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Two perturbations of an Ostrowski type inequality are established. New error bounds for
the mid-point, trapezoid, and Simpson quadrature rules are derived. These error bounds
can be much better than some recently obtained bounds. Applications in numerical inte-
gration are also given.
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1. Introduction. In the recent years a number of authors have written about gener-
alizations of Ostrowski’s inequality. For example, this topic is considered in [1, 4, 5].
In [4], Dragomir et al. proved the following generalization of Ostrowski’s inequality.

THEOREM 1.1 (see [4]). Let f : [a,b] — R be continuous on [a,b], differentiable
on (a,b), and whose derivative f': (a,b) — R is bounded on (a,b). Denote || ']l =
SUP;efap) | f/(1)] < . Then

f(a)+f(b)
2

b
j F(t)de - [f(x)(l—?\)+ /\}(b—a)‘

(1.1)
1 52 ) a+b\%], .,
s[4(b—a) (A+(1-2) )+<X——2 ) }|f [l oo,

forallA €[0,11anda+A((b—-a)/2) <x <b-A((b—-a)/2).

Using (1.1), the authors obtained estimations of error for the mid-point, trapezoid,
and Simpson quadrature formulae. They also gave applications of the mentioned re-
sults in numerical integration and for special means.

In this paper, we establish two perturbations of (1.1). Using the perturbations, we
derive some new error bounds for the mid-point, trapezoid, and Simpson quadrature
formulae. Similar perturbed inequalities are also considered in [2, 3]. We give appli-
cations in numerical integration. It is shown that these new bounds can give much
better results than the bounds obtained in [4].

2. Perturbed inequalities

THEOREM 2.1. Let I C R be an open interval and a,b € I, a <b.If f :1 - R is a
differentiable function such that y < f'(t) <T, for all t € [a,b], for some constants
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y,I €R, then

‘(b—a)[%(f(aHf(b))+(1—A)f(x)—y(1—/\)<x IR Jf(t)dt‘

2.1)
b-a b-a b-a
< (S—y)max{/\T,x—a—?\T,b—x—AT}(b—a),
A a+b b
‘<b—a>[5(f<a>+f<b>)+<1—A)f<x>—r<1—A>(x—T)]—f f(t)dt‘
2.2)

< (F—S)max{?\h;—a,x—a—ﬂ\b%a,b— —/\b—}(b a),

where S = (f(b) — f(a))/(b—a) and a+ A((b—a)/2) <x <b-A((b—-a)/2), for

Ae[0,1].

PROOF. Define the mapping
K(x,t) = (2.3)

Integrating by parts, we have

["keworwac- [T (an59) s [ i (0-2259) [roa

)\ b
- (h-a) [g(fm) b))+ —A)f(x)] —j Fbdt.

2.4)
We also have
s [ -5 - o485
Mootz Yenet] e
- a-nm-a)(x- 0.
Let C € R be a constant. From (2.4) and (2.5) it follows that
J:K(x,t)[f'(t)—C]dt=J:K(x,t)f’(t)dt—Cﬂ]K(x,t)dt
~ -] (F@+fB) +(1-0)f () 2.6)

—C(l—/\)( ‘“b)] Jf(t)dt.
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If we choose C = y in (2.6), then we get

b
(h—a)[%(f(a)+f(b))+(l—A)f(X)—y(l—?\)(x—azib)]— af(t)dt

) 2.7)
- [ Keenlr 0 -ylat
On the other hand, we have
b b
J K(x,t)[f’(t)—y]dt‘ < max, |K(x,t)] I | f'(t)—yldt, (2.8)

max |K(x,t)| =max{2\g,x—a—2\b_—a,b— —/\b—a}» (2.9)
tela,b] 2 2

Since

Jlf(t yldt=f(b)-f(a)-yb-a)=(S-y)(b-a), (2.10)

from (2.7), (2.8), and (2.9) it follows that (2.1) holds.
If we choose C =T in (2.6), then we get

(b-a)|S(r@+ f o)+ 1= f 0 -Ta-0 (x- 52| —J:fmdt

b
=I K(x,t)[f'(t)-T]dt, (2.11)
b
J [ f(t)-Tldt=T(b—a)-(f(b)-f(a))=T-S)(b-a).

From (2.11) and (2.9), we easily get (2.2). O

COROLLARY 2.2. Under the assumptions of Theorem 2.1, we have

‘f(x)(b—a) y(b- a)(X—ih) Jf(t)dt‘
(2.12)
s(S—y)[;a j ek |o-a,
b
‘f(X)(b—a) Ib-a )(x—aT”’)—j f(t)dt‘
b b (2.13)
<=9 5%+ [x- L2 |-
PROOF. We set A =0 in (2.1) and (2.2). Then we have
max{x—a,b—x}=%[b—a+\2x—a—b\]=%+‘x—%b . (2.14)

Now, it is not difficult to see that (2.12) and (2.13) are valid. O
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REMARK 2.3. In the above proof, we used

max{A,B} = =[A+B+|A-B|], ABEeR.

N | —

(2.15)

If we set x = (a+b)/2 in (2.12) and (2.13), then we get corresponding mid-point

inequalities.
COROLLARY 2.4. Under the assumptions of Theorem 2.1, we have
(b—a)?
2 ’
(b- a)2

‘b_—a[f(aﬂf(b)]—ﬁf(t)dt‘ <(S-y)
2

Fl@)+f(b)] J f(t)dt] <(I-5)
PROOF. We set A =1 in (2.1) and (2.2). Then we have x = (a+b)/2 and

a ha}b—
T2

b-a b—
maX{AT,x—a—/\T b—x—-A——

The proof is now obvious.

COROLLARY 2.5. Under the assumptions of Theorem 2.1, we have

'(b [f(a)zf(b)Jr 1 )__( a+b>} Jf(t)dt‘

o[l esg?

4
(- [M reo -5 (x- 2] - jf(t)dt\

4
T S)[b a+’x a+bH(b7 ).

|-,

4 2

PROOF. We set A =1/2in (2.1) and (2.2). Then we have

b—-a 3a+b a+3b }
- X

max{ 2 y X — 3 2

*max{l(x—aﬁ-‘ atb ) l(b—x+‘x——a+b’)}
B 2 2 )2 2

1 +b b—a a+b
—Z[bfaJrZ’xfT‘Jr\2x7(a+b)|]— 1 +’x7 ‘

The proof of (2.19) and (2.20) is now obvious.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

a

REMARK 2.6. If we set x = (a+b)/2in (2.19) and (2.20), then we get corresponding

inequalities which do not depend on x.
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COROLLARY 2.7. Under the assumptions of Theorem 2.1, we have

b-a 2y a+b
‘T[f(a)+4f(x)+f(b)]—?( ) J f(t)dt‘
(2.22)
-a ‘ a+b
X —

<(S—y)[b— — }(b a),

’b;fl[f<a)+4f<x>+f<b>]—23r(x “”’) jft)dt’
(2.23)
a+b

S(F_S)[b%%r’ 2

H(b a).

PROOF. We set A =1/3in (2.1) and (2.2). Then we have

{Aux a- Ab—“b x— Ab—“}

b—a x_5a+b a+5b_x}
6 ’ 6 ' 6

—max{l(x a+‘x 2a+b‘> l(b—x+‘x—a+2b‘)}
B 2 3 2 3

b—a b- ‘ a+bH
3

= max{

(2.24)

2
a‘ a+b’ ‘b—a a+b
R e ]

Now, it is not difficult to obtain the proof of inequalities (2.22) and (2.23). O
REMARK 2.8. If we set x = (a+b)/2in (2.22) and (2.23), then we get corresponding

Simpson’s inequalities.

3. Applications in numerical integration. The next approximations of the integral
[ £(t)dt hold.

THEOREM 3.1. Let all assumptions of Theorem 2.1 hold. If I, = {a = xp < X1 <
- < xn = b} is a given subdivision of the interval [a,b] and h; = xi;1 — X, i =
0,1,2,...,n—1, then

b
Jﬂ f(t)dt=A(In,§,f)+Ry(In,§yf), (31)

where

A(In, &, f) = g [ < &i— %)]hu (3.2)
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for x; <& <xi:1,1=0,1,2,...,n— 1. The remainder term satisfies

IRy (In, & f) | < > (Si—y)[%+

Xi+Xit+1

gi- X

| (3.3)
where S; = (f(xi41) — f(xi))/hi, i=0,1,...,n—1. Also,

b
[ Foa=atngp) + RelinE.5), (3.4)

where

Xit Xiv1

|Re (I, &, f) | Z (r-s) [h

+ &~

]hi. (3.5)

PROOF. We apply (2.12) to the interval [x;,x;.1], then

‘f(gi)hi_)/<§i_%>hi_ _Mf(t)dt‘
. i (3.6)
< (si-v)[ 2+

&i— >

2

fori=0,1,...,n—1. We also have

FE -y (8- - x"+1f<t>dt=jx”lﬁ(a,t)[f’u)fy]dt, (3.7)

2 Xi Xi

where

R(Ent) = {t_x“ te bt (3.8)

t—xit1, te(&,xial,

fori=0,1,...,n—1.If we now sum (3.7) over i from O to n— 1 and apply the triangle
inequality and (3.6), then we get (3.1), (3.2), and (3.3). In a similar way, we can prove
that (3.4) and (3.5) hold. O

REMARK 3.2. If we set & = (x;+ xj+1)/2 in Theorem 3.1, then we get the composite
mid-point rule.

THEOREM 3.3. Let all the assumptions of Theorem 2.1 hold. If I,, = {a = xo < x1 <
- < Xn = b} is a given subdivision of the interval [a,b] and h; = xj;1 — X4, i =
0,1,2,...,n—1, then

b
L F@O)dt = Ar(Ln, f) + Rey (In, f), (3.9)
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where

Ar(in.f) =2Mh

INWIEES Z (5 y)h?,
and S; = (f(xi+1) = f(xi))/hi, i=0,1,...,n-1. Also
ij(t)dt = Ar(In, f) + Ryr (In, f ),
where

| Rr (In, f) Z I-S;)h?.

_ 15
T2
PROOF. We apply (2.16) to the interval [x;,x;.1], then

Sf(xi) + f(xie1) (Y01
‘Zhl f)dt

Xi

2

fori=0,1,...,n—1. We also have

St i)y, (" piyac= [ kol o -yt
where
P _ o, XitXiv
Ki(t)=t 72 .

1
< = (Si—y)h3,
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

If we now sum (3.15) over i from O to n—1 and apply the triangle inequality and (3.14),
then we get (3.9), (3.10), and (3.11). In a similar way, we can prove that (3.12) and (3.13)

hold.

THEOREM 3.4. Let the assumptions of Theorem 3.1 hold. Then

b
| Pt = Ac(in g f) +Rey (1n,E.5),

where

(I E f) = %i Sl fixi) ,
i=0

S gm0,

for C=y/2, and

[Rey (In,E.f)| Z ~y)[ B

Xit+Xis1

gi- X

Jn.

a

(3.17)

(3.18)

(3.19)
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Also
[ Fde=Ac(n & f) + Ber (1 E.£), 6.20)
where
IRer (In, &, ) | Sg(rsi)[;:Jr Ei*% ]hi (3.21)
and C =T/2.

PROOF. We apply (2.19) to the interval [x;,x;.1], then

M f(gl) i~ %(&‘%)I’li_ XHlf(t)dt‘
xi (3.22)
<(si-y)[ %+

&i— >

2

fori=0,1,...,n—1. We also have

S (xi) +f(X1+1)
4

Xi+Xit1

Sf =Y (8-

)hi— rnde
o i (3.23)

- J K(E, DL (O —yldt

Xi

where

3x;+ X
_%1 tE[Xi,Ei],
K@Et) =1 o (3.24)
t_%! te(gile»l]y
fori=0,1,...,n—1.

If we now sum (3.23) over i from 0 to n— 1 and apply the triangle inequality and
(3.22), then we get (3.17), (3.18), and (3.19). In a similar way we can prove that (3.20)
and (3.21) hold. O

REMARK 3.5. Ifweset&; = (x;+Xx;:+1)/2in Theorem 3.4, then we get corresponding
composite rules which do not depend on &.

THEOREM 3.6. Let the assumptions of Theorem 3.1 hold. Then

b
Ja f(t)dt:AS(Inlgaf)'i_RSy(In!E’f)’ (325)

where

_ n-1
s Eo f) —%Z (i) + 4 () + f (xis1) | i sé(gi—%)hi, (3.26)
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for S =2y/3, and

|Rsy (I &) <g<si—y>[%+ g s
Also
[ Frat=astnE.f)+ Ris (8.,
where
|Rst (In, &) | <1:Z;<r—si)[%+ 5i- X5 |,
and S = 2I'/3.

PROOF. We apply (2.22) to the interval [x;,x;+1], then

Xi

)hi— Hf(t)dt‘

Xi
_ XitXiyl
2

1 2y Xi+Xi+1
S G +4F (8 + F (xas) Ty = 2 (- X202

h;

< (59| %+

&i

]hi,

fori=0,1,...,n—1. We also have

PG +4£ )+ f Gei) Tha =2 (&= X525 = [ ety ae

- [ k@l ©-yla

Xi

[

where
5Xi+ X
t—LTHl, t e [xi,&l,
K(&it) = Xi 45101
t_lTH! te (Einy»l]y

fori=0,1,...,n—1.
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(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

If we now sum (3.31) over i from 0 to n — 1 and apply the triangle inequality and
(3.30), then we get (3.25), (3.26), and (3.27). In a similar way we can prove that (3.28)

and (3.29) hold.

|

REMARK 3.7. If we set & = (x;+ x;.1)/2 in Theorem 3.6, then we get the composite

Simpson’s rule.

The results obtained in this paper can be much better than the results obtained in

[4]. We illustrate this fact for the composite trapezoid quadrature rule.
In [4], we can find the following result:

b
L F@O)dt = Ar(Ln, f) + Re (I, f),

(3.33)



500 NENAD UJEVIC

where

r(In, f i wh“ (3.34)

IRT (In, f)] < ”f I z h2. (3.35)

EXAMPLE 3.8. Choosea=0,b>0,h;=h=(b—a)/n,i=0,1,...,n—1,and f(t) =
tk k> 2. Then

@)=kt y=0, |f'llo=kb*, k>2. (3.36)

From (3.11), we get the right-hand side,

1 ”Z—ll( ) ) pk+1
= Si—y)h; = , k>2. (3.37)
2= to2n
From (3.35), we get the right-hand side,
”f Il z h? = kbn , k>2. (3.38)

i=0

From (3.37) and (3.38) we see that, for this example, estimation (3.11) is better than
estimation (3.35). In fact, if k > 2 then (3.11) is much better than (3.35).

REMARK 3.9. In similar ways we can show that estimations for the mid-point and
Simpson’s composite rules (see Remarks 3.2 and 3.7) can be much better than corre-
sponding estimations obtained in [4].
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