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ABSTRACT. We prove the following theorem:

THEOREM. Let Y be a second countable, infinite R0-space. If there are

countably many open sets 01, 02, 0n, in Y such that 01 02 0...,
then a topological space X is a Baire space if and only if every mapping f: X- Y

is almost continuous on a dense subset of X. It is an improvement of a theorem due

to Lin and Lin [2].
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1. INTRODUCTION.

This note is directed to mathematical specialists or non-specialists familiar

with general topology [i].

Lin and Lin [2] proved the following theorem:

THEOREM I. Let Y be an arbitrary infinite Hausdorff space. If X is a topo-

logical space such that every mapping f: X Y is almost continuous on a dense

subset D(f) of X, then X is a Baire space.

In the theorem above, the almost continuity is in the sense of Husain [3].

The proof of the theorem depends on the following lemma (cf. Long [i, Prob. 14,

p. 1471):

LEMMA I. Every infinite Hausdorff space contains a countably infinite discrete

subspace.
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In this note, we prove a lemma similar to Lemma 1 under weaker conditions,

and use it to improve Theorem i.

2. PRELIMINARIES AND RESULTS.

Before stating the result, we first recall the definition of the separation

axiom R
0

(cf. [4], [5], [6, p. 49]).

DEFINITION 1. A topological space X is R if and only if for each x e X and
0

open subset U, x U implies {x} e U.

It is known [i] that R
0

is weaker than T
1

and is independent of TO, in fact

T
I TO + R0. A Hausdorff space is R0.

LEMMA 2. If an infinite space X is R0, and there are countably infinite open

sets 01, 02 O
n

such that 01 02 O
n

then there is a

countably infinite distinct set S {yl,Y2, Yn’ "’’} in X such that for each

n, there is an open set V satisfying V n S {yn }.
n n

PROOF. Without loss of generality we may assume that 01 is not empty. Let

Yl E 01 be an arbitrary point. Since X is R0, {yl} c 01. Let V
I

0 I. From

01 02 we can find a Y2 E 02 such that Y2 Ol and {y2 02. Let V
2 02n(Ol\{Yl}).

n-27---Then V
2

is an open set and Y2 V2" If Yn-i is chosen and Vn_l=On_l n (0n_2\Ui__l{Yis)
is defined, then since On_1 On, we may choose Yn On such that Yn 0n-i and

{yn 0n. Let Vn 0n n (On- --i
). Then Yn Vn. Thus we have a countably

infinite distinct set S {yl,Y2, Yn and countably infinite distinct open

sets VI,V2 Vn, such that Yn E Vn (n 1,2 ). Since Vn 0n n

(On_ Ui=1 we have Yi V for i 1 2 n-l. Since Yn+m On+m (m > i)
n

Yn+m 0n+m-I but 0 0n+m_1 hence Yn+m On’ Yn+m V Therefore V n S {ynn n n

For convenience we say that a space X has an ascending chain of open sets if

there are countably infinite open sets 01,02 O
n

such that 01 $ 02 %...
On

LEMMA 3. An infinite Hausdorff space X is an R0-spade with an ascending chain

of open sets.

PROOF. We need only to show that X has an ascending chain of open sets. By

Lemma i, there is a countably infinite discrete subspace {yl,y2 ’Yn }, hence



A NOTE ON ALMOST CONTINUOUS MAPPINGS AND BAIRE SPACES 199

there are disjoint open sets UI,U2, .,Un, such that Yn E Un. Let 0n Ui__In Ui
(n 1,2,...). Then 01,02,...,On,... is an ascending chain of open sets.

The converse of Lemma 3 is not true.

EXAMPLE i. Let X [0,i] with topology X\N; N is a countable set}. Then

X is R
0

and 0 X\{ i__ 1
i i "i+l ...}(i 1,2 is an ascending chain of open sets.

X is not Hausdorff.

Now Theorem 1 can be improved as

THEOREM 2. Let Y be an infinite R0-space with an ascending chain of open sets.

If X is a topological space such that every mapping f: X Y is almost continuous

on a dense subset of X, then X is a Baire space.

The proof is all the same as the proof of Theorem 2 in [2].

Similar to Theorem 3 in [2], we have

THEOREM 3. Let Y be a second countable infinite Ro-space with an ascending

chain of open sets. Then a topological space X is a Baire space if and only if

every mapping f: X Y is almost continuous on a dense subset of X.
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