x
θ

)
dθ
θ
dx
x2
=
∫∞
n

∣∣M(θ)∣∣
θ

(∫∞
n
ρ
(
x
θ

)
dx
x2

)
dθ



∫∞
n

∣∣M(θ)∣∣ logθ
θ2

dθ



∫∞
n

dθ
θ log2θ

�→ 0, (n �→∞),

(3.24)

where we have applied in succession Fubini’s theorem, Lemma 3.11, and an elementary

error term for the prime number theorem of the form M(x)
 x(logx)−3.

4. On divergence of certain natural approximations. Throughout this section 1<
p <∞. All natural approximations considered converge both a.e. and in L1 either to

λ or to −χ, hence not converging in Lp to the corresponding generator is equivalent

to diverging in Lp .

4.1. Divergence of approximations to λ. The main result needs no proof as it is

just the counterpositive of statement (d) in Theorem 1.8, namely:

Proposition 4.1. If ζ(s) has a zero with real part ≥ 1/p, then Gn diverges in Lp .

In particular Gn diverges in L2.

Remark 4.2. This proposition shows that in general the weak implication, (c)

ζ(s) ≠ 0, �s > 1/p implies ‖Gn−λ‖r → 0 for all r ∈ (1,p) in Theorem 1.8 cannot

be made stronger to include r = p. The hypothesis of (c) can hold only if 1 ≤ p ≤ 2.

Although we resolved at the outset to keep 1 < p < ∞, our resolve is weak, so we

note that for p = 1 the strong version is true because of Proposition 3.12. For p = 2

the strong statement is definitely false for there are zeroes on �s = 1/2. In the case

1 < p < 2 a simple logical analysis shows that the only interesting case is β = 1/p.

Now, either there are roots on the line �s = β, then the strong statement is false; or

else, there are no roots on that line, then we can say nothing at present. This is related

to Question 2.12.

Remark 4.3. By Corollary 2.5 there is a subsequence of zero crossings of γ(n)
where clearly |γ(n)| < 1/n. For this subsequence the contradiction (3.18) would not

hold. Thus the possibility remains open that there is a subsequence of Gn that does

converge. This peculiarity is common to all natural approximations discussed here.

But there are reasons to believe this is may be a mirage.
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To probe a little into the possible mirage we now bring to bear the existence of an

isometry (it is actually a unitary operator, but that is not relevant here) of L2(0,∞)
denoted by U in [3] satisfying the following conditions, where we let ρ1(x)= ρ(1/x):

UKa =KaU, (a > 0), (4.1)

Uρ1(x)= ρ(x)x , (4.2)

Uχ(x)= sin(2πx)
πx

. (4.3)

For f ∈� as in (1.3),

Uf(x)= 1
x

n∑
k=1

ckθkρ
(
x
θk

)
. (4.4)

If we apply this to the Riemann sums of Tf , when f is continuous of compact support,

and make the obvious modifications to the reasoning in Lemma 3.1 and Proposition

3.2, we obtain the following lemma.

Lemma 4.4. For f ∈ L2(0,∞),

UTf(x)= 1
x

∫∞
0
f(θ)ρ

(
x
θ

)
dθ. (4.5)

Moreover, the right-hand side defines a continuous extension to all Lp(0,∞).
Remark 4.5. At present we will use this lemma only in L2. It is however inter-

esting to see how UT extends to all Lp ’s given the fact that U cannot be extended

continuously to any Lp other than for p = 2 (see [5]). When restricted to f ∈ L2(0,1)
the integral of the right-hand side of (4.5) is the Hilbert-Schmidt operator studied by

Alcántara-Bode in [1] where it is shown at the outset that the Riemann Hypothesis is

equivalent to the injectivity of this operator.

Lemma 4.4 leads to the simple calculation

UGn(x)=H2(n), for x ∈
(

0,
1
n

)
, (4.6)

which spells further trouble for the L2 convergence of subsequences of Gn.

Proposition 4.6. The divergence of Gn in L2 can be sharpened as follows:

∥∥λ−Gn∥∥2�max
(
n1/2γ(n), n1/2H2(n)

)
. (4.7)

Remark 4.7. Since there are roots of ζ(s) on �s = 1/2, neither n1/2γ(n) nor

n1/2H2(n) converge to zero by Corollary 2.5, and most likely they are unbounded

as n→∞. However, optimism about almost periodicity of these functions may induce

the idea that their zero crossings implied also by Corollary 2.5 will be close together

an infinite number of times.
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Proof of Proposition 4.6. That ‖λ−Gn‖2�n1/2γ(n) is simply (3.17) forp = 2.

For the second part we use (4.6),∥∥Gn−λ∥∥2
2 =

∥∥UGn−Uλ∥∥2
2

≥
∫ 1/n

0

∣∣UGn(x)−Uλ(x)∣∣2dx

≥
∫ 1/n

0

∣∣H2(n)−Uλ(x)
∣∣2dx

�n−1
∣∣H2(n)

∣∣.

(4.8)

A finer analysis of selected intervals in (1/n,∞) seems likely to produce an infinite

number of barriers increasing the lower bound in (4.8), so that one may be inclined to

think that all subsequences of Gn diverge in L2.

An even more natural looking approximation of λ is obtained by writing the simplest

Riemann sum of the integral (3.14), namely

Rn(x) :=
n−1∑
k=1

1
k
M
(
n
k

)
ρ
(
k
nx

)
, (4.9)

which happens to be a Beurling function in � with an uncanny resemblance to the

dual approximation Fn defined by (1.23). But bear in mind that the integral (3.14) is

not a proper Riemann integral, and we have not yet been able to show that Rn is a

natural approximation, in the sense that it satisfies a weak Beurling theorem such as

Theorem 1.8, so we state the following true theorem without proof.

Proposition 4.8. Rn diverges in L2.

Yet another approximation could be defined by truncation, say

T
(
min

(
n, max

(
M1,−n

)))
. (4.10)

We will not pursue this matter here either, but it seems to deserve some attention.

4.2. Divergence of approximations to −χ. We may treat Sn and Vn together, de-

fined in (1.22) and (1.21), since ‖Sn−Vn‖2 → 0. The following proposition is then the

corresponding divergence result for Sn.

Proposition 4.9. If there is some zero of ζ(s) with real part 1/p then Sn and Vn
diverge in Lp . In particular Sn and Vn diverge in L2.

Proof. The hypothesis on the zero of ζ(s) implies, by Corollary 2.5, that

g(n)≠ o
(
n−1/q). (4.11)

Now assume by contradiction that Sn converges in Lp , so it must converge to −χ. On

the other hand, noting that kx > 1 when x > 1/m and k >m, we get

∥∥Sn−Sm∥∥pp ≥
∫∞

1/m

∣∣∣∣∣∣
n∑

k=m+1

µ(k)ρ
(

1
kx

)∣∣∣∣∣∣
p

dx

= 1
p−1

mp−1
∣∣g(n)−g(m)∣∣p.

(4.12)
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Then letting n→∞ we obtain

∥∥χ+Sm∥∥pp ≥ 1
p−1

mp−1
∣∣g(m)∣∣p. (4.13)

Since the left-hand side goes to zero when m→∞ this contradicts (4.11).

Remark 4.10. Proposition 4.9 implies that in general the weak implication of

Balazard-Saias ((i) implies (vii) in [6], see also [14])

ζ(s)≠ 0, �s > 1/p implies
∥∥Sn+χ∥∥r �→ 0 ∀r ∈ (1,p) (4.14)

cannot be made stronger to include r = p. An analysis analogous to that carried out

for Gn in Remark 4.2 is also possible here. Mutatis mutandis the conclusions are the

same. But a cautionary note is in order. We have not been able to treat the Lp case for

Bn, other than for p = 1 or 2.

Remark 4.11. Again, the existence of a subsequence of zero crossings of g(n)
given by Corollary 2.5 indicates that this subsequence is still a candidate in the run-

ning to converge in Lp-norm to−χ. However as withGn we now prove a stricter failure

for Sn in the L2 case.

Proposition 4.12. There exists a constant C > 0 such that

∥∥χ+Sn∥∥2 ≥max

(
C√
n
∣∣M(n)+2

∣∣, ∣∣g(n)∣∣√n
)
. (4.15)

Proof. For p = 2, inequality (4.13) translates into

∥∥χ+Sn∥∥2 ≥
∣∣g(n)∣∣√n. (4.16)

On the other hand, if we apply U to Sn we get

USn(x)=M(n),
(

0<x <
1
n

)
. (4.17)

Hence ∥∥χ+Sn∥∥2
2 ≥

∫ 1/n

0

∣∣∣∣ 1
πx

sin(2πx)+M(n)
∣∣∣∣

2

dx, (4.18)

and ∥∥χ+Sn∥∥2 ≥ C
1√
n
∣∣M(n)+2

∣∣, (4.19)

for some positive constant C .

Odlyzko and te Riele [18] have conjectured that

limsup
n→∞

∣∣M(n)∣∣√
n

=∞, (4.20)

in which case Sn would not even be bounded in L2, endangering also the possibility

of a strong version of condition (vi) in Balazard-Saias’s work [6]. On the other hand,

by Corollary 2.5 there is a subsequence where M(n) = −2, and we know there is a
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subsequence where g(n) crosses zero, with g(n)≤ 1/n. Nevertheless, as for Gn, one

may suspect that there is no L2-convergent subsequence of Sn.

The initial natural approximation Bn is more resilient. We already remarked that it is

not equivalent to Sn, neither it is a series as defined in (4.24). The fact that Bn(x)=−1

in (1/n,1) destroys the possibility of using the same argument of Proposition 4.9.

However with the help of the operator U we can dispose of the L2-case both for Bn
and Fn.

Proposition 4.13. Neither Bn nor Fn converges in L2.

Proof. The U defining properties (4.1) and (4.2), as well as (1.11) give UBn(x) =
−nγ(n) in (0,1/n). Assume by contradiction that Bn converges in L2, then so does

UBn, and therefore

0←�
∫ 1/n

0

∣∣UBn(x)∣∣2dx =n∣∣γ(n)∣∣2, (4.21)

which contradicts Corollary 2.5. Likewise the wholly analogous computationUFn(x)=
M(n)−1 in (0,1/n) yields the divergence of Fn in L2.

Analogous considerations as for Sn apply in relation to the possibility of a subse-

quence of Bn or of Fn converging in L2.

To round off the presumption of divergence of the natural approximations in L2, we

prove Proposition 4.14, a result, suggested by M. Balazard (personal communication),

stating that no series of a certain kind in � can converge to −χ in L2.

Denote by �nat the subspace generated by the linearly independent functions {ek |
k≥ 2}, where

ek(x) := ρ
(

1
kx

)
− 1
k
ρ
(

1
x

)
. (4.22)

Note that

Vn =
n∑
k=2

µ(k)ek. (4.23)

A series in �nat is defined as any sequence of type

fn =
n∑
k=2

ckek, (n≥ 2). (4.24)

We can now state the following proposition.

Proposition 4.14. No series in �nat converges in Lp(0,1) to −χ if there is a zero

of ζ(s) with real part 1/p. In particular, no series in �nat converges to −χ in L2(0,1).

To achieve the proof of this theorem we need a lemma.

Lemma 4.15. Let fn be a sequence in �nat converging pointwise to −χ. Assume fn
is written as

fn(x)=
n∑
k=1

an,kρ
(

1
kx

)
, (4.25)
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then

an,j �→ µ(j), (n �→∞), (4.26)

for every j ≥ 1.

Proof. Each fn ∈�, so condition (1.4) implies that it is the right-continuous, step

function

fn(x)=−
n∑
k=1

an,k
[

1
kx

]
, (4.27)

which is constant on every interval

(
1
j+1

,
1
j

]
, j = 1,2, . . . . (4.28)

Therefore, pointwise convergence trivially implies

− lim
n→∞fn

(
1
j

)
= lim
n→∞

n∑
k=1

an,k
[
j
k

]
�→ 1, j = 1,2, . . . . (4.29)

Now we proceed by induction. For j = 1 it is clear that (4.29) gives an,1 → 1 = µ(1).
Next assume for j > 1 that an,k→ µ(k) for 1≤ k≤ j−1, then the limit in (4.29) yields

j−1∑
k=1

µ(j)
[
j
k

]
+an,j �→ 1. (4.30)

But comparing this to the well-known

j∑
k=1

µ(j)
[
j
k

]
= 1, (4.31)

we obtain the desired an,j → µ(j) as n→∞.

Remark 4.16. In some sense Lemma 4.15 shows the inevitability of the natural

approximation Sn.

Proof of Proposition 4.14. We have trivially

fn(x)=−

 n∑
k=2

ck
k


ρ( 1

x

)
+

n∑
k=2

ckρ
(

1
kx

)
. (4.32)

Assume by contradiction that ‖χ+ fn‖p → 0. For the step functions involved, this

clearly implies pointwise convergence, then, from Lemma 4.15, we get ck = µ(k) for

each k ≥ 2, which, by the way, forces (4.26) to hold for k = 1 too. But this immedi-

ately implies that fn = Vn. However, Vn diverges in Lp by Proposition 4.9, so we have

obtained a contradiction.
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406 LUIS BÁEZ-DUARTE

References

[1] J. Alcántara-Bode, An integral formulation of the Riemann hypothesis, Mathematisches
Institut der Universität Heidelberg, preprint, 1991.

[2] L. Báez-Duarte, On Beurling’s real variable reformulation of the Riemann hypothesis, Adv.
Math. 101 (1993), no. 1, 10–30.

[3] , A class of invariant unitary operators, Adv. Math. 144 (1999), no. 1, 1–12.
[4] , A Möbius convolution and some elementary equivalences with the prime number

theorem, preprint, 2000.
[5] , On the type set of the unitary operator U , preprint, 2000.
[6] M. Balazard and E. Saias, Notes sur la fonction ζ de Riemann. 1 [Notes on the Riemann

ζ-function. 1], Adv. Math. 139 (1998), no. 2, 310–321 (French).
[7] , The Nyman-Beurling equivalent form for the Riemann hypothesis, Exposition.

Math. 18 (2000), no. 2, 131–138.
[8] H. Bercovici and C. Foias, A real variable restatement of Riemann’s hypothesis, Israel J.

Math. 48 (1984), no. 1, 57–68.
[9] A. Beurling, A closure problem related to the Riemann zeta-function, Proc. Nat. Acad. Sci.

U.S.A. 41 (1955), 312–314.
[10] A. Blanchard, Initiation à la théorie analytique des nombres premiers, Travaux et

Recherches Mathématiques, vol. 19, Dunod, Paris, 1969 (French).
[11] W. F. Donoghue, Distributions and Fourier Transforms, Pure and Applied Mathematics,

vol. 32, Academic Press, New York, 1969.
[12] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library,

Cambridge University Press, Cambridge, 1988.
[13] S. V. Konyagin and A. Yu. Popov, On the rate of divergence of some integrals, Mat. Zametki

58 (1995), no. 2, 243–255, translation in Math. Notes 58 (1995), no. 1-2, 841–849
(1996).

[14] J. Lee, Convergence and the Riemann hypothesis, Commun. Korean Math. Soc. 11 (1996),
no. 1, 57–62.

[15] N. Levinson, On closure problems and the zeros of the Riemann zeta function, Proc. Amer.
Math. Soc. 7 (1956), 838–845.

[16] N. Nikolski, Distance formulae and invariant subspaces, with an application to localization
of zeros of the Riemann ζ-function, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1,
143–159.

[17] B. Nyman, On some groups and semigroups of translations, Thesis, Uppsala University
Sweden, 1950.

[18] A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture, J. reine angew.
Math. 357 (1985), 138–160.

[19] W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathemat-
ics, vol. 12, Interscience Publishers, New York, 1962.

[20] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford,
1951.

[21] V. I. Vasyunin, On a biorthogonal system associated with the Riemann hypothesis, Algebra
i Analiz 7 (1995), no. 3, 118–135, translation in St. Petersburg Math. J. 7 (1996), no.
3, 405–419.

[22] D. V. Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton
University Press, New Jersey, 1941.

Luis Báez-Duarte: Departamento de Matemáticas, Instituto Venezolano de Investi-
gaciones Científicas, Apartado 21827, Caracas 1020-A, Venezuela

E-mail address: lbaez@ccs.internet.ve

mailto:lbaez@ccs.internet.ve

