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By construction sub and supersolutions for the following semilinear elliptic equation
−�u(x) = λg(x)f(u(x)), x ∈ Rn, which arises in population genetics, we derive some
results about the theory of existence of solutions as well as asymptotic properties of the
solutions for every n and for the function g :Rn →R such that g is smooth and is negative
at infinity.
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1. Introduction. In this paper, we discuss the existence and nonexistence of solu-

tions as well as asymptotic properties of the solutions of the equation

−�u(x)= λg(x)f (u(x)), x ∈Rn, 0≤u(x)≤ 1 (1.1)

which arises in population genetics (see [7, 11]). The unknown functionu corresponds

to the relative frequency of an allele and is hence constrained to have values between 0

and 1. The real parameter λ > 0 corresponds to the reciprocal of a diffusion coefficient.

We assume throughout that g : Rn → R is smooth which changes sign on Rn. Also

we will assume throughout that f satisfies the condition f : [0,1] → R is a smooth

function such that f(0)= f(1)= 0, f ′(0) > 0, f ′(1) < 0, and f(u) > 0 for all 0<u< 1.

By the definition of f , it is clear that (1.1) has the trivial solutions u≡ 0 and u≡ 1.

The existence of solutions for (1.1) in the bounded region case with Dirichlet or

Neumann boundary conditions is discussed in [7, 11], but in this case all of Rn is

much more complicated (see [3, 6, 7, 8, 9, 12, 13]). The results obtained in [7] with the

assumption that g is negative at infinity show that the existence theory for solutions

of (1.1) is very different for the two cases n= 1,2 and n≥ 3.

Some of the nontrivial solutions were bifurcating off the trivial solution u ≡ 0. In

order to investigate these bifurcation phenomena, it was necessary to understand the

eigenvalues and eigenfunctions of the corresponding linearized problem

−�u(x)= λg(x)f ′(0)u(x), x ∈Rn. (1.2)

The existence of positive principal eigenfunctions of (1.2) with the following condi-

tions on g was considered in [6]:

(i) g is negative and bounded away from zero at infinity; or

(ii) |g(x)| ≤ k/(1+|x|2)α, n≥ 3,

for some constants k > 0 and α > 1, and these results for the case g+ ∈ Ln/2(Rn),
n≥ 3 where g+(x)=max{g(x),0} are extended in [3].
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In this paper, we investigate the existence of solutions of (1.1) with the assumption

that g or g+ are small at infinity.

Our analysis is based on the construction of sub and supersolutions.

It is proved in [2] that the positive principal eigenvalue of the Dirichlet boundary

value problem

−�u(x)= λg(x)u(x), x ∈D,
u(x)= 0, x ∈ ∂D, (1.3)

where D is a bounded domain with smooth boundary has the variational characteri-

sation

λ+1 (D)= inf

{∫
D

∣∣∇u(x)∣∣2dx :u∈H1
0(D),

∫
D
gu2dx = 1

}
. (1.4)

Also, it is well known that the above infimum is attained and a minimizer φ1 > 0 is

smooth, that is, c2(D). Hence φ1 satisfies the Dirichlet boundary value problem (1.3),

so φ1 is a principal eigenfunction corresponding to principal eigenvalue λ+1 (D).
Suppose, however, that g = g+ − g− where g+(x) = max{g(x),0} and g−(x) =

min{g(x),0}.
If n≥ 3 and g+ ∈ Ln/2(Rn), then for all u∈H1

0(D) such that
∫
D gu2dx = 1 we have

1=
∫
D
gu2dx ≤

∫
D
g+u2dx

≤ ∥∥g+∥∥Ln/2(D)‖u‖2
L2n/(n−2)(D)

≤ c(n)∥∥g+∥∥Ln/2(D)‖∇u‖2
L2(D),

(1.5)

where c(n) is the embedding constant of H1
0(D) into L2n/(n−2)(D) and is independent

of D (see Brézis and Nirenberg [5, page 443]). Thus

λ+1 (D)≥ ‖∇u‖2
L2(D) ≥

{
c(n)

∥∥g+∥∥Ln/2(D)
}−1

> 0. (1.6)

Also, it is well known (see [1]) that if g+ ∈ Ln/2(Rn), then λ∗ = limR→∞λ+1 (BR(0)) exists

and λ∗ is the principal eigenvalue of the equation

−�u(x)= λg(x)u(x), x ∈Rn (1.7)

and there exists a corresponding principal eigenfunction φ such that φ(x) → 0 as

|x| →∞. In addition, λ∗ can be characterized as follows (see [1, Lemma 2.7])

λ∗ = inf

{∫
Rn

∣∣∇u(x)∣∣2dx :u∈ c∞0
(
Rn
)
,
∫
Rn
gu2dx = 1

}
. (1.8)
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Theorem 1.1 (see [10]). If λ > λ∗, then there exists u ≥ 0 (u ≠ 0) with compact

support such that u is a subsolution of

−�u(x)= λg(x)f (u(x)), x ∈ BR(0),
u(x)= 0, x ∈ ∂BR(0)

(1.9)

for all R sufficiently large, also we can choose u sufficiently small.

2. Sub and supersolutions for n≥ 3. We assume D ⊂Rn is a bounded region with

smooth boundary. We consider the following boundary value problem:

−�u(x)= λg(x)f (u(x)), x ∈D,
u(x)= 0, x ∈ ∂D. (2.1)

If λ > 0 be fixed, we can choose c > 0 such that for u, 0 ≤ u ≤ 1, the function u →
λg(x)f(u)+cu, for every x ∈D, is an increasing function.

Let h(x,u) = λg(x)f(u)+ cu, then we have h(x,0) ≡ 0 and h(x,1) ≡ c. We can

write (2.1) as

−�u(x)+cu(x)= h(x,u(x)), x ∈D,
u(x)= 0, x ∈ ∂D. (2.2)

It is well known that (2.2) has a unique solution u = Kf (see Amann [4]), where K is

given by an integral operator whose kernel is the Green’s function for the problem,

that is,

(Kf)(x)=
∫
D
G(x,y)h

(
y,u(y)

)
dy. (2.3)

In (2.3),G(x,y) is the Green’s function of the operator−�+c with Dirichlet boundary

condition, also we can write (2.3) asu=KN(u) in whereK : c(D)→ cα(D) is a compact

linear integral operator with kernel G (see [4]) and N : c(D)→ c(D) is the Nemytskii

operator corresponding to h. Since h(x,·) is increasing, it is easy to see that N is an

increasing operator, that is, if u1 ≥u2, then Nu1 ≥Nu2.

We call u∈ c2(D) is a subsolution of (2.2) or equivalently (2.1) if we have

−�u(x)+cu(x)≤ h(x,u(x)), x ∈D,
u(x)≤ 0, x ∈ ∂D, (2.4)

and u∈ c(D) is a subsolution of (2.3) if

u(x)≤
∫
D
G(x,y)h

(
y,u(y)

)
dy, x ∈D, (2.5)

that is, u≤KN(u). The definition of supersolution is quite similar.

It is well known that if v ,w are sub and supersolutions of (2.2) (or for (2.3)), respec-

tively, and v ≤w, then there exists a solution u of (2.2) (of (2.3)) such that v ≤u≤w.
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3. The case when n= 1,2. In this section, we consider the problem

−�u(x)= λg(x)f (u(x)), x ∈Rn,
0≤u(x)≤ 1, x ∈Rn, (3.1)

where g : Rn → R is a continuous function which changes sign on Rn and it has the

following condition: (G) there exists R0 > 0 such that g(x) < 0 for all of x ∈ Rn,

whenever |x|>R0.

Also f ∈ c1([0,1]) with the conditions

f(0)= 0= f(1), f ′(0) > 0, f ′(1) < 0, f (u) > 0, 0<u< 1. (3.2)

Theorem 3.1 (see [7]). Let u be a nontrivial solution of (4.1). Then there exists a

real constant k such that 0<u(x) < k < 1 for all of x in Rn.

Now by using Theorem 3.1 and condition (G) on g, we conclude that

�u(x) > 0 (3.3)

for all of x ∈Rn with |x|>R0.

Theorem 3.2. Let u be a nontrivial solution of (4.1). Then u is nonconstant in out

of the ball BR0(0).

Proof. Using assumption on g, we have�u(x) > 0 for all of x ∈Rn with |x|>R0,

so |∇u(x)| > 0 whenever |x| > R0. Hence u is a nonconstant function in out of the

ball BR0(0).

Theorem 3.3. Let n= 1 and u be a nontrivial solution of (4.1). Then u is a strictly

decreasing function on (R0,∞) and increasing function on (−∞,−R0).

Proof. By using assumption on g, we have u′′(x) > 0 for all of x ∈Rn with |x|>
R0. So, u can have only one of the possibilities (a) and (b) in Figure 3.1.

Figure 3.1(a) is impossible because we must have 0≤u(x)≤ 1 for all x ∈Rn. So u
satisfy in Figure 3.1(b), thus u is strictly decreasing in out of ball BR0(0).

Theorem 3.4. Let n = 2 and u be a solution of (4.1) which is radially symmetric,

then u is a strictly monotone function in out of the ball BR1(0), where R1 >R0.

Proof. It is obvious by using maximum principle.

4. The case when n≥ 3. Let g satisfy condition (G). It is easy to see that

u(x)=




1, |x| ≤ R0,(
R0

|x|
)(n−2)

, |x|>R0,
(4.1)

is a supersolution of (4.1), so we are ready to prove the following theorem.

Theorem 4.1. If λ > λ∗, then there exists a nonconstant solution u of (4.1) such that

lim
|x|→∞

u(x)= 0. (4.2)
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(a)

R0−R0

(b)

R0−R0

Figure 3.1

Proof. We consider u as a supersolution of (4.1). Also there exists a subsolution

u of (4.1) with compact support and sufficiently small (see [10]). So we can choose u
such that u ≤ u, so there exists a solution u of (4.1) such that u ≤ u ≤ u. Also by

using the definition of u, we have lim|x|→∞u(x)= 0.

Theorem 4.2. Let α > 1 and λ > 0 be arbitrary. Then there exists a supersolution

u of (4.1) such that |u(x)| ≤ c|x|−β for a constant c > 0, and

β=

n−2, n < 2α,

2α−2, n > 2α.
(4.3)

Proof. Using condition (G) of the function g, we have

∣∣g+(x)∣∣≤ k(
1+|x|2)α , (4.4)

where k≥M(1+R2
0)α,M =maxg+(x). So using [10, Lemma 4.3], the proof is complete.
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