A NOTE ON ALMOST CONTINUOUS MAPPINGS AND BAIRE SPACES

JING CHENG TONG

Department of Mathematics Wayne State University Detroit, Michigan 48202

(Received April 20, 1982 and in revised form June 4, 1982)

ABSTRACT. We prove the following theorem:

THEOREM. Let Y be a second countable, infinite R_0^- -space. If there are countably many open sets $0_1, 0_2, \ldots, 0_n, \ldots$ in Y such that $0_1 \neq 0_2 \neq \ldots \neq 0_n \neq \ldots$, then a topological space X is a Baire space if and only if every mapping f: $X \rightarrow Y$ is almost continuous on a dense subset of X. It is an improvement of a theorem due to Lin and Lin [2].

<u>KEY WORDS AND PHRASES</u>. Sparation axiom R₀, almost continuous mapping, Baire space. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 54C10, 54F65; Secondary 54D10.

1. INTRODUCTION.

This note is directed to mathematical specialists or non-specialists familiar with general topology [1].

Lin and Lin [2] proved the following theorem:

THEOREM 1. Let Y be an arbitrary infinite Hausdorff space. If X is a topological space such that every mapping f: $X \rightarrow Y$ is almost continuous on a dense subset D(f) of X, then X is a Baire space.

In the theorem above, the almost continuity is in the sense of Husain [3]. The proof of the theorem depends on the following lemma (cf. Long [1, Prob. 14, p. 147]):

LEMMA 1. Every infinite Hausdorff space contains a countably infinite discrete subspace.

In this note, we prove a lemma similar to Lemma 1 under weaker conditions, and use it to improve Theorem 1.

2. PRELIMINARIES AND RESULTS.

Before stating the result, we first recall the definition of the separation axiom R_0 (cf. [4], [5], [6, p. 49]).

DEFINITION 1. A topological space X is R if and only if for each x ϵ X and open subset U, x ϵ U implies $\overline{\{x\}} \epsilon$ U.

It is known [1] that R_0 is weaker than T_1 and is independent of T_0 , in fact $T_1 = T_0 + R_0$. A Hausdorff space is R_0 .

LEMMA 2. If an infinite space X is R_0 , and there are countably infinite open sets $0_1, 0_2, \ldots, 0_n$, \ldots such that $0_1 \not\subseteq 0_2 \not\subseteq \ldots \not\subseteq 0_n \not\subseteq \ldots$, then there is a countably infinite distinct set $S = \{y_1, y_2, \ldots, y_n, \ldots\}$ in X such that for each n, there is an open set V_n satisfying $V_n \cap S = \{y_n\}$.

PROOF. Without loss of generality we may assume that 0_1 is not empty. Let $y_1 \\ \\eqno(0)_1 \\eqno(0)_1 \\eqno(0)_2 \\eq$

For convenience we say that a space X has an ascending chain of open sets if there are countably infinite open sets $0_1, 0_2, \ldots, 0_n, \ldots$ such that $0_1 \neq 0_2 \neq \cdots \neq 0_n \neq \cdots$

LEMMA 3. An infinite Hausdorff space X is an R_0^- space with an ascending chain of open sets.

PROOF. We need only to show that X has an ascending chain of open sets. By Lemma 1, there is a countably infinite discrete subspace $\{y_1, y_2, \ldots, y_n, \ldots\}$, hence The converse of Lemma 3 is not true.

EXAMPLE 1. Let X = [0,1] with topology $\tau = \{X \setminus N; N \text{ is a countable set}\}$. Then X is R₀ and 0_i = X \{ $\frac{1}{i}$, $\frac{1}{i+1}$, ...}(i = 1,2,...) is an ascending chain of open sets. X is not Hausdorff.

Now Theorem 1 can be improved as

THEOREM 2. Let Y be an infinite R_0 -space with an ascending chain of open sets. If X is a topological space such that every mapping f: $X \rightarrow Y$ is almost continuous on a dense subset of X, then X is a Baire space.

The proof is all the same as the proof of Theorem 2 in [2].

Similar to Theorem 3 in [2], we have

THEOREM 3. Let Y be a second countable infinite R_0^{-} space with an ascending chain of open sets. Then a topological space X is a Baire space if and only if every mapping f: $X \rightarrow Y$ is almost continuous on a dense subset of X.

REFERENCES

- LONG, P.E. <u>An Introduction to General Topology</u>, Charles E. Merrill Publ. Co., Columbus, Ohio, 1971.
- LIN, S-Y.T. and LIN, Y-F.T. On almost continuous mappings and Baire spaces, <u>Canad. Math. Bull</u>. <u>21</u> (1978), 183-186.
- 3. HUSAIN, T. Almost continuous mappings, Prace Math. 10 (1966), 1-7.
- DAVIS, A.S. Indexed system of neighborhoods for general topological spaces, <u>Amer. Math. Monthly 68</u> (1961), 886-893.
- SHANIN, S.A. On separation in topological space, <u>Dokl. Akad. Nauk. USSR</u>. <u>38</u> (1943), 110-113.
- 6. WILANSKY, A. Topology for Analysis, Ginn, Waltham, Mass., 1970.