LNC POINTS FOR m-CONVEX SETS

MARILYN BREEN

Department of Mathematics
The University of Oklahoma
Norman, Oklahoma 73019 U.S.A.
(Received April 8, 1980 and in revised form September 4, 1980)

Abstract

Let S be closed, m-convex subset of R^{d}, S locally a full $d-$ dimensional, with Q the corresponding set of 1 nc points of S. If q is an essential lnc point of order k, then for some neighborhood U of $q, Q \cap U$ is expressible as a union of k or fewer ($d-2$)-dimensional manifolds, each containing q. For S compact, if to every $q \in Q$ there corresponds $a k>0$ such that q is an essential lnc point of order k, then Q may be written as

 a finite union of (d -2)-manifolds.For q any lnc point of S and N a convex neighborhood of q, $N \cap$ bdry $S \nsubseteq Q$. That is, Q is nowhere dense in bdry S. Moreover, if $\operatorname{conv}(Q \cap N) \subseteq S$, then $Q \cap N$ is not homeomorphic to a (d-1)-dimensional manifold.

KEY WORDS AND PHRASES. Points of nonconvexity, m-Convex Sets. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 52.A20, 52.A40.

1. INTRODUCTION.

Let S be a subset of R^{d}. The set S is said to be m-convex, $m \geq 2$, if and only if for every m distinct points in S, at least one of the (${ }_{2}^{m}$) line segments determined by these points lies in S. If the m-convex set S is not j-convex for $j<m$, then S is exactly m-convex. A point x in S is said to be a point of local convexity of S if and only if there is some
neighborhood N of x such that if $y, z \in S \cap N$, then $[y, z] \subseteq S$. If S fails to be locally convex at some point q in S, then q is called a point of local nonconvexity (lnc point) of S .

Few studies have been made concerning points of local nonconvexity for mconvex sets. Valentine [3] has proved that for S a compact 3-convex subset of R^{d} with Q the corresponding set of 1 nc points of S, if int ker $S \neq \phi$ and $Q \subseteq$ int conv S, then Q consists of a finite number of disjoint closed (d - 2)-dimensional manifolds. The purpose of this paper is to obtain an analogue of Valentine's result for m-convex sets.

The following familiar terminology will be used: For points x, y in S, we say \underline{x} sees \underline{y} via \underline{S} if and only if the corresponding segment [x, y] lies in S. Points x_{1}, \ldots, x_{n} in S are visually independent via S if and only if for $1 \leq i<j \leq n, x_{i}$ does not see x_{j} via S. Throughout the paper, aff S, conv S , ker S , int S , rel int S , bdry S, and cl S will be used to denote the affine hull, convex hull, kernel, interior, relative interior, boundary, and closure, respectively, of the set S.

Also, for points x and $y, R(x, y)$ will denote the ray emanating from x through y, and for point x and set T, cone (x, T) will represent $U\{R(x, t): t \in T\}$.

Finally, S will be a closed subset of R^{d} which is locally a full ddimensional - i.e., for s in S and N any neighborhood of s, $\operatorname{dim}(S \cap N)=d . \quad$ And Q will denote the set of lnc points of S.

2. ESSENTIAL LNC POINTS OF ORDER K .

We begin with the following definitions for the closed set S and its corresponding collection of 1 nc points Q. The first definition is an adaptation of Definition 1 in [1].

DEFINITION 1. Let $q \in Q$. We say that q is essential if and only if there is some neighborhood N^{\prime} of q such that for every convex neighborhood N of q with $N \subseteq N^{\prime},(S \cap N) \sim Q$ is connected.

DEFINITION 2. We say that $q \in Q$ has order k if and only if there is
some neighborhood N^{\prime} of q such that the following are true.

1) $\operatorname{Conv}\left(Q \cap N^{\prime}\right) \subseteq S$.
2) For every convex neighborhood N of q with $N \subseteq N^{\prime},(S \cap N) \sim$ $\operatorname{conv}(Q \cap N)$ contains at least one k-tuple of points which are visually independent via S and no ($k+1$-tuple of points visually independent via S.
3) For every convex neighborhood N of q with $N \subseteq N^{\prime}, \operatorname{dim} \operatorname{conv}(Q \cap N)$ $=\operatorname{dim} \operatorname{conv}\left(Q \cap N^{\prime}\right)$. If this dimension is d, then $q \in$ int $\operatorname{conv}(C U(Q \cap N))$ for each component C of $(S \cap N) \sim \operatorname{conv}(Q \cap N)$ If this dimension is $d-1$, then $q \in \operatorname{rel}$ int ($\cap \cap \operatorname{aff}(Q \cap N)$).

The following lemmas will be useful.
LEMMA 1. Let S be a closed m-convex set in R^{d}, with Q the corresponding set of 1 nc points of S. Then $Q \subseteq c 1(S \sim Q)$.

PROOF. Suppose on the contrary that for some point q in Q and some neighborhood N of $q, N \cap(S \sim Q)=\phi$. Then $S \cap N \subseteq Q$. Select x_{1}, x_{1}^{\prime} in $S \cap N$ which are visually independent via S, and let $M, M^{\prime} \subseteq N$ be neighborhoods of x_{1} and x_{1}^{\prime} respectively so that no point of M sees any point of M^{\prime} via S. Since $x_{1}^{\prime} \in Q$, choose x_{2}, x_{2}^{\prime} in $M^{\prime} \cap S$ which are visually independent via S . By an obvious induction, we obtain m visually independent points $x_{1}, x_{2}, \ldots, x_{m}$, contradicting the m-convexity of S. Our assumption is false and $Q \subseteq c l(S \sim Q)$.

LEMMA 2. Let N be a convex neighborhood for which $\operatorname{conv}(Q \cap N) \subseteq S$, let $x \in S \cap N$, and let Q_{x} denoie the subset of $\operatorname{conv}(Q \cap N)$ which x sees via S. Then $\operatorname{conv}\left(Q_{x} U\{x\}\right) \subseteq S$.

PROOF. Let $y \in \operatorname{conv}\left(Q_{x} U\{x\}\right)$ to prove that $y \in S$. Then by Carathédory's theorem, $y \in \operatorname{conv}\left\{z_{1}, \ldots, z_{k+1}\right\}$ for an appropriate $k+1$ member subset of $Q_{x} U\{x\}, k \leq d$. If $y \in c 1 \operatorname{conv}(Q \cap N) \subseteq S$, the argument is finished, so assume that $y \notin c l \operatorname{conv}(Q \cap N)$. Hence one of the z_{i} points above must be x, and we may assume that $y \in \operatorname{conv}\left\{x, z_{1}, \ldots, z_{k}\right\}$, where $z_{i} \in Q_{x}$ for $1 \leq i \leq k$. Further, we assume that k is minimal. Then
$P \equiv \operatorname{conv}\left\{x, z_{1}, \ldots, z_{k}\right\}$ is a k-simplex having y in its relative interior.
We use an inductive argument to finish the proof. Clearly the result is true for $k=1$. For $k \geq 2$, assume that the result is true for all natural numbers less than k, to prove for k. Thus we may assume that every proper face of P lies in S.

Since $y \notin c l \operatorname{conv}(Q \cap N)$, there is a hyperplane H strictly separating y from $c l \operatorname{conv}(Q \cap N)$, and clearly $\{x, y\}$ and $\left\{z_{1}, \ldots, z_{k}\right\}$ lie in opposite open halfspaces determined by H.

Let H^{\prime} be a hyperplane parallel to H and containing y, and let L be a line in H^{\prime} with $y \in L$. Then $L \cap P$ is an interval $[a, b]$ where a and b lie in facets of P. Hence by our induction hypothesis, $[x, a] U[x, b] \subseteq S$. Clearly $Q \cap N$ and $\{x\}$ lie on opposite sides of H^{\prime}, so there can be no lnc point of S in $\operatorname{conv}\{x, a, b\}$. Therefore, by a lemma of Valentine [4, Corollary 1], $\operatorname{conv}\{x, a, b\} \subseteq S$. Thus $y \in S$ and the lemma is proved.

The following theorem is an analogue of Valentine's result for 3-convex sets.

THEOREM 1. Let S be a closed m-convex set in R^{d}, S locally a full d-dimensional, with Q the corresponding set of 1 nc points for S. If q is an essential 1nc point of order k, then for some neighborhood U of q, $U \cap Q$ is expressible as a union of k or fewer ($d-2$)-dimensional manifolds, each containing q.

PROOF. Let N^{\prime} be a convex neighborhood of q satisfying Definitions 1 and 2. The proof will require three cases, each determined by the dimension of $\operatorname{conv}\left(Q \cap N^{\prime}\right)$.

CASE 1. Assume that for every neighborhood M of q with $M \subseteq N^{\prime}$, $\operatorname{dim} \operatorname{conv}(Q \cap M)=d$. We proceed by induction on the order of q. Tf the order of q is 2 , then $S \cap N^{\prime}$ is 3 -convex, and $S^{\prime}=c l\left(S \cap N^{\prime}\right)$ is compact and 3-convex. Letting Q^{\prime} denote the set of 1 nc points of S^{\prime}, clearly $Q^{\prime}=c 1\left(Q \cap N^{\prime}\right)$. It is easy to show that every 1 nc point of a 3-convex set lies in the kernel of that set, so $Q^{\prime} \subseteq$ ker S^{\prime} and hence int ker $S^{\prime} \neq \phi$. Also,
since q satisfies Definition 2, $q \in \operatorname{int}$ conv S^{\prime}. Thus by [3, Lemma 4 and 5], there is a neighborhood U of q such that $Q \cap U$ is a (d-2)-dimensional manifold.

Inductively, assume that the result is true for order $q<k$ to prove for order $q=k$. Since a closed m-convex set is locally starshaped [2, Lemma 2], without loss of generality assume that $S \cap N^{\prime}$ is starshaped relative to q. Let V be a neighborhood in int $\operatorname{conv}\left(Q \cap N^{\prime}\right)$ and select a point $p \in N^{\prime}$ so that $q \in \operatorname{int} \operatorname{conv}(\{p\} U V) \equiv W$. Since $q \in$ int $\operatorname{conv}(C U(Q \cap W))$ for every component C of $(S \cap W) \sim \operatorname{conv}(Q \cap W)$, we may select $x \in(S \cap W) \sim \operatorname{conv}(\cap \cap W)$ so that $R(x, q)$ intersects int conv $(Q \cap W)$. Finally, select a convex neighborhood N of $q, N \subseteq W$, so that for all r in $N \cap \operatorname{bdry} \operatorname{conv}(Q \cap W), R(x, r)$ intersects int $\operatorname{conv}(Q \cap W),[R(x, r) \sim[x, r)] \cap N \subseteq \operatorname{conv}(Q \cap W)$, and $[x, r) \cap \operatorname{conv}(Q \cap W)=\phi$.

Let T denote the subset of $N \cap \operatorname{conv}(Q \cap W)$ seen by x. By the proof of Lemma 2, $\operatorname{conv}(T U\{x\}) \subseteq S$. Let K denote the closure of the set $\operatorname{conv}(T U\{x\}) U \operatorname{conv}(Q \cap W)$, with Q_{k} the corresponding set of 1 nc points of K We assert that $Q \cap T=Q_{k} \cap N$: By our construction, for r in $Q \cap T$, clearly $r \in Q_{k}$, so $r \in Q_{k} \cap N$. To obtain the reverse inclusion, for r in $Q_{k} \cap N$, certainly $r \in \operatorname{conv}(Q \cap W) \cap \operatorname{conv}(T U\{x\})$, so r is a point of $N \cap \operatorname{conv}(Q \cap W)$ which x sees via S, and $r \in T$. Now if r were not in Q, then r would not be an lnc point of S, so for some neighborhood A of $r, S \cap A$ would be convex and hence disjoint from Q. Without loss of generality, assume that $A \subseteq N$. Since $R(x, r)$ intersects int $\operatorname{conv}(Q \cap W)$, select v in $A \cap \operatorname{int} \operatorname{conv}(Q \cap W) \cap R(x, r) \subseteq \operatorname{int}(S \cap A)$ and select w in $(x, r) \cap A \subseteq S \cap A$. Then since $S \cap A$ is convex, $r \in(v, w) \subseteq \operatorname{int}(S \cap A)$. Let H be a hyperplane supporting $\operatorname{conv}(Q \cap W)$ at r, with x in the open halfspace H_{1} determined by H . Using Valentine's lemma [4, Corollary 1], it is not hard to show that x sees $S \cap A \cap H_{1}$ via S, and since $r \in \operatorname{int}(S \cap A)$, x sees some neighborhood A^{\prime} of r via $S, A^{\prime} \subseteq A . B u t$ since $A^{\prime} \subset N$, this implies that $r \in \operatorname{int} \operatorname{conv}\left(A^{\prime} U\{x\}\right) \subseteq$ int $\operatorname{conv}(T U\{x\}) \subseteq$ int K, contradicting the fact that
$r \in Q_{k}$. We conclude that $Q_{k} \cap N \subseteq Q \cap T$, the sets are equal, and our assertion is proved.

To complete Case 1, unfortunately it is necessary to examine two subcases:
CASE la. If $\operatorname{conv}(T U\{x\})$ has dimension d, then by a previous argument the set K and the point $q \in K$ satisfy the hypotheses of [3, Lemma 4]. Hence for some neighborhood U^{\prime} of $q, Q_{k} \cap U^{\prime}$ is a (d-2)-dimensional manifold.

Now let C denote the component of $(S \cap W) \sim \operatorname{conv}(Q \cap W)$ which contains x, and let $S^{\prime}=c 1(S \sim C)$. Select a convex neighborhood M of $q, M \subseteq N \subseteq W$, so that $S^{\prime} \cap M$ contains no point of $\operatorname{cone}(x, T) \sim \operatorname{conv}(Q \cap W)$. Then for y in ($\left.S^{\prime} \cap M\right) \sim \operatorname{conv}(Q \cap W)$, we assert that $[y, x] \nsubseteq S \cap M: I f \quad[y, x] \subseteq S \sim$ $\operatorname{conv}(Q \cap W) ;$ then $y \in C$, impossible. And if $[y, x] \cap \operatorname{conv}(Q \cap W) \neq \phi$, then y would lie in cone (x, T), again impossible.

Thus $S^{\prime} \cap \mathrm{M}$ has at most $\mathrm{k}-1$ visually independent points not in $\operatorname{conv}(Q \cap W)$. If q is an lnc point of S^{\prime}, then q is an essential lnc point of S^{\prime} of order at most $k-1$. Letting Q^{\prime} denote the set of 1 nc points of S^{\prime}, Q^{\prime} contains all lnc points of $S \cap M$ which do not lie in $Q \cap T=Q_{k} \cap N$. By an inductive argument, for an appropriate neighborhood U of $q, Q^{\prime} \cap U$ is expressible as a union of $k-1$ or fewer ($d-2$)-manifolds which contain q. For simplicity of notation assume that $U \subseteq U^{\prime} \cap N$. Then $Q \cap U=$ $\left(Q^{\prime} \cap U\right) U(Q \cap T \cap U)=\left(Q^{\prime} \cap U\right) U\left(Q_{k} \cap U\right)$ is a union of k or fewer $(d-2)-$ manifolds, the desired result.

If q is not an lnc point of S^{\prime}, select the neighborhood U of q so that $S^{\prime} \cap \mathrm{U}$ is convex, $U \subseteq U^{\prime} \cap N$. Then $Q \cap U=Q_{k} \cap U$ is a (d-2)manifold. This finishes Case la.

CASE 1b. Suppose that Case 1a does not occur. Hence $\operatorname{conv}(T)\{x\})$ has dimension $\leq \mathrm{d}-1$. By a previous argument for some neighborhood N of q, $Q_{k} \cap N=Q \cap T$. Also, since $\operatorname{dim} \operatorname{conv}(Q \cap W)=d$ and $\operatorname{dim} \operatorname{conv}(T U\{x\}) \leq d-1$, it is clear that $Q_{k} \cap N$ is exactly the set of points of intersection of $\operatorname{conv}(Q \cap W)$ with $(\operatorname{conv}(T U\{x\})) \cap N$, so $T=Q_{k} \cap N \subseteq Q$.

Recall that N is a neighborhood of q satisfying the definition of essential,
so $(S \cap N) \sim Q$ is locally convex and connected and hence polygonally connected. Select points v, w in $K \cap N, v<q<w$, with $v \in(x, q)$ and $w \in$ int $\operatorname{conv}(Q \cap W)$. Let λ be a polygonal path in $(S \cap N) \sim Q$ from v to w. Then $\lambda \cup[x, v]$ is a path in $S \sim Q$ from x to w. Now by our definition of W, bdry conv $(Q \cap W)$ separates N into two disjoint connected sets. Let $v=t_{1}, \ldots, t_{n}=w$ denote the consecutive vertices of λ, and assume that they are labeled so that t_{j} is the first point of λ in $\operatorname{conv}(Q \cap W)$. Clearly $j>1$. Then $\left[x, t_{1}\right] U\left[t_{1}, t_{2}\right] \subseteq S \sim Q$. Furthermore, by our choice of N, we assert that there can be no 1 nc point r in int $\operatorname{conv}\left\{\mathrm{x}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\}$: Otherwise, clearly r would lie in $N \cap$ bdry $\operatorname{conv}(Q \cap W)$, so $[R(x, r) \sim[x, r)] \cap N \subseteq$ $\operatorname{conv}(Q) W)$. Since $R(x, r) \sim[x, r)$ intersects $\left(t_{1}, t_{2}\right)$, then $\left(t_{1}, t_{2}\right) \cap$ $\operatorname{conv}(Q \cap W) \neq \phi$, contradicting our choice of t_{j}. Then by a generalization of Valentine's lemma [4, Corollary 1], $\left[x, t_{2}\right] \subseteq S$. For $j>2$, the above argument may be used to show that $\left[x, t_{2}\right] \subseteq S \sim Q$. An easy induction gives $\left[x, t_{j-1}\right] \subseteq S \sim Q$ and $\left[x, t_{j}\right] \subseteq S$. Thus $t_{j} \in T$. However, this is impossible since $t_{j} \notin Q$ and we know that $T \subseteq Q$. We conclude that Case $1 b$ cannot occur, $\operatorname{dim} \operatorname{conv}(T U\{x\})=d$, and the previous argument in Case 1a guarantees our result.

CASE 2. Assume that N^{\prime} may be selected so that for M^{\prime} any convex neighborhood of q and $M^{\prime} \subseteq N^{\prime}, \operatorname{dim} \operatorname{conv}\left(Q \cap M^{\prime}\right)=d-1$. Let M be such a neighborhood of q, and let $H=\operatorname{aff}(Q \cap M)$. By Definition 2, we have $q \in \operatorname{rel} \operatorname{int}(S \cap H)$, so without loss of generality we may assume that $M \cap H \subseteq S$. Also assume that $M \cap S$ is starshaped relative to q.

Select k visually independent points x_{1}, \ldots, x_{k} in $S \cap M$. Since S is locally a full d-dimensional, clearly these points may be selected in $(S \cap M) \sim H$. For each i, consider the set T_{i} in $M \cap H$ seen by x_{i}. By arguments used in the proof of Lemma 2 , it is easy to show that $\operatorname{conv}\left(\left\{x_{i}\right\} \cup T_{i}\right)$ \subseteq S . Also, using the definition of essential, one may show that T_{i} is a (d - 1)-dimensional set.

For simplicity of notation, assume that q is the origin in R^{d} and that H
is orthogonal to the vector $e_{1}=(1,0, \ldots, 0)$. Let H_{1}, H_{2} denote distinct open halfspaces determined by H, labeled so that e_{1} is in H_{1}. Finally, define S_{i} to be the closure of the set

$$
\operatorname{conv}\left(\left\{x_{i}\right\} \cup T_{i}\right) \cup((M \cap H) \times[q, z])
$$

where $z=-e_{1}$ if $x_{i} \in H_{1}$ and $z=e_{1}$ if $x_{i} \in H_{2}$.
For each i, it is easy to show that the set Q_{i} of lnc points of S_{i} lies in Q. Furthermore, every point of $Q \cap M$ is an lnc point for some S_{i} set. Now S_{i} is 3-convex, $q \in\left(i n t \operatorname{conv} S_{i}\right) \cap Q_{i}$, and it is easy to see that int ker $S_{i} \neq \phi$ for each i. Hence by Valentine's theorem there is a neighborhood U_{i} of q so that $U_{i} \cap Q_{i}$ is a (d-2)-dimensional manifold. Thus for an appropriate neighborhood U of $q, U \cap Q$ is a union of $k(d-2)$-manifolds, each containing q.

CASE 3. In case $\operatorname{conv}(Q \cap M)$ has dimension $\leq d-2$ for some neighborhood M of q, we assert that $\operatorname{conv}(Q \cap M)=Q \cap M$ and hence $Q \cap M$ is a convex set of dimension $d-2$ by a result in [1].

Without loss of generality, assume that M is a convex neighborhood of q satisfying Definition 1 . Let S^{\prime} denote the closure of the set $S \cap M$, $Q^{\prime}=c l(Q \cap M)$ the corresponding set of lnc points of S^{\prime}. Since M satisfies Definition 1, $S^{\prime} \sim Q^{\prime}$ is connected. By a previous lemma, $Q^{\prime} \subseteq c l\left(S^{\prime} \sim Q^{\prime}\right)$, so $S^{\prime} \sim Q^{\prime} \subseteq S^{\prime} \subseteq \underline{c} 1\left(S^{\prime} \sim Q^{\prime}\right)$, and S^{\prime} is connected. We have S^{\prime} closed, connected, and $S^{\prime} \sim Q^{\prime}$ connected, so $S^{\prime}=c 1\left(i n t S^{\prime}\right)$ by [1, Lemma 1]. Also, by the argument in [1, Lemma 4], the set $S^{\prime} \sim \operatorname{aff} Q^{\prime}$ is connected.

Now let r be a point in $\operatorname{conv}(Q \cap M)$ to show that $r \in Q$. Let A denote the subset of $S^{\prime} \sim \operatorname{aff} Q^{\prime}$ which r sees via S. By repeating arguments in [1, Lemma 5], it is easy to show that A is open and closed in $S^{\prime} \sim \operatorname{aff} Q^{\prime}$ and that $A \neq \phi$. Hence $A=S^{\prime} \sim$ aff Q^{\prime}, and r sees $S^{\prime} \sim$ aff Q^{\prime} via S.

Finally, select x, y in $S^{\prime} \sim \operatorname{aff} Q^{\prime}$ with $[x, y] \nsubseteq S$ and $\& \& a f f\left(Q^{\prime} U\{x\}\right)$ (Clearly this is possible since $\left.S^{\prime}=c l\left(i n t S^{\prime}\right).\right)$ By Valentine's lemma [4], there must be some lnc point in $\operatorname{conv}\{x, y, r\} \sim[x, y]$, but by our choice of x and y, there can be no lnc point p in $\operatorname{conv}\{x, y, r\} \sim([x, y] U\{r\}):$ Otherwise,
$y \in \operatorname{aff}\{p, x, r\} \subseteq \operatorname{aff}\left(Q^{\prime} \cup\{x\}\right)$, impossible. Hence r must belong to Q and $\operatorname{conv}(Q \cap M) \subseteq Q \cap M$. The reverse inclusion is obvious, $\operatorname{conv}(Q \cap M)=Q \cap M$, and the assertion is proved.

The set S^{\prime} is a closed connected set whose corresponding set of lnc points is convex and satisfies Definition 1 in [1]. Hence by the corollary to Theorem 2 in [1], Q^{\prime} has dimension $d-2$. This completes Case 3 and finishes the proof of the theorem.

COROLLARY 1. Let S be a compact m-convex set in R^{d}, S locally a full d-dimenisonal, with Q the corresponding set of lnc points of S. Assume that for every point q in Q, there is some $k>0$ such that q is an essential lnc point of order k. Then Q is a finite union of ($d-2$)-dimensional manifolds.

PROOF. Since Q is compact, the result is an immediate consequence of Theorem 1.

The following examples reveal that Theorem 1 fails in case q does not satisfy both Definition 1 and Definition 2, part 3.

EXAMPLE 1. It is easy to find examples which show that q must be essential in Theorem 1. For $d \geq 3$, simply consider two d-dimensional convex sets which meet in a single point q.

EXAMPLE 2. To see that Definition 2, part 3 is required when $\operatorname{dim} \operatorname{conv}(Q \cap N)=d$, let $d=2$ and identify R^{2} with the complex plane. Let S_{1} be the infinite sided polygon having consecutive vertices exp 0 , $\exp \frac{\pi i}{2}, \ldots, \exp \frac{\left(2^{n}-1\right) \pi i}{2^{n}}, n \geq 0$. Similarly, let S_{2} be the infinite sided polygon with vertices $\exp 0, \exp \frac{\pi i}{4}, \exp \frac{5 \pi i}{8}, \ldots, \exp \frac{\left(2^{n+1}-3\right) \pi i}{2^{n+1}}, n \geq 1$. (See Figure 1.) The set $S=c l\left(\operatorname{conv} S_{1} U \operatorname{conv} S_{2}\right)$ is 3-convex, and its 1 nc points are essential. However, for every neighborhood N of $q=\exp \pi i$ and every component C of $(S \cap N) \sim \operatorname{conv}(Q \cap N), q \notin i n t \operatorname{conv}(C U(Q \cap N))$. Clearly $Q \cap N$ is not expressible as a finite union of (d - 2)-manifolds. The example may be generalized to higher dimensions.

Figure 1.

EXAMPLE 3. To see that Definition 2, part 3 must be satisfied when $\operatorname{dim} \operatorname{conv}(Q \cap N)=d-1$, let $d=3$ and identify the $x-y$ plane H with the complex plane. In this plane let P be the infinite sided polygon having vertices $v_{n}=\exp \frac{\left(2^{n}-1\right) \pi i}{2^{n}}, n \geq 0$. At each vertex $v_{n}, n \geq 1$, strictly separate v_{n} from the remaining vertices with a line L_{n} so that L_{n} cuts each edge of P adjacent to v_{n} and so that no two L_{n} lines intersect in conv P. (See Figure 2.) Each line L_{n} determines a closed triangular subset T_{n} of conv P .

Let R be the rectangle in the $x-y$ plane whose vertices are (1,0), $(-1,0),(-1,-1),(1,-1)$, and define

$$
\begin{aligned}
& A_{0}=\operatorname{conv} P \sim U\left\{T_{n}: n \geq 1\right\}, \\
& A_{1}=U\left\{T_{n}: n \equiv 0 \bmod 3 \text { or } n \equiv 1 \bmod 3\right\} U A_{0} U R, \\
& A_{2}=U\left\{T_{n}: n \equiv 0 \bmod 3 \text { or } n \equiv 2 \bmod 3\right\} U A_{0} .
\end{aligned}
$$

Finally, let $S_{1}=c 1 A_{1} \times\left[\theta, e_{3}\right]$ and $S_{2}=c 1 A_{2} \times\left[\theta,-e_{3}\right]$, where $e_{3}=(0,0,1)$ and $\theta=(0,0,0)$. Clearly both S_{1} and S_{2} are convex and closed. Label the halfspaces determined by H so that $S_{1} \subseteq c 1 H_{1}$ and $S_{2} \subseteq c 1 H_{2}$.

Let B denote a 3-dimensional parallelepiped in $c 1 H_{2}$, with $B \cap H=$ $B \cap\left(S_{1} \cup S_{2}\right)=R$. The set B may be constructed so that the point $q=(-1,0,0)$ is interior to $\operatorname{conv}\left(S_{1} \cup S_{2} \cup B\right)$. Hence letting S denote the 4-convex set $S_{1} U S_{2} U B$, it is not hard to show that $q \dot{\epsilon}$ int conv($S \cap N$) for every neighborhood N of q.

Note that the set Q of lnc points of S is exactly
$U\left\{L_{i} \cap T_{i}: i \neq 0 \bmod 3\right\} U[q, r]$, where $r \neq(1,0,0)$. For every $n \in$ onbrrhood N of $q, \operatorname{dim} \operatorname{conv}(Q \cap N)=d-1$, yet S does not tisfy part 3 of Definition 2 and $Q \cap N$ is not a finite union of (d - 2)-manifolds. rurthermore, it is interesting to notice that for every neighborhood N of - and for every component C of $(S \cap N) \sim \operatorname{conv}(Q \cap N), C$ is exactl $(S \cap N) \sim$ $\operatorname{conv}(Q \cap N)$, and $q \in \operatorname{int} \operatorname{conv}(C \cup(Q \cap N))=$ int conv(S $\cap N)$. Thus the requirement that q belong to int $\operatorname{conv}(C U(Q \cap N))$ ir \rightarrow ot sufficient to guarantee our result in case $\operatorname{dim} \operatorname{conv}(Q \cap N)=d-1$

Figure 2.

The author would like to thank the referee for providing three additional examples given below. The first of these (Example 4) reveals that the conclusion of Theorem 1 may hold without Definition 2, part 1.

EXAMPLE 4. Let S be the closed set in Figure 3. (S is a cube from which a smaller cube has been removed.) The lnc point q of S satisfies Definition 1 and parts 2 and 3 of Definitions 2 for $k=3$. Definition 2, part 1 does not hold. However, Q is expressible as a union of three $d-2=1$ dimensional
manifolds.
Whether Theorem 1 is true without Definition 2, part 1 remains an open question.

Figure 3.

Furthermore, the conclusion of Theorem 1 can hold when q is not essential, as Example 5 reveals. (Compare to Example 1 in which q is not essential and Theorem 1 fails.)

EXAMPLE 5. For $d \geq 2$, let S be a union of two d-polytopes which intersect in a common ($d-2$-dimensional face Q. Then the lnc points of S are not essential, yet Q is a (d - 2)-dimensional manifold.

It would be interesting to obtain an extension of Theorem 1 to include the situations of Examples 4 and 5.

The final example by the referee illustrates Theorem 1.
EXAMPLE 6. Let S be the union of four stacked cubes of equal size in Figure 4. The point q is an essential lnc point of order 3 , and Q is expressible as a union of three 1 -dimensional manifolds, each containing q.

Figure 4.

3. \underline{Q} IS NOWHERE DENSE IN BDRY S .

The final theorem will require the following easy lemma.
LEMMA 3. Let S be a closed m-convex set in R^{d}, Q the corresponding set of lnc points of S. Let N be a convex neighborhood. If $S \cap N$ is exactly k-convex, then there exist points x_{1}, \ldots, x_{k-1} in $(S \cap N) \sim Q$ which are visually independent via $\mathrm{S} \cap \mathrm{N}$.

PROOF. Select y_{1}, \ldots, y_{k-1} visually independent via $S \cap N$, and let $N_{1}, \ldots, N_{k-1} \subseteq N$ be corresponding neighborhoods of y_{1}, \ldots, y_{k-1} respectively, such that no point of N_{i} sees any point of N_{j} via $S, 1 \leq i<j \leq k-1$. By Lemma 1 , each N_{i} contains some point x_{i} in $S \sim Q$, and the points x_{1}, \ldots, x_{k-1} are the required visually independent points.

THEOREM 2. Let S be a closed m-convex set in R^{d}, S locally a full d-dimensional, with Q the set of 1 nc points of S. For q in Q and N any convex neighborhood of $q, N \cap$ bdry $S \nsubseteq Q$. That is, Q is nowhere dense in bdry S .

PROOF. Assume on the contrary that $N \cap$ bdry $S \subseteq Q$ for some convex neighborhood N of q. We assert that for some point r in $Q \cap N$ and some neighborhood U of r, $\operatorname{conv}(Q \cap U) \subseteq S$: Suppose on the contrary that no such r exists. Select two points x, y in $S \cap N$ whose corresponding segment [x, y]
is not in S. The segment $[x, y]$ intersects bdry S, and since S is closed, clearly we may select points x^{\prime}, y^{\prime} in bdry $S \cap[x, y]$ with $\left[x^{\prime}, y^{\prime}\right] \nsubseteq S$. For convenience of notation, assume $x=x^{\prime}$ and $y=y^{\prime}$. Since $[x, y] \nsubseteq S$, there exist disjoint convex neighborhoods N_{1} and N_{2} for x and y respectively, $N_{1} \cup N_{2} \subseteq N$, so that no point of N_{1} sees any point of N_{2} via S. Since $x, y \in N \cap b d r y S \subseteq Q \cap N, \operatorname{conv}\left(Q \cap N_{1}\right) \nsubseteq S$ and $\operatorname{conv}\left(Q \cap N_{2}\right) \nsubseteq S$.

Now repeat the argument for each of N_{1} and N_{2}. By an obvious induction, we obtain a collection of m visually independent points of S, contradicting the fact that S is m-convex. Hence our supposition is false and for some point r in $Q \cap N$ and for some neighborhood U of $r, \operatorname{conv}(Q \cap U) \subseteq S$, the desired result.

Therefore, without loss of generality we may assume that conv $(Q \cap N) \subseteq S$. Also assume that $S \cap N$ is exactly j-convex, $3 \leq j \leq m$. By Lemma 3, there exist points x_{1}, \ldots, x_{j-1} in $(S \cap N) \sim Q$ which are visually independent via S, and clearly at most one x point, say x_{1} is in $\operatorname{conv}(Q \cap N)$. Now if every point of $\operatorname{conv}(Q \cap N) \cap$ bdry S sees one of x_{2}, \ldots, x_{j-1} via S, delete x_{1} from our listing. Otherwise, some $z \in \operatorname{conv}(Q \cap N) \cap$ bdry S does not see any X_{i} via $S, 2 \leq i \leq j-1$, and for some neighborhood M of $z, M \subseteq N$, no point of $S \cap M$ sees any x_{i} via $S, 2 \leq i \leq j-1$. Select $x_{0} \in(S \cap M) \sim$ $\operatorname{conv}(Q \cap N)$. (Clearly such an x_{0} exists since $z \in Q$.) Replacing x_{1} by x_{0}, we have $x_{0}, x_{2}, \ldots, x_{j-1}$, a collection of j visually independent points, and since $S \cap N$ is exactly j-convex, every point of $\operatorname{conv}(Q \cap N) \cap$ bdry S sees one of these points via S. Hence in either case we have a collection of points y_{1}, \ldots, y_{k} in $(S \cap N) \sim \operatorname{conv}(Q \cap N)$ such that every point of $\operatorname{conv}(Q \cap N) \cap$ bdry S sees one of these points via $S, j-2 \leq k \leq j-1$.

For the moment, suppose that for every neighborhood $U \subseteq N$ with $U \cap Q \neq \phi$, $\operatorname{dim} \operatorname{conv}(Q \cap U)=d$. Let Q_{i} denote the subset of $Q \cap N$ seen by y_{i}, $1 \leq i \leq k$. By Lemma 2, $\operatorname{conv}\left(\left\{y_{i}\right\} U Q_{i}\right) \subseteq S$ for each i. Since $y_{i} \notin \operatorname{conv}(Q \cap N)$, certainly $\operatorname{dim} \operatorname{conv}\left(\left\{y_{i}\right\} \cup Q_{i}\right) \leq d-1$, for otherwise $\operatorname{conv}\left(\left\{y_{i}\right\} \cup Q_{i}\right)$ would capture some point of Q in its interior, impossible:

Thus $Q \cap N$ lies in a finite union of flats, each having dimension $\leq d-1$. Moreover, since for every neighborhood $U \subseteq N$ with $U \cap Q \neq \phi, U \cap Q$ does not lie in a hyperplane, it follows that $U \cap$ bdry $S \nsubseteq Q_{i}$. That is, Q_{i} is necessarily nowhere dense as a subset of bdry S. Then $Q \cap N=U Q_{i}$ is a finite union of sets, each nowhere dense in bdry S, and by standard arguments $Q \cap N$ is nowhere dense in bdry S . We have a contradiction, our supposition is false, and $\operatorname{dim} \operatorname{conv}(Q \cap U) \leq d-1$ for some neighborhood $U \subseteq N$ with $U \cap Q \neq \phi$. Since S is a full d-dimensional, $\operatorname{dim} \operatorname{conv}(Q \cap U)=d-1$ for such a neighborhood U. For convenience of notation, assume that $\operatorname{dim} \operatorname{conv}(Q \cap N)=d-1$. We assert that since $N \cap$ bdry $S \subseteq Q$ and $\operatorname{dim} \operatorname{conv}(Q \cap N)=d-1$, then $Q \cap N$ is convex: For x, y in $Q \cap N$ and $x<z<y$, we will show that $z \in$ bdry S . Otherwise, there would be a neighborhood V of z interior to S, with $V \subseteq N$. Since $x \in$ bdry S, there is a sequence $\left\{x_{n}\right\}$ in $R^{d} \sim S$ converging to x, and for each x_{n} and each p in $V,\left(x_{n}, p\right) \cap$ bdry $S \neq \phi$. A parallel statement holds for y . This implies that $\operatorname{dim} \operatorname{conv}(\mathrm{N} \cap \mathrm{bdry} \mathrm{S})=\mathrm{d}$ and $\operatorname{dim} \operatorname{conv}(Q \cap N)=d$, impossible. We have a contradiction, and z must belong to bdry S. Hence $z \in(b d r y S) \cap N \subseteq Q \cap N$, and $Q \cap N$ is indeed convex.

Again let Q_{i} denote the subset of $Q \cap N$ seen by $y_{i}, 1 \leq i \leq k$. Since $\operatorname{conv}\left(\left\{y_{i}\right\} U Q_{i}\right) \subseteq S$ for every i, Q_{i} is necessarily a convex subset of $Q \cap N$, and since $\operatorname{dim}(Q \cap N)=d-1$, some Q_{i} set, say Q_{1}, has dimension $d-1$. Then the set $\operatorname{conv}\left(\left\{y_{1}\right\} \cup Q_{1}\right)$ is a full d-dimensional. Our previous argument may be repeated to obtain a finite set of visually independent points z_{1}, \ldots, z_{n} in $\left(S \cap \operatorname{cone}\left(y_{1}, Q_{1}\right)\right) \sim \operatorname{conv}\left(\left\{y_{1}\right\} \cup Q_{1}\right)$, each z_{i} seeing a subset T_{i} of Q_{1} having dimension at most $\mathrm{d}-2$, with $\mathrm{Q}_{1}=\mathrm{U}\left\{\mathrm{T}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Clearly this is impossible, our assumption is false, and $N \cap$ bdry $S \nsubseteq Q$ for every neighborhood N of q . This completes the proof of Theorem 2.

Techniques identical to those employed in the proof of Theorem 2 may be used to obtain the following result.

COROLLARY 1. Let S be a closed m-convex set in R^{d} with Q the set of lnc points of S. Then if $\operatorname{conv}(Q \cap N) \subseteq S$ for some neighborhood $N, Q \cap N$
cannot be homeomorphic to a (d - 1)-dimensional manifold.

REFERENCES

1. BREEN, Marilyn. Points of Local Nonconvexity and Finite Unions of Convex Sets, Canad. J. Math. 27 (1975), pp. 376-383.
2. KAY, David C. \& GUAY, Merle D. Convexity and a Certain Property Pm, Israel J. Math. 8 (1970), pp. 39-52.
3. VALENTINE, F. A. The Intersection of Two Convex Surfaces and Property P_{3}, Proc. Amer. Math. Soc. 9 (1958), pp. 47-54.
4. VALENTINE, F. A. Local Convexity and L_{n} Sets, Proc. Amer. Math. Soc. 16 (1965), pp. 1305-1310.
