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It is shown that the weak solutions of the evolution equation y′(t)=Ay(t), t ∈ [0,T ) (0<
T ≤∞), where A is a spectral operator of scalar type in a complex Banach space X, defined
by Ball (1977), are given by the formula y(t) = etAf , t ∈ [0,T ), with the exponentials
understood in the sense of the operational calculus for such operators and the set of the
initial values, f ’s, being

⋂
0≤t<T D(etA), that is, the largest possible such a set in X.
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1. Introduction. Consider the evolution equation

y ′(t)=Ay(t), t ∈ [0,T ) (0< T ≤∞), (1.1)

in a complex Banach space X with a spectral operator A of scalar type [2, 5].

Following [1], by a weak solution of (1.1) with a densely defined linear operator A
in a Banach space X, we understand a vector function y : [0,T )→X that satisfies the

following conditions:

(a) y(·) is strongly continuous on [0,T );
(b) for any g∗ ∈D(A∗),

d
dt
〈
y(t),g∗

〉= 〈y(t),A∗g∗〉, 0≤ t < T , (1.2)

where D(·) is the domain of an operator, A∗ is the operator adjoint to A, and

〈·,·〉 is the pairing between the space X and its dual X∗.

Note that the weak solutions thus defined are not expected to satisfy (1.1) in the

classical plug-in sense, that is, when the requirements of y(·), being strongly differ-

entiable and taking values exclusively in D(A), are presupposed implicitly.

It is also readily seen that the notion of a weak solution of (1.1) is more general than

that of the classical one.

When the operator A is closed, the classical solutions of (1.1) are precisely those of

its weak solutions that are strongly differentiable (see [1] for details).

The purpose of the present paper is to stretch out [8, Theorem 3.1] which states

that the general weak solution of (1.1) with a normal operator A in a complex Hilbert

space is of the form

y(t)= etAf , t ∈ [0,T ), f ∈
⋂

0≤t<T
D
(
etA
)
, (1.3)
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the exponentials being understood in the sense of the operational calculus for such

operators [4, 9], to the more general case of a spectral operator of scalar type (scalar

operator ) in a complex Banach space.

Note for that matter that, in a Hilbert space, the scalar operators are the operators

similar to normal ones [10].

The latter result suggests that the weak solutions of (1.1), with the set of their

initial values
⋂

0≤t<T D(etA) being the largest such a set, most inherently represent

the exponential nature of the equation, more so than their classical fellows.

Observe that the same state of affairs is the case when A generates a C0-semigroup

of bounded linear operators {etA | t ≥ 0} in a Banach space [6], the classical and weak

solutions being the orbits etAf with the initial value sets D(A) and X =⋂0≤t<T D(etA),
respectively, [1].

As is to be expected, the departure from a Hilbert space, immediately depriving us

of its powerful inner product techniques, causes certain challenges to be faced in the

following generalization endeavor of ours.

2. Preliminaries. Hereafter, unless specifically stated otherwise, A is a scalar oper-

ator in a complex Banach space X with a norm ‖·‖ and EA(·) is its spectral measure

(resolution of the identity) [2, 5]. Borel sets of the complex plane that has as its values

bounded projection operators on X and enjoys a number of distinctive properties

[2, 5].

For such operators, there is an operational calculus for Borel measurable functions

on the spectrum [2, 5].

If F(·) is a Borel measurable function on the spectrum of A, σ(A), a new scalar

operator

F(A)=
∫
σ(A)

F(λ)dEA(λ) (2.1)

is defined as follows:

F(A)f := lim
n→∞Fn(A)f , f ∈D(F(A)),

D
(
F(A)

)
:=
{
f ∈X | lim

n→∞Fn(A)f exists
}
,

(2.2)

where

Fn(·) := F(·)χ{λ∈σ(A)||F(λ)|≤n}(·), n= 1,2, . . . , (2.3)

(χα(·) is the characteristic function of a set α), and

Fn(A) :=
∫
σ(A)

Fn(λ)dEA(λ), n= 1,2, . . . , (2.4)

being the integrals of bounded Borel measurable functions on σ(A), are bounded

scalar operators on X defined in the same way as for normal operators (e.g., [4, 9]).

In particular,

A=
∫
σ(A)

λdEA(λ). (2.5)



ON AN EVOLUTION EQUATION WITH A SCALAR OPERATOR 557

Note that, if F(·) is a function analytic on an open set U such that E(U)= I (I is the

identity operator ) and {en}∞n=1 is an arbitrary sequence of bounded Borel sets whose

closures are contained in U and EA(
⋃∞
n=1 en)= I, the operator F(A) can also be defined

as follows [5]:

D
(
F(A)

)
:=
{
f ∈X| lim

n→∞F
(
A|EA

(
en
)
X
)
EA
(
en
)
f exists

}
,

F(A)f := lim
n→∞F

(
A|EA

(
en
)
X
)
EA
(
en
)
f , f ∈D(F(A)), (2.6)

where P |Y is the restriction of an operator P to a subspace Y .

The properties of the spectral measure, EA(·), and the operational calculus for scalar

operators underlying the entire argument to follow, are exhaustively delineated in

[2, 5].

Here, we single out one of them, which is a real cornerstone for the statement of

the next section: the spectral measure is bounded, that is, there is an M > 0 such that

∥∥EA(δ)∥∥≤M for any Borel set δ. (2.7)

Note that here the same notation as for the norm in X, ‖·‖, is used to designate

the norm in the space of bounded linear operators on X, �(X). We do so henceforth

for the operator norm as well as for the norm in the dual space X∗, such an economy

of symbols being a rather common practice.

On account of compactness, the terms spectral measure and operational calculus

for spectral operators will be abbreviated to s.m. and o.c., respectively.

3. A characterization of the domain of a scalar operator. As is well known [4, 9],

for a normal operator A with a spectral measure EA(·) in a complex Hilbert space H
with an inner product (·,·), the domain of the operator F(A), F(·) being a complex-

valued Borel measurable function on σ(A), can be characterized in terms of positive

measures:

f ∈D(F(A)) if and only if
∫
σ(A)

∣∣F(λ)∣∣2d
(
E(λ)f ,f

)
<∞. (3.1)

Our purpose here is to obtain an analogue of such a description for scalar operators.

Before we proceed, we agree to use the notation v(f ,g∗,·), f ∈X and g∗ ∈X∗, for

the total variation of the complex-valued Borel measure 〈EA(·)f ,g∗〉.
Proposition 3.1. Let F(·) be a complex-valued Borel measurable function on the

spectrum of a scalar operator A. Then f ∈D(F(A)) if and only if

(i) for any g∗ ∈X∗,

∫
σ(A)

∣∣F(λ)∣∣dv(f ,g∗,λ)<∞; (3.2)
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(ii)

sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)||F(λ)|>n}

∣∣F(λ)∣∣dv(f ,g∗,λ) �→ 0 as n �→∞. (3.3)

Proof

“Only if” part. Let f ∈D(F(A)). Then, by the properties of the o.c. [5],

∫
σ(A)

F(λ)d
〈
EA(λ)f ,g∗

〉= 〈F(A)f ,g∗〉, g∗ ∈X∗, (3.4)

whence condition (i) follows immediately (e.g., [3]).

To prove (ii), note first that, the positive Borel measure

∫
·

∣∣F(λ)∣∣dv(f ,g∗,λ) (3.5)

being the total variation of the complex-valued measure

∫
·
F(λ)d

〈
EA(λ)f ,g∗

〉
, (3.6)

where the dots can be replaced by an arbitrary Borel set we have the estimate [3]

∫
α

∣∣F(λ)∣∣dv(f ,g∗,λ)≤ 4sup
β⊆α

∣∣∣∣∣
∫
β
F(λ)d

〈
EA(λ)f ,g∗

〉∣∣∣∣∣, (3.7)

where α and β are Borel sets.

Henceforth, let δn := {λ ∈ σ(A) | |F(λ)| > n}, n = 1,2, . . . , and let β be a Borel set.

By (3.7),

sup
{g∗∈X∗|‖g∗‖=1}

∫
δn

∣∣F(λ)∣∣dv(f ,g∗,λ)

≤ 4 sup
{g∗∈X∗|‖g∗‖=1}

sup
β⊆δn

∣∣∣∣
∫
δn
F(λ)χβ(λ)d

〈
EA(λ)f ,g∗

〉∣∣∣∣
by the properties of the o.c.

= 4 sup
{g∗∈X∗|‖g∗‖=1}

sup
β⊆δn

∣∣∣∣
〈∫

δn
F(λ)χβ(λ)dEA(λ)f ,g∗

�∣∣∣∣
by the properties of the o.c.

and definitions (2.2), (2.3), and (2.4)

= 4 sup
{g∗∈X∗|‖g∗‖=1}

sup
β⊆δn

∣∣〈EA(β)(F(A)f −Fn(A)f ),g∗〉∣∣

≤ 4 sup
β⊆δn

∥∥EA(β)∥∥∥∥F(A)f −Fn(A)f∥∥ by (3.7)

≤ 4M
∥∥F(A)f −Fn(A)f∥∥ �→ 0 as n �→∞.

(3.8)
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“If” part. Let f ∈ X be a vector satisfying conditions (i) and (ii). Then, for any

natural m and n (m<n), we have, as follows from the Hahn-Banach theorem,

∥∥Fn(A)f −Fm(A)f∥∥
= sup
{g∗∈X∗|‖g∗‖=1}

∣∣〈Fn(A)f −Fm(A)f ,g∗〉∣∣ by (2.3), (2.4)

= sup
{g∗∈X∗|‖g∗‖=1}

∣∣∣∣
〈∫

{λ∈σ(A)||F(λ)|≤n}
F(λ)dEA(λ)f ,g∗

�

−
〈∫

{λ∈σ(A)||F(λ)|≤m}
F(λ)dEA(λ)f ,g∗

�∣∣∣∣ by condition (i)

= sup
‖g∗‖=1

∣∣∣∣
〈∫

σ(A)
F(λ)dEA(λ)f ,g∗

�
−
〈∫

{λ∈σ(A)||F(λ)|>n}
F(λ)dEA(λ)f ,g∗

�

−
(〈∫

σ(A)
F(λ)dEA(λ)f ,g∗

�
−
〈∫

{λ∈σ(A)||F(λ)|>m}
F(λ)dEA(λ)f ,g∗

�)∣∣∣∣

= sup
‖g∗‖=1

∣∣∣∣
〈∫

{λ∈σ(A)||F(λ)|>m}
F(λ)dEA(λ)f ,g∗

�

−
〈∫

{λ∈σ(A)||F(λ)|>n}
F(λ)dEA(λ)f ,g∗

�∣∣∣∣
≤ sup
‖g∗‖=1

∣∣∣∣
∫
{λ∈σ(A)||F(λ)|>m}

F(λ)d
〈
EA(λ)f ,g∗

〉∣∣∣∣

+ sup
‖g∗‖=1

∣∣∣∣
∫
{λ∈σ(A)||F(λ)|>n}

F(λ)d
〈
EA(λ)f ,g∗

〉∣∣∣∣

≤ sup
‖g∗‖=1

∫
{λ∈σ(A)||F(λ)|>m}

∣∣F(λ)∣∣dv(f ,g∗,λ)

+ sup
‖g∗‖=1

∫
{λ∈σ(A)||F(λ)|>n}

∣∣F(λ)∣∣dv(f ,g∗,λ) �→ 0 as m,n �→∞, by (ii).

(3.9)

Thus, {Fn(A)f}∞n=1 is a Cauchy sequence converging in the Banach space X, which

implies that f belongs to D(F(A)).

4. The principal statement. The following lemma consists of three easy to prove

statements, which become handy when engaging dual space techniques.

Lemma 4.1. (i) For any Borel set δ, EA(δ)∗ is a bounded projection operator in the

dual space X∗.

(ii) For any bounded Borel set δ,

E∗A(δ)X
∗ ⊆D(A∗). (4.1)

(iii) For any Borel set δ,

E∗A(δ)A
∗ ⊂A∗E∗A(δ), (4.2)

where P ⊂Q means that an operator Q is an extension of an operator P .
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Proof. (i) Immediately follows from the properties of conjugates.

(ii) Let δ be a bounded Borel set. For any g∗ ∈ X∗, consider the following linear

functional:

D(A)
 f � �→ 〈Af ,E∗A(δ)g∗〉. (4.3)

We have

〈
Af ,E∗A(δ)g

∗〉= 〈EA(δ)Af ,g∗〉, f ∈D(A), g∗ ∈X∗. (4.4)

By the properties of s.m., EA(δ)A ⊂ AEA(δ) and EA(δ)X ⊆D(A). By the closed graph

theorem, the closed linear operator AEA(δ) defined on the entire space X is bounded

and so is EA(δ)A (note that the operator AEA(δ) is the closure of EA(δ)A). Whence

the boundedness of functional (4.3) follows immediately.

Therefore, E∗A(δ)g∗ ∈D(A∗) and

〈
Af ,E∗A(δ)g

∗〉= 〈f ,A∗E∗A(δ)g∗〉. (4.5)

(iii) By the properties of s.m., EA(δ)A⊂AEA(δ), which immediately implies that

E∗A(δ)A
∗ ⊂ (AEA(δ))∗ ⊂ (EA(δ)A)∗ = EA(δ) is bounded =A∗EA(δ)∗. (4.6)

Theorem 4.2. A vector function y : [0,T ) � X is a weak solution of (1.1) on the

interval [0,T ) (0< T ≤+∞) if and only if there is a vector f ∈⋂0≤t<T D(etA) such that

y(t)= etAf , t ∈ [0,T ). (4.7)

Proof

“Only if” part. Let y(·) be a weak solution of (1.1) on the interval [0,T ) and

∆n := {λ∈ σ(A) | |λ| ≤n}, n= 1,2, . . . .
Consider the following sequence of vector functions:

yn(t)= EA
(
∆n
)
y(t), t ∈ [0,T ), n= 1,2, . . . . (4.8)

The strong continuity of the functions yn(·)’s on [0,T ) follows from that of y(·)
the boundedness of the projections EA(∆n)’s.
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Further, for any natural n and each g∗ ∈X∗,

d
dt
〈
yn(t),g∗

〉

= d
dt
〈
EA
(
∆n
)
y(t),g∗

〉= d
dt
〈
y(t),E∗A

(
∆n
)
g∗
〉

since by Lemma 4.1 E∗A
(
∆n
)
g∗ ∈D(A∗)

and y(·) is a weak solution of (1.1)

= 〈y(t),A∗E∗A(∆n)g∗〉 by Lemma 4.1,

A∗E∗A
(
∆n
)=A∗[E∗A(∆n)]2 = E∗A(∆n)A∗E∗A(∆n)

= 〈y(t),E∗A(∆n)A∗E∗A(∆n)g∗〉= 〈EA(∆n)y(t),A∗E∗A(∆n)g∗〉
by the properties of s.m., ∆n being bounded,

AEA
(
∆n
)∈�(X) and is the closure of EA

(
∆n
)
A,

hence, A∗E∗A
(
∆n
)= (EA(∆n)A)∗ = (AEA(∆n))∗

= 〈yn(t),(AEA(∆n))∗g∗〉, t ∈ [0,T ).

(4.9)

Thus, for any natural n, yn(·) is a weak solution of the equation

y ′(t)=AEA
(
∆n
)
y(t), 0≤ t < T , (4.10)

which, since the operator AEA(∆n) is bounded, implies [1] that

yn(t)= etAEA(∆n)yn(0)= etAEA(∆n)EA
(
∆n
)
f , 0≤ t < T , (4.11)

where f :=y(0).
Since A|EA(∆n) ⊂ AEA(∆n), n = 1,2, . . . , etA|EA(∆n)X ⊂ etAEA(∆n), 0 ≤ t < T , n =

1,2, . . . (all the operators are bounded).

Hence, for 0≤ t < T and n= 1,2, . . . ,

etA|EA(∆n)XEA
(
∆n
)
f = etAEA(∆n)EA

(
∆n
)
f = EA

(
∆n
)
y(t). (4.12)

Since {∆n}∞n=1 is an increasing sequence of bounded Borel sets such that
⋃∞
n=1∆n =

C, limn→∞EA(∆n)y(t)=y(t), 0≤ t < T .

Whence, by definition (2.6), we infer that f ∈ ⋂0≤t<T D(etA) and y(t) = etAf , 0 ≤
t < T .

“If” part. Consider an arbitrary segment [a,b]⊂ [0,T ) (0≤ a< b < T).
Let δn := {λ∈ σ(A) | Reλ≤ lnn/b}, n= 1,2, . . . and

An :=AEA
(
δn
)
, n= 1,2, . . . . (4.13)

Since, by the properties of s.m., σ(An) ⊆ {λ ∈ C | Reλ ≤ lnn/b}, n = 1,2, . . . , the

operator An generates the C0-semigroup of linear bounded operators, which consists

of its exponentials {etAn | t ≥ 0} [7].
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Then [1], for any f ∈X and g∗ ∈X∗,

〈
etAnf ,g∗

〉−〈f ,g〉 =
∫ t

0

〈
esAnf ,A∗ng∗

〉
ds, 0≤ t < T . (4.14)

We show that, for any f ∈ ⋂0≤t<T D(etA), the sequence of vector functions e·Anf
converges to e·Af uniformly on [a,b].

Thus, for f ∈⋂0≤t<T D(etA),

sup
a≤t≤b

∥∥etAf −etAnf∥∥ as follows from the Hahn-Banach theorem,

sup
a≤t≤b

sup
{g∗∈X∗|‖g∗‖=1}

∣∣〈etAf −etAnf ,g∗〉∣∣,
by the properties of the o.c.

= sup
a≤t≤b

sup
{g∗∈X∗|‖g∗‖=1}

∣∣∣∣
∫
σ(A)

[
etλ−etλχδn (λ)]d〈EA(f ,g∗)〉

∣∣∣∣

= sup
a≤t≤b

sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)|Reλ>lnn/b}

∣∣etλ−1
∣∣dv(f ,g∗,λ)

since, under the restrictions on t and λ, tReλ≥ 0

≤ sup
a≤t≤b

sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)|Reλ>lnn/b}

2etReλdv
(
f ,g∗,λ

)

≤ 2 sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)|Reλ>lnn/b}

ebReλdv
(
f ,g∗,λ

)

= 2 sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)||ebλ|>n}

∣∣ebλ∣∣dv(f ,g∗,λ) �→ 0 as n �→∞,

(4.15)

by Proposition 3.1, since f ∈D(ebA), in particular.

Because [a,b] ⊂ [0,T ) is an arbitrary segment, the latter implies that the function

e·Af is strongly continuous on [0,T ) for any f ∈⋂0≤t<T D(etA).
Furthermore, for any g∗ ∈D(A∗),

∥∥A∗g∗−A∗ng∗∥∥= ∥∥A∗g∗−(AEA(δn))∗g∗∥∥= ∥∥A∗g∗−E∗A(δn)A∗g∗
∥∥

= ∥∥EA({λ∈ σ(A)∣∣Reλ > lnn/b
})
A∗g∗

∥∥ �→ 0 as n �→∞, (4.16)

{λ ∈ σ(A) | Reλ > lnn/b} being a decreasing sequence of Borel sets with empty

intersection.

It is not difficult to make sure now that, for any 0 ≤ t < T , f ∈⋂0≤t<T D(etA), and

g∗ ∈D(A∗),

sup
0≤s≤t

∣∣〈esAnf ,A∗ng∗〉−〈esAf ,A∗g∗〉∣∣ �→ 0 as n �→∞. (4.17)
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Passing to the limit in (4.14) as n→∞, for any f ∈⋂0≤t<T D(etA) and g∗ ∈D(A∗),
we obtain:

〈
etAf ,g∗

〉−〈f ,g〉 =
∫ t

0

〈
esAf ,Ag∗

〉
ds, 0≤ t < T . (4.18)

Whence
d
dt
〈
etAf ,g∗

〉= 〈etAf ,Ag∗〉, 0≤ t < T . (4.19)

References

[1] J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants
formula, Proc. Amer. Math. Soc. 63 (1977), no. 2, 370–373.

[2] N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958),
217–274.

[3] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Applied
Mathematics, vol. 7, Interscience Publishers, New York, 1958.

[4] , Linear Operators. Part II: Spectral Theory.Self Adjoint Operators in Hilbert Space,
Interscience Publishers, New York, 1963.

[5] , Linear Operators. Part III: Spectral Operators, Pure and Applied Mathematics,
vol. 7, Interscience Publishers, New York, 1971.

[6] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical
Society Colloquium Publications, vol. 31, American Mathematical Society, Rhode
Island, 1957.

[7] M. V. Markin, A note on the spectral operators of scalar type and semigroups of bounded
linear operators, to appear in Int. J. Math. Math. Sci.

[8] , On the strong smoothness of weak solutions of an abstract evolution equation. I.
Differentiability, Appl. Anal. 73 (1999), no. 3-4, 573–606.

[9] A. I. Plesner, Spectral Theory of Linear Operators, Nauka, Moscow, 1965 (Russian).
[10] J. Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355–

361.

Marat V. Markin: Department of Mathematics and Statistics, Boston University,
111 Cummington Street, Boston, MA 02215, USA

E-mail address: mmarkin@bu.edu

mailto:mmarkin@bu.edu

