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We correct an erroneous statement about induced morphisms of Mislin genera and give
the correct statement, even under more general hypotheses.
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As in [9], we denote the class of all finitely generated groups with finite commutator

subgroups by �0, and for an �0-groupH, we let χ(H) be the set of isomorphism classes

of groups K for which K×Z � H×Z. If H is a nilpotent �0-group, the Mislin genus

(i.e., the genus as defined in [4]) of H is denoted by �(H). By a result of Warfield [6],

we know that if H is a nilpotent �0-group, then χ(H) = �(H). Furthermore, for an

�0-group H, in [9] it is shown that there is an abelian group structure on χ(H) which

coincides with the Hilton-Mislin group structure [3] on �(H) if H is nilpotent.

In [8, Section 3], it was shown how to define a function η : χ(H)→ χ(H/F) if H is

an infinite �0-group and F is a finite normal subgroup of H. It was also shown that

the function is not always a homomorphism [8, Example 5.4]. This is in conflict with

[2, Theorem 1.3]. In fact there is an error in [2, Theorem 1.1] in that the function

α∗ : �(N)→ �(N/F) is not always well defined. The counterexample of [9] suggests

a way to show explicitly how things may go wrong. (To merely show that α∗ is not

always well defined there are simpler examples, but for a simpler example one may

find that there is nevertheless some epimorphisms �(N) → �(N/F).) We will show

that the results of [2, Section 1] remain valid.

In order to ensure that the relation α∗ of [2, Section 1] is a well-defined function,

we could follow the option of replacing the domain �(N) with a different set, which

we briefly describe as follows.

Let �0 be the subclass of �0 consisting of all infinite nilpotent groups. For an �0-

groupH and a suitable finite group F , we fix a monomorphismh : F →H withh(F)�H.

Now let K be a group in the Mislin genus ofH, and let k : F →K be any monomorphism

with k(F)�K which admits, for every prime p, an isomorphism f :Kp →Hp for which

f◦kp = hp . We denote the class of all such pairs (K,k) by �0. If l : F → L is another such

homomorphism, then we say that l∼ k if there is an isomorphismφ : L→K for which

φ◦l= k. Then ∼ is an equivalence relation. Let �(H,h) be the set �(H,h)=�0/∼ of

all equivalence classes of such endomorphisms. Since �(H) is finite and since there

are only finitely many embeddings of F into H, it is easy to prove that �(H,h) is a

finite set. At least then we can follow [2, Theorem 1.1]. The association (K,k)�K/k(F)
determines a function α∗ : �(H,h)� �(H/h(F)). There is of course the difficulty that
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the set �(H,h) is not well understood, for example, we do not know whether �(H,h)
has a suitable group structure. Anyway, we are interested in �(H), and we will follow

a different option.

We know (see, e.g., [7]) that if F is a characteristic subgroup of the torsion subgroup

TH of H, then we do have a homomorphism �(H)→ �(H/F), in fact, an epimorphism.

In the calculation that leads up to [2, Theorem 3.1], the subgroup kerα of N that

is being factored out is, indeed, a characteristic subgroup of T (see Proposition 7).

Further we note that Ñ is of the form H × (Z2) for some group H, and then by [7,

Corollary 4.2] we have an isomorphism �(H) → �(Ñ). For such a group H we have

(see [1]) that �(H) = (Zt̃)∗/{1,−1}. Thus it follows that [2, Theorem 3.1] is valid. In

this paper, we will find a more general condition on the pair F �H in order to have a

homomorphism �(H)→ �(H/F), in fact, an epimorphism. Our result in this regard is

more general in that we do not require the group H to be nilpotent.

We recall the following invariant of an �0-group.

Definition 1 (see [9]). For an �0-group H, let n1 be the exponent of the torsion

subgroup TH , let n2 be the exponent of the group Aut(TH), and let n3 be the ex-

ponent of the torsion subgroup of the center of H. We define the natural number

n(H)=n1n2n3.

Note that if H is an �0-group and K is a group for which K×Z � H×Z, then K is

also an �0-group and TK � TH , so that n(K) = n(H). Also note that for such groups

H and K, if ε :H →K is an embedding then the index [K : ε(H)] is finite.

Theorem 2. Let H be an infinite �0-group, and let n = n(H). Let F be a finite

subgroup of H. The following two conditions are equivalent:

(1) given any embedding φ : H → H such that [H : φ(H)] is relatively prime to n,

φ(F)= F ;

(2) if L is any group for which L×Z�H×Z, and β1 and β2 are any two embeddings

of L onto subgroupsK1 andK2, respectively, ofH, with both [H :K1] and [H :K2]
relatively prime to n, then β−1

1 (F)= β−1
2 (F).

Proof. Assume that condition (1) holds and suppose that we are given L, β1, and

β2 as in (2). Then F is contained in both K1 and K2. In order to prove (2), it suffices to

show that, given any isomorphism β :K1 →K2, β(F)= F . By [9, Theorem 4.2] it follows

that there is an embedding γ : H → K1 such that [K1 : γ(H)] is relatively prime to n
(note that n(H) = n(K1)). Let ε : K1 → H and δ : K2 → H be the inclusions. Then we

have embeddings ε◦γ and δ◦β◦γ of H into H. By (1), it follows that ε◦γ(F)= F and

δ◦β◦γ(F)= F . Moreover, ε(F)= F and δ(F)= F , and consequently we have β(F)= F .

So we have proved that (1) implies (2).

The converse implication is clear.

Remark 3. Notice that for any infinite �0-group H and any group L for which

L× Z � H × Z , L is an �0-group and n(L) = n(H). It is then not hard to see that

conditions (1) and (2) of Theorem 2 are equivalent to the following condition:

(3) if β1 and β2 are any two embeddings of H onto subgroups K1 and K2, respec-

tively, of L, with [L :K1] and [L :K2] relatively prime to n, then β1(F)= β2(F).
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We are now able to state and prove a significant result on induced morphisms.

Theorem 4. Let H be an �0-group, and let n = n(H). Let F be a finite subgroup

of H with the property that, given any embedding φ : H → H such that [H : φ(H)] is

relatively prime to n, φ(F) = F . Then, for subgroups K of H with [H : K] relatively

prime to n, the association K�K/F defines an epimorphism η : χ(H)→ χ(H/F).
Proof. We first note that, by implication, F must be a normal subgroup of H. By

the equivalence of (1) and (2) in Theorem 2, it follows that η is well defined. The proof

is completed in a way similar to the proof of [7, Theorem 2.1] using [9, Proposition

6.1].

For an �0-group H, TH has finite characteristic subgroups [TH,TH] and ZTH to

which [7, Theorem 2.1] applies. We point out some other subgroups to which the

more general Theorem 4 is applicable.

Theorem 5. Let H be an infinite �0-group. Let F = [H,H]∩TH . Then H, together

with F , satisfies condition (1) of Theorem 2.

Proof. Let φ :H →H be any embedding such that [H :φ(H)] is relatively prime

to n. Then φ[H,H] = [φH,φH] < [H,H]. Also φ(TH) < TH . Thus φ(F) < F . Since F
is finite, it follows that φ(F)= F .

Theorem 6. Let H be an infinite �0-group. Let F = ZH∩TH . Then H together with

F satisfies condition (1) of Theorem 2.

Proof. Let φ :H →H be any embedding such that [H :φ(H)] is relatively prime

to n. Then φ can be extended to an isomorphism ψ :H×Zk →H×Zk for some k∈N
(see the proof of [9, Theorem 4.1]). Now Z(H×Zk)= (ZH)×Zk. Since the isomorphism

ψ preserves centers and preserves torsion, it follows thatψ(F)= F . Since the induced

homomorphism φ maps TH isomorphically onto TH , it follows that φ(F)= F .

The following result offers an alternative approach to [2, Theorem 3.1], or to a

generalization of it.

Proposition 7. Let n∈N, and let

T = 〈x,y,z | x2 =y2 = z2n = 1, [x,y]= zn, [x,z]= 1= [y,z]〉. (1)

Then the subgroup F = 〈x,y,zn〉 of T is a characteristic subgroup of T .

Proof. We note that F is generated by elements of order 2 and every element of

order 2 in T is contained in F . Therefore F is a characteristic subgroup of T .

Proposition 8. Let n,u ∈ N be such that u is relatively prime to 2n. Let t be the

multiplicative order of umod2n, and let t̃ be the multiplicative order of umodn. Let

T and F be the groups of Proposition 7, and let ζ be the action of Z on T defined (for

a∈ Z) by

(a,z) 
 �→ z(ua), (a,x) 
 �→ x, (a,y) 
 �→y. (2)
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Then, for the group H = T �ζ Z, F�H and we have an epimorphism χ(H)→ χ(H/F)=
(Zt̃)∗/{1,−1}.

In particular, if t̃ = t, then χ(H)� χ(H/F).
Proof. Our conditions ensure that indeed ζ is an action. By Proposition 7, F is a

characteristic subgroup of T , and thus by Theorem 4, there is an epimorphism χ(H)→
χ(H/F). The group H/F is isomorphic to the group

〈
a,b | an = 1, bab−1 = au〉 (3)

and therefore by [5, Theorem 3.8] we have χ(H/F)= (Zt̃ )∗/{1,−1}.
By [8, Theorem 2.6] there is an epimorphism

(
Zt
)∗/{1,−1} �→ χ(H), (4)

and so, if t̃ = t, then χ(H)� χ(H/F).
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