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PARAMETRICALLY EXCITED NONLINEAR SYSTEMS:
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Subharmonic resonance of two-degree-of-freedom systems with cubic nonlinearities to
multifrequency parametric excitations in the presence of three-to-one internal resonance
is investigated. Two approximate methods (the multiple scales and the generalized syn-
chronization) are used to construct a first-order nonlinear ordinary differential equations
governing the modulation of the amplitudes and phases. Steady state solutions and their
stability are computed for selected values of the system parameters. The results obtained
by the two methods are in excellent agreement. Numerical solutions are carried out and
graphical representations of the results are presented and discussed.
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1. Introduction. In many practical situations, the load on a structure can be mod-
eled by a finite sum of temporarily harmonic terms. For example, such a situation
occurs when a single structure supports several different rotating machines. In other
situations, the load acting on a structure, although periodic, is not harmonic but can
be expressed as the sum of a finite number of harmonic terms.

Some curious phenomena can develop as a result of the interactions of the different
harmonics. These can be recognized and understood by studying the response of
structure elements, such as beams and plates, to multiple harmonic loads.

Although problems involving single-frequency excitations have received consider-
able attention [1, 11, 12, 13, 15, 17], limited problems involving multifrequency ex-
citations have been studied in [2, 19] for the case of one-degree-of-freedom systems
and in [3, 4, 5, 7, 8, 14, 16, 18] for the case of multidegree-of-freedom systems.

In [2], the method of multiple scales was used to account for all these nonlinear
corrections to the natural frequency. Yamamoto et al. [19] examined the response
of single-degree-of-freedom systems with cubic nonlinearities to combination reso-
nances. Plaut et al. [18] studied the influence of an internal resonance on nonlinear
structural vibrations under two frequency excitations. Asfar et al. [3] studied the re-
sponse of single-degree-of-freedom self-excited oscillators to multifrequency excita-
tions. Nayfeh [16] considered the nonlinear response of a bowed structure to combi-
nation resonances. Ashworth and Barr [5] investigated the resonances of structures
with quadratic inertial nonlinearity under direct and parametric harmonic excitation.
Mojaddidy et al. [14] examined the response of a beam to a combination resonant
excitation in the presence and absence of internal resonance. Asfar et al. [4] exam-
ined the response of two-degree-of-freedom self-excited oscillators to multifrequency
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excitations. In [8], the method of multiple scales was used to studied harmonic, sub-
harmonic, superharmonic, simultaneous sub/superharmonic and combination reso-
nances of self-excited two coupled second-order system to multifrequency excitations.
In [7], the response of self-excited three-degree-of-freedom systems to multifrequency
excitations was analyzed.

This paper is concerned with response of two-degree-of-freedom systems with cubic
nonlinearities to multifrequency parametric excitations governed by the equations

X1 +wiX) +e [zulxl + 00 X3 + 300X X + o3 X1 X5 + 0 X3

M
+2 > {lelm+X2f2m}COS(th+T1m):| =0,
m=1

(1.1)
Xz + (L)%XQ +€|:2u2X2 + 0(2Xf + 30(3X12X2 + 0(4X1X§ + 0(5X23

N
+2 Z {Xlgln +X2g2n}COS (Qnt+y1n)] =0,

n=1

where Wy, Un, &ny frns Gmns Qmy OQn, Tim, and yp, are constants, € is a small di-
mensionless parameter, and dots indicate differentiation with respect to the time t.
These equations when quadratic terms are included, model the responses of ships
and bowed structural elements. Two approximate methods (the multiple scales and
the generalized synchronization) are used to comparison. The modulation equations
(reduced equations) of the amplitudes and phases are obtained. Steady state solutions
and their stability are determined. Numerical calculations are carried out. Graphical
representation of the results are presented. Discussion of the figures is given. The
results obtained by two methods are in excellent agreement.

2. The method of multiple scales (see [15]). To determine a first-order uniform
solution of (1.1), we use the method of multiple scales and let

X(t;€) = Xno(To, Th) + €Xn1 (To, Ty) + - - -, (2.1)

where T, =t is a fast scale, which is associated with changes occurring at the frequen-
cies w,, Qm, and Q,, and T, = €t is a slow scale, which is associated with modulations
in the amplitudes and phases resulting from the nonlinearities and parametric reso-
nances. In terms of Ty and T; the time derivative become

d @’ o
7 = Dot+eDi+---, =5 =Dg+2€DoDy+- -+, (2.2)

where D,, = 0/0T,. Substituting (2.1) and (2.2) into (1.1) and equating coefficients of
power €, we obtain

D3X10+w3X10=0, DoX3y+wi1Xa =0, (2.3)
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D3X11 + w2 X1, = —2DoD1 X10 — 21 (DoX10) — 01 X3 — 302 X530 X0 — 303 X10 X3,
M
— o X3y+2 D {X10.L1m + X20.fom } €OS (Qunt + Tim), (2.4)

m=1

D(%XZI + w%Xu = —2D0D1X20 —2[12 (D()Xzo) — 0(2X130 — 3O(3X%OX20 — 30(4X10X220
N
— o5 X350 +2 > {X10g1n + X20g2n } €08 (Qut +Vin). (2.5)

n=1

The solution of (2.3) can be expressed as
X10 = A exp (iw Ty) +cc, Xo0 = Azexp (iw; Tp) +cc, (2.6)

where cc denotes the complex conjugate of the preceding terms. Inserting (2.6) into
(2.5) yields

D3X11+wiX11 = [ —2iwi (A" + 1 Ar) + 30 A3 A0 +603A1 A2 Az Az | exp (w1 Tp)
—[602A1A1As + 304 A3 A exp - (2iw2 Tp)
— oA exp (3iw; To) — s A3 exp (3w Tp)
—30x[A3Arexpi(2w +w2) To+ A2 Az expi(ws —2wi) Ty
—3o3[A1ASexpi(w; +2wz2) T+ A1 A3 expi(w; —2w2) Ty

+A A% expi(2ws — w) To]
M
—A1 D fimexp ((Qm+ 1) To+Tim)

m=1

M
—A1 Y fimexp ((Qm—w1)To+Tim)

m=1
M

—-A» z meEXp((Qm+w2)T0+T1m)

m=1

M
- Ay z Som exp ((Qm — w2) To+ Tim),

m=1

D2Xo1 +w3X21 = —[2iws (A) + 2 An) +603A1 A1 Ap + 35 A3 A exp (1w, To)
—[3002A2A; +60x4A2A5] exp (iw To)
— oA exp (3iw; To) — s A3 exp (3w Tp)
—3x4[A1A3expi(w +2w2) Ty + A1 Adexpi(w; —2w2) Ty

+A2A%expi(ws+2w;)To]
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N
—A1 D> ginexp ((Qn+w1)To+ Yin)

S
—_

+A1

M=

Jin €XP ((Qn_wl)T0+}’1n)

n=1

N
—-A» z gon €XP ((Qn+w2)To+V1n)

n=1

N
7142 z fzmeXp((an(Uz)To+V1n),

n=1

(2.7)

where the overbar indicates the complex conjugate, and the prime indicates differ-
entiation with respect to T;. Any particular solution of (2.7) contain secular or small
divisor terms depending on the resonant conditions (a) w> = 2w, internal resonance;
(b) Q, = 2w, principal parametric resonance of the first mode. To treat this case, we
introduce a detuning parameters g; and o» to convert the small divisor terms into
secular terms, defined according to

Wy = 2w, + €07, Q, =2w; +€0y. (2.8)

Substituting (2.8) into (2.7) and eliminating the secular terms from X;; and X»;, we
obtain

2w (A} + 11 A1) +301ATA; +603A1 A2 A
+300A%Aexp (io T1) + Ay firexpi(oa Ty +T1y) = 0, (2.9)

21w (A) + 2 Az) +603A1 A1 Ar +305A3 A, + xp ASexp (—io Ty ) = 0.

Consequently, the particular solutions of (2.7) are

[602A1A1As +304A3A )
R R 2]ex}o(m)zTo)

L wi— w5
[ A3 A3

+ al—zl]exp(BwiwlTo)f[%]exp(?ﬂwgﬂ))
L 8w wi—9w5

30A%A i
— e b expi(2w1+w2)To

,{w%— (2w +w2)2},

»A2A i
- 3 A4, expi(w:—2w)Ty

_{w%— (wz—Zwl)Z}_

A A3 i
- 3x3A147 expi(w; +2w») Ty

L {w% —(w; +2w2)2}_
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3(X3A1A_§

i {w% — (w1 —2w>)

2}]expi(w1 -2w2)Ty

A A3
33 A4 5 ]expi(2w2w1)To

2
_{wl—(sz—wl) }

A epi((© o) To+Ty)
—{wl_(Qr+wl+Tlr) }_

ot | expi((@ + w2) T+ 71r)
—{wl_(Qr+w2+T27) }_

S Nexpi((@ - w)To+T),
—{wl_(QV_wZ""TZr) }_

[ 30(2A%A_1 +6(X4A1A2A_2 .
5 5 exp (iw1 Tp)
L w35 — ws
_LA%]exp(Siw T, )+[(X5A§]exp(3iw To)
L w3 —9w? 1o 8w3 2ro
A%A
3asAi Ay >+ | expi(2wy +w2) To
2
_{wr(Zwﬁwz) }_
A2A
3asAiAy 5+ | expi(w2 —2w1)To
2
_{wzf(wszwl) }_
30¢4A1 A3

expi(wi +2w>?) Ty
_{w% —(w; +2w2)2}_

A A3
304A1 2 5 expi(wl—ZwZ)TO
2
[ {3 - (w1 -202)°} ]
A A3
3a4A1 A5 5y | expi(2wz —w1)To
2
_{OUQ*(szfwl) }‘
. J1:A1 - expi((Qs+wi)To+y1s)
_{w27(Q5+w1+3’15) }
. J1:A1 - expi((Qs+wi)To+yis)
oo
. gaorAz - expi((Qs+w2)To+ yis).
_{w27(QS+w2+}’2s) }

Expressing A, in the polar notation

Ap=sanexp (ifn)

743

(2.10)

(2.11)
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and separating the real and imaginary parts of (2.9), we obtain

aj =—pa— Sg%zlafaz sin 6, — ﬁf”al sin 65,

aip = %vﬁ + %am% + %a%az cos0; + Zi)l firay cos 0>,
ah = —pap + 80(722“? sin @1,

aBh = 432()1 aias + 832‘)52 as+ 80(32 a; cos 6y,

where,

01 =01T1+B2-3P1, 02 = 0211 =21 + Ty

Inserting (2.6) and (2.10) into (2.1) yield the approximate solutions
Ul = aj CoSs (wlt +B1)

]cos (12

el - [60(2(1%@2 +3x4a’
4w? -4w3

r 3 3

1 a; ] [ x4y ]
+|——= |[cos3 — | ———=—<|cos3

[ 32002 Y w2 —9w?) 2

3oala
- 5 SEIZE [ cos (2g + )
_{4w1—4(2w1+w2) }_

3ca2a
- 5 1 > | cos (w2 —2yn)
_{4w1—4(2w1+w2) }_

[ 3xza, a8 i
- 5 3T 55 [ cos (Y1 +2y2)
_{4w1—4(w1+2w2) }_

i 30301 a5 i
| B o (g —24)
{4(1)1 —4(w;-2w3) }

3x3a,a3
- 5 SRS 5 | cos (2@ — )
_{4w1—4(2w2—w1) }_

a1fim }
- - cos (W3 +y1)
L {(Uf - (Qr+wlq/1r)2}

az for }
- cos (w3 +y2)
L {w% - (Qy + Ww> +(,Uzy)2}

| a2 for )q}mﬂw4¢m}+déx

—{w%_(Qr—wz'HI/zr

(2.12)

(2.13)
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U, =ayp cos(w2t+B2)
3ccal +60uaas
€| | ——5——5——=|cosy,
4w5—4w
2 1
0(2@?

L w3 —9w?

1

]COSSL;JZ + [

3azasias
L {4(»% —4(w> —2w1)2} ]

3czata;
L {4(1)% —4(w> —2w1)2},

2
2

L {4(»% —4(w +2w2)2}_

30(4&10,

3oyaras
L {4(»% —4(w, —2w2)2}

3oyaas
L {4(1)% —4(2w> —wl)z} ]

gisai
{03 - Qs+ wi+y16)°}

B

Jisai
(Q— w1 +Y13)2} i

w3 -

gara
L {w% —(Qs + w2 +Y2s)2} J

X5
32w

745

a3
2
2

]Cos3w2

cos (p1+2y2)
cos (Y2 —2¢n)
cos (Y1 +2y2)
cos (Y1 —-2yr2)
cos (2y2 —yn)

cos (Ya+ 1)

cos (Ya—y1)

cos (4 +(I/2)} +0(e?),

(2.14)
where,
Y1 =with1, Yo=wot+B2, WY3=Qt+T1r, WYa=Qst+yn. (2.15)
The steady state of (2.12) are given by
a; + ;—giafaz sin 0, + %wlflyal sin@, = 0,
%62@1 - 22()11 3 j—gial - 8w21 asa,cosf; — %wlf”al cos0, =0,
302 5 . (2.16)
—lxas + S—wlalaz sin@; =0,
(%62 - 0'1)@2 + 2232 aas + 82()52 as+ 32()21 aazcosf; =0.
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There are two possibilities: first, a; = a, = 0; this is the linear case; second, a; and

ay + 0 and (2.16) yield the frequency response equations

90‘%]22[90‘%]4 L
al-—f
g’

1
2 2
+=0 +[ asas
T 9% 64002 |1 " [ 64002
+ 324 alazsin61+[3a1®]a§
L 4w 8w
730(30'27 2 |:30(20'2:| |:90(10(2] 2 o
—|=——=a5—-| ——"—=|aiarcos 0 +
[ 4w, 17271 8wy 17T L 1602 1T
_90(]0(2_ 3 [90(20(3]
+ ajapcos 6 + a,a’cos 0 2.17
| 32002 |71 "l 16w JT? ' (2.17)

3 2 o3 93 9o
[“%’L(E‘SZ_&) ]ag_[64;§]a?+[16(35]0[%“%64@55”3
iy (30:-1) Jatai = 320 (50201 Jat
[sz 52 61 m 52 51 a,

3. Stability analysis. Here we study the problem of stability in two cases: trivial

and nontrivial solutions.
3.1. Trivial solution and its stability. To study the stability of the trivial solution

we find it convenient to express A, in the Cartesian form

1 .
An = 5[pn(T1) - an(Th) ] exp (ivaTh), 3.1)
where
v—la v—§0—0 (3.2)
1= 2 2y 2= 2 2 1- .

Inserting (3.1) into (2.9), and separating the real and imaginary parts, we obtain

’ 30(1
py+Hip1+4di1vi— 87a)1(p%q1 +‘ﬁ)

1
~ 4w, 22 (piay v quad) + _f1r511 cosTyy =0,

, 3
a;+ma - pivi - Twll (piai+ai)
(3.3)

3
r(plql +qi) + lfmal cosTyy =0,

’ 30(3 30(5
Py +H2p2 +q2va — 4—wz(vfth +aiaz) - @(r&qz +q3) =0,

’ 30(3 30(
@5+ Had2 — pava — m(v%nz +aipe) + 87)2(193 +p2q3) = 0.
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The trivial solution corresponds to p,, = q,, = 0 for n = 1,2. The stability of this
solution can be determined by the eigenvalues of the Jacobian matrix of (3.3) evaluated
at pn = qn = 0. They are given by

A4+1’12\3+1”2A2+T3A+1’4:0, (3.4)
where

11 =2(u +p2),

1
Y2 = 3+ 200 He 13+ VE+VE =5 ff cos®

1
2 (3.5)
r3 =21 po (U1 + p2) + 2 (11 V3 + 2 vE) — 212 ZflyCOS Yir,
1
o= it b v L pf costun v e i costn vt
1 1

According to the Routh-Hurwitz criterion, the solution is stable if and only if the
following conditions are satisfied:

>0, [nr-13]1>0, [r3(nra—r3)—riry] >0, r3>0. (3.6)

The stable (unstable) solutions are represented by solid (dashed) lines on o»-axis.

3.2. Stability of nontrivial solution. To determine the stability of the nontrivial
solution, let

ai=ajp+apn, 0i=0ip+0in (i=1,2), (3.7)

where a;jy, 0;0 are the steady state values, and a;; and 0;; are infinitesimal time-
dependent perturbation. Inserting (3.7) into (2.12), using (2.16), and linearizing the
resulting equations, we get

3 . 1 .
ay = [Hl +-——ajoaosinfo + mflr sin 6 (a1
1

46()1

3 (0.6] |:30(2 2 ] [ 1 :|

~ 8w, —=aj,sinfia Twlaloazocoselo On fwlfnalocos@zo 021,
7 3 X2 3
a, = 80, alosmelo an—uga21+8w alocoseloeu,
, (051 3o 33 9
o [ i (35 o {12
1 app 8w alocos 10 2wWo 1o 4w, a0

dxzas, } 9>

2
- - 17 C0S00— ——a cos@lo]au
{46020110 wlalofy 8wy, 10
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3aza 95 9«: 9«
[ 2 (22 e 2t

4wrano 8w» 1
30(2 2 . 30(2 . 1 .

+ [—aloazo sinfi0+ o——ai0a20in 610 | 011 — | 5—— f1r SinO20 | 021,
4(,01 8(,01 2(1)1

90y 30(3(12 1 3o
— raio+ 20 } + flr oS 020+ ——aipa20cos 019 |ar
4w 2w1a1o wiadig 21

o1 30(2} 32 ] [30(2 > . ]
+|—-1=== —-—= + | —=
[ {wl ao 4w1a10C08910 an 4w1a10azosm610 011

S1rsin 920] 021.

(3.8)
Put a;; = ciexp(ATy) and 61 = ¢;+2 exp(ATy) into (3.6) and (3.8). The solution is stable
if and only if the real part of each of the eigenvalues of the coefficient of the matrix

is less than zero. The stable solutions are represented by solid lines and the unstable
solutions by broken lines on the frequency response curves.

4. The generalized synchronization method (see [6, 9]). When € = 0, the general
solution of (1.1) are

Xp = ancos(wnt+¢y), Xn=—-wnancos(wyt+e¢,) (n=12). 4.1)
For € #+ 0 small enough, let a,, and ¢, be unknown functions of time t in (1.1). By
differentiating the first equation of (4.1) and equating with the second, and differen-
tiating the second equation of (4.1), we obtain

Ay cos (Wt + Py) —anwysin (Wt + ¢y) = 0. (4.2)

By using (4.1) and (4.2), (1.1) are reduced to a system of first-order differential equa-
tions in the variables a, (t) and ¢, (t) as follows:

1
a(t) = e[—ulal(l —cosyn) + ia?[sinthl += sin4(p1]
4(1)1 2

+ qocafaz[sin 31+ ) +sin (31 - w2) +sin (91 +p2) +sin (91~ )]
30(3 2 - .
+2—w1ala2[sm(2qj2+2w1)+sm(2w2—2w1)]
;% a3[sin(3([/2+qj1)+lsin(3(p2—tpl)
8(1)1 2 2
+3Sin((lfz+W1)+3Sin(ll/2—1111)]
+ ar fir[sin (@3 +2¢1) —sin (3 —2¢1)]

2(1)1
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+

1 . .
2w1a2f27[31n(lﬂ4+lllz+llll)+Sln(lll4+(llz—llll)

+sin(@s—w2+yn) —Sin(W4—W2—(I/1)]],

b1(t) = e[ul sin2y, + 8%a%[coséh,ul +4cos2yi +3]
1

3
+ oo, 12008 (B +92) +cos (31 ~ o)

+3cos (Y1 +y2) +3cos (Y1 —y2)]

3

* dor [1 +COS2Y2 +COS2Y1 + = {cos(Z(pl +2y3) +cos (2 —2(,1/2)}]

{Swl 1} cos (3W2+ 1) +cos (3Wr — 1)

+3cos (@2 +y1)+3cos (W2 —y1)]

1
+Ta)1f1r[C05(W3 +2¢1) +2c082y3 +cos (Y3 —2¢1)]

+{2£12a1 7gfy[cos(w4+u/z+wl) +cos (s + W2 — 1)
+08 (4 - g+ 1) +cos (a2 -] .
a(t) = G[ﬂlz@(l*COSWz) +8%2a?[5m(3(l/1 —-yp2) +%sin(3q;1 +2)
+3sin (g1 +y2) —3sin (Y —Wz)]

3 . ) _
+ S—(i)(zafaz[Sm(leh +22) +sin 2y —2y2)]

3 . . . .
+ 8—3)‘;a1a%[s1n(3w2 + 1) +sin (3wz — @) +sin (W2 + ) +sin (a2 — )]

S0, 03 sm2wz g sindue
+4w2a2 sm2tpz+zsm4¢,u2

1 . .
argis[sin(@s+ g1 +w2) —sin(@s + @1 — o)

+
2>

+sin (@s — @1 +Y2) —sin(Ys — Y1 — o) ]

1 _ .
*5ws azQZS[Sm(W6+2W2)+Sln((l/6_2(l/2)]],
w2

3
$o(t) = e[ug sin2y» + {M}[cos (31 +W2) +cos (31 — )
8(1)2612

+3cos (Y1 +W2) +3cos (Y1 - y2)]
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+ %a%[l +€0S2>r +cos2y; + %{COS(Z(M +2y>) +cos (2y; —2(//2)}]
2

30(4

Zalag[cos(3tl/2 +1) +cos (32 —yn)

+
8w

+3cos (W2 + 1) +cos (P2 —yn)]

0(5 3
+ 8w, az[cosdyw, +4cos2y, + 3]

+{ a } [cos (@s+ @y +Wa)+cos(Ws+ Y —y2)
2woda Gis Ys+yr+yn Ys+yr1—y»

+cos (Ys — Y1 +Y2) +cos (Ps — Yy — o) ]

1
+ 2—g25[cos(w6+2w2) +cos((p6—2(p2)]].
w32
(4.3)

For principal parametric synchronization of the first mode (Q, = 2w;) in the pres-
ence of internal synchronization (w; = 3w, ), then from (4.3) we retain only the con-
stant terms and the terms of small frequency. Then, we obtain

Jia (v, 0) Ay
i _ _ fld) (y,t) _ b1
F(y,t)—f(,')’,t)— f2a (_‘)/,t) ’ y_ A2 ’ (44)
f2¢ (J’,t) ¢2
where,
fray,t) = = A+ ;—giA%Az sin[ (3w — w2)t + 3P — ]

1 .
P Ay firsin[(Qy — 2w )t — (20 —T1y) ],
w1

- 3x 303 30t
Sigp(y,t) = [Swll ]A% + [4w1 ]A% + SwlAlAz cos[ (3w — wz)t +3d; —dy]

flyCOS[(Qy—Zwl)t—(2‘1’1—7’11/)], (45)

L1
2(1)1
X

8w2A? sin[ (3w — wy)t + 30, —ds],

Foa(y,t) = —p2 Az +

e _ 30(3 :| 2 |: 30(5 ] 2
Far ) = | ok |t + | 522 |3
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and the term of higher frequency is

fla(y:t)
Sip (1)
.]fZa(y,t) ’
Frp(y,t)

Ffr,b) =

where,

fm(y,t) = U1a;COS2Y + 2 a’ sin2y, + 1 sin4y/,
1
4w 2

; . . .
+ 82()21 ataz[sin 3y +w2) +sin (w1 +w2) +sin (w1 - y2)]

3 i .
+ %am%[sm(mﬂz +2yn) +sin(2ypz —2¢n)]

_ 1
+ %a3[31n(3(l/2+¢11) +5sin(Byz—y)

+Sin(lllz+llll)+51n(ll/2—llll)]

1 .
+ malflr sin (@3 +2y1)

1
+2—w1(12f2r[51n((l/4+l//2+l//1)—Sin(W4+llJ2—llJ1)
+sin (Ya — @2 + Y1) —sin(Ws— Y2 —yn)],

Fip (D) = = sin2y + o -ai[ cos 4y +4cos 2y
1

3
+ ﬁalaz[cos(?ﬂlll +2) +3cos (W + o) +3cos (Y —y2)]

8w
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(4.6)

[COSZ([/Z +CoS2Y1 + = {COS(Z([/l +22) +cos (2 —2(1/2)}]

L

" a0,

{8(01 1} cos (3y2 +yn) +cos (32— )
+3cos (Y2 + 1) +3cos (P2 —y1)]

1
+ Twlflr[COS((I/3+2(Il1) +2cosys]

+{2a6)£ }fzr[cos(w‘lﬂh+lll1)+cos(q/4+q/2_qjl)

+CoS (Ya—Wo+ W) +cos(WPa—Wr—yr)],

Foa(y,t) = —ppaz (1 —cosys)

+“—22a%[1sm<3w1+w2>+3sm<w1+w2>—3sm<w1—wz>]

8w 2
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30(3

3 a%az[sin(qul+2w2)+sin(2w]—2(p2)]
w2

+

+ sﬁala%[Sin(ng F9)+sin(3ez2=yn)
w2

+sin (w2 + 1) +sin (Y2 —y1)]

+ 40(752(13 [Sil’lZ(/Jz + % Sil’l4l[]2]

1 . . .
+ malgls[sm(l#s + Wi+ @) —sin(Ws+ @ — ) +sin(@s — w1 +¢»)

. 1 .
—Sln(llfs—tlll—lllz)]Jr—Z azgassin (We +22),
w32

a3
8(1)2612

Foo(,t) = 1 Sin2l.U2+{ }[C03(3W1 +W2) +3cos (W1 + o) +3cos (Y1 —y2)]

+ %a%[cos&m +cos2y + %{cos(Zwl +25) +cos (2y 72(,1/2)}]
2

3
+ o @12[cos (302 + ) +cos (B2 —y)

+3cos (Y2 + 1) +cos (W2 — )]

ai
2(1)2(12

X5
8(1)2

+c08 (s + W1 —Y2) +cos (Ps — Y1+ P2) +cos (Ys — 1 —P2)]

+ o >-az[cosdy: +4C082(I/2]+{ }gls[COS(wwwwLﬂz)

1
+ ——gascos (Ye+2y>).
w2

2
4.7)
Then the reduced system to the first approximation takes the form
Ay
bi| -
AT €F(y,t). (4.8)
b2
Then, we get
H 30(2 2 .
Al =€| —U1A— mAlAz sm[(3w1 - (Uz)t +3d; —(I)z]
1
1 .
- Z—Alfly Sll’l[(Qy — 2(,01)1' - (2‘51)1 - L[le)]],
w1

. Jx 3x 3«x;
b, = E[[swll ]A%-ﬁ- [4w31 ]A§+5L8w22 }A1A2COS[(3(,U] —wz)t+3fb1 —(I)z]

+2Lw1f1ycos[(gy—zw1)t— (20, —qm)]],
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A = E|:7[12A2 7&14?5111[(3(1)1 7w2)t+3q’1 7‘1’2]],
8(1)2

. 33 35 O(ZA2
b, = e[[4w2]A§+ [8w2]A%+ 8w222 cos[ (3w —wz)t+ 3P, —d)z]].

4.9)

Since t appears explicitly in (4.9), they are called a nonatonomous system. It is conve-

nient to eliminate the explicit dependence on t, thereby transforming these equations

into an autonomous system. This can be accomplished by introducing the new depen-
dent variables y; and y» defined by

Y1 = (w2—3w1)t+¢b2—3<1>1, Y2 = (QS—Zwl)t—thl + T1y. (410)

Inserting (4.10) into (4.9), we obtain the autonomous system that describe the modu-
lation of the amplitudes and the phases

. 3x . 1 .
Ay = 6[—u1A1 - s—wiA‘?Az siny; — 2—wlA1fwsmyz],

1 R 30(1}2 {3“3} 2]
plea y‘?]*e[{sm AT 0, 542

300 A3 1
e[{ﬁ}cosyl+2—wlﬁrcosyl], (4.11)
. [0 . 1 .
Ap = €[-IJ2A2 + S—LSZA% siny; — Z—szzgzs SlnYz],
3 3. 30(3] ) [[30(5] , A3 ]
2o, — 2y =€ 222 (A A .
[6(20-2 Ul>+Y1 2)’2] 6[4(»2 1+e 8602 2+8w2A2C08y2

For the system of (4.11) to have stationary solutions, the following conditions must
be satisfied

Ap=yn=0. (4.12)

Hence, the steady state solutions are given by

3 . 1 .
1A+ 87(”2114%142 siny; + T(UlAlflr siny; =0,
1 3o<1)f ) {3%} ) {30@%@} 1
oy 20l L g2 A2 )220 - -0,
272 5(8(01 1713w, 12 7 1 Beoga, § 081~ 549, J1r COSV1
(4.13)
X2 .
—U2 Az + 8—sz% siny, =0,
3 30(3] » 305 ., A3
2on—0y ) - A A -0.
(2(’2 ‘71) [4(»2 T 800, 12 T B, a, 082 =0

These equations are in full agreement with (2.16) obtained using the method of multi-
ple scales. Also, from these equations we can obtain the frequency response equations,
which are similar to (2.17).
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In order to establish the approximate amplitudes and approximate phases, we find
the function G(y,t) as follows:

Gla(y! t)

~ _ é1¢(y:t)
G(y,t) = Gla(y,t) , (4.14)

Gag(¥,1)

where,

Grayt) = jfm(y,t)dt, Gl¢<y,t)=jf1¢<y,t>dt,

Gaa(y,t) = ff2a<y,t>dt, Gz¢(y,t)=jf2¢<y,t>dt. (4.15)
Then, the approximate solutions are

Up(t) = ai(t)cos[wit+d1(t)] = [A1 +€Gra(y,t)]cos[wit+d; (1) +€Grep(y,1)]

A
=A1costp1—eH—lell}(sinw1+sin3w1)——323w% [20 A3 + i3 A1 A3 cos gy
602 ATAx+3 04 A3 ] 1 . )
+ CoSWr———— | 1A +3x3A1A5]| cos3

[ 8(1)%—860% Y» 32(0%[ 147 3A1 2] (41
20(4(3(1)2 wl) }

e tAlcos3

{16(»1(9(»2 w?) ) w2

3 [GangAlAz 0 A2 A, +< a3 A3

16w 9w%—w§ 3w+ wo? W2 — W1

) |cos (w2 =)

30(3 5w» +w1)A1A2
32w w> 3w1+w2)

}COS(W1+2W2)

303 (5> *wl)AlAz
32(1)1(1)2 w? —(,()1)

}COS((I/l—?LUz)

30(2A Ao
16(1)1 3wq + w>?

1
:
1
{ 302A1 A2
5w v
1
S

)}COS Ay +y2)

1601 (3w — w2) }COS (4y1-y2)

3£X3A1A2

150(3A1A2
64w1 (w2 — wq

)}cos<2w2—aw1)

()(4A3

8&)1 3w> —(Ul) }COS (3W2 _ZWI)
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1
+ {—QV(QV 2w) }Alfwcosw/s +2y1)

1
- {4(01(27 }Alflr cos (@3 —yn)

1
+
{2w1(§27+w2+w1

* { (Qy—wz—wl)l((lr—w2+w1)}

] }Azfzr cos (Y3 +y2)

AzfnCOS(stWz)],
Uz (t) = az(t) cos[wat +da(t)] = [A2 +€Gaa (v, t)] cos[wat +®a(t) +€Gag (,1)]

_ B UZAZ}
= AsCoS > EHZw sin3y»

_3o<3A1A2[ 1 _{ 1 Hcos
16w, Lwi+w:> 4(w1+wz)  4(w;—w?) w1

1
" T6w {chA2 +3x3A7 Az}cosqu

- 0<2A%5L 2 + ! }cosSw
Sw% 3w —w> 3wi + w? !

3

1 xsA5
———{—0a5A3+120¢3A3 A5} cos 3y — 2 cos5
64w§{ 5 3 2} (12 64002 75

[_{ 303A%4, } { 30t4A1 A3 }
32w2(w1+w2) 4(02((1)1-1—(02)

30¢4A1 A3 H
{80\)2(0014-30\)2) COS(WI+2W2)

30¢4A A3 }
. v te 4
{8w2(3w2+w1) COS(W1+ WZ)

_ 303ATA, { 1

0w, + 0, }cos(2(,u1 — )

16w2
30(4A1A%{ 1 1 }
_ _ W —
16w» wr— w1 3w+ wq cos (22 —yn)

0(2A3

16w> (3w + w? }cos(&p] +2u2)

16> (3w; +w2)
Sz )|
30(5A A }
T6uas(ior )|
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C( 3c4AA7 } o
{16w2(w27w1) cos (22— yn)
- { L }A cos (Y4 —y1)
2000 L Qs — w01 — 05 191s Ya—Un
—{;}A cos (Yq+ o)
30 (O +202) 2925 Ys+ Y2
S S PO
3002 (0 +203) 292s WYa+5>

—L{;+L}A cos (Y +y2)
400, 1O+ 2005 T O 2925 Ys+ 2

20,0 Axg2scos (Yy—y2)

1
- {m}z‘\ng COS(lIJ4+3L//2)],

(4.16)

which is in excellent agreement with the solution obtained using the method of mul-
tiple scales and defined by (2.14).

5. Numerical results and discussion. Frequency-response (2.17) are nonlinear al-
gebraic equation in the amplitudes a, and a,. These equations are solved numerically
using bisection method [10]. The numerical results are ploted in a group of Figures
5.1a, 5.1b, 5.2a, 5.2b, 5.3a, 5.3b, 5.44a, 5.4b, 5.5a, 5.5b, 5.6a, and 5.6b, which represent
the variation of the amplitudes a; and a, with the detuning parameter o» for given
values of the other parameters.

In Figure 5.1a, each mode has one continuous curve and multivalued solution. Ob-
serve that the first mode reaches the minimum value at o> = 3 and the second mode
reaches the maximum value to the same value of o>, and also it intersects in four
points and these modes have stable and unstable solutions. The nontrivial solution
has stable and unstable solutions represented on the frequency response curves by
solid and broken lines and also the trivial solution has stable and unstable solutions
represented by solid and dashed lines on the o»-axis. When u; takes the value 0.001,
we get the same frequency response curves without change in the magnitudes in both
modes. The nontrivial and trivial solutions are unstable, as shown in Figure 5.1b. For
increasing u», the bending of both modes are decreasing, which leads to decrease in the
region of multivalued solutions. All nontrivial solutions are unstable and the stability
of the trivial solution is decreasing, as illustrated in Figure 5.2a. As p» is increasing
further, a, and a, has increasing and decreasing minimum and maximum values, and
the multivalued region disappears. All the nontrivial solutions are unstable, and the
zone of stability of the trivial solution is decreased, as shown in Figure 5.2b. Noting
that, when p» takes the values —1 and —2, respectively, we get the same Figures as
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Figures 5.2a and 5.2b without change in magnitudes for both modes and the trivial so-
lutions are unstable. For increasing i, both modes have decreasing magnitudes with
the increase in the region of the stability and have decreasing minimum and max-
imum values and the region of definition is increased, as illustrated in Figure 5.3a.
When «j3 is increasing, both modes have stable magnitudes for large values of o>, and
it has two semi-ovals which intersect in four points, and the zone of stability of the
trivial solution is decreased, as shown in Figure 5.3b. For further increase of «s, the
two semi-ovals have decreasing amplitudes which intersect in four points for large
values of 07, as illustrated in Figure 5.4a. When the coefficient of detuning parameter
o is increased, the region of the definition is increased and both modes have mini-
mum and maximum values for large values of o» and also have stable solutions for
large values of 0>, as shown in Figure 5.4b. Also as 0, decreasing further, both modes
reach to decreasing minimum and maximum values for small value of 0>, and it has
stable solutions for small values of o», as illustrated in Figure 5.5a. When the coeffi-
cient of the parametric excitation of the first mode f), is increased, each mode has
one semi-oval, and the regions of definition and stability of trivial and nontrivial solu-
tions are decreasing, as shown in Figure 5.5b. For further decrease of fi,,, we observe
that both modes have minimum and maximum values for small values of o», and it
has increased in the range of definition and stability, as illustrated in Figure 5.6a. For
increasing the natural frequency of the first mode w, a;, and a, have minimum and
maximum values for small values of 0>, and the regions of definition and stability are
decreasing, as shown in Figure 5.6b.

6. Summary and conclusion. Two approximate methods are applied to construct a
set of first order, nonlinear ordinary differential equations governing the modulation
of the amplitudes and phases of oscillations. The applied method are the multiple
scales and the generalized synchronization. Steady state solutions and their stability
are studied for selected values of the different parameters. Numerical solutions are
found by using bisection method, which are plotted in a group of Figures 5.1a, 5.1b,
5.2a, 5.2b, 5.3a, 5.3b, 5.4a, 5.4b, 5.5a, 5.5b, 5.6a, and 5.6b. The obtained results from
both methods are in excellent agreement. The following conclusions can be deduced
from analysis:

(1) the frequency response curves consists of one branch for each mode and the
bending leads to multivalued solutions;

(2) all nontrivial solutions become unstable for increasing or decreasing the co-
efficients of damping terms of the first mode p; and the second mode po>,
respectively;

(3) when p» takes the values +1, we get the same frequency curves for these two
values without change in amplitudes and also for the values +2, we get the
same form without change in amplitudes;

(4) for increasing the coefficients «3 and fi,,, we observe that each mode has one
semi-oval and a given decrease in the region of definition;

(5) when the natural frequency of the first mode w; is increasing, the zones of
definition and stability are decreasing.
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