FUNCTIONS IN THE SPACE R²(E) AT BOUNDARY POINTS OF THE INTERIOR

EDWIN WOLF

Department of Mathematics Marshall University Huntington, West Virginia 25701

(Received September 15, 1982)

<u>ABSTRACT</u>. Let E be a compact subset of the complex plane \mathbb{C} . We denote by R(E) the algebra consisting of (the restrictions to E of) rational functions with poles off E. Let m denote 2 - dimensional Lebesgue measure. For $p \ge 1$, let $\mathbb{R}^{p}(E)$ be the closure of R(E) in $L^{p}(E,dm)$.

In this paper we consider the case p = 2. Let $x \in \partial E$ be a bounded point evaluation for $R^2(E)$. Suppose there is a C > 0 such that x is a limit point of the set $S = \{y | y \in Int E, Dist(y, \partial E) \ge C | y - x|\}$. For those $y \in S$ sufficiently near x we prove statements about |f(y) - f(x)| for all $f \in R(E)$.

<u>KEY WORDS AND PHRASES</u>. Rational functions, compact set L^p - spaces, bounded point evaluation, admissible function.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 30A98, 46E99.

1. INTRODUCTION AND DEFINITIONS

Let E be a compact subset of the complex plane C. We denote by R(E) the algebra consisting of (the restrictions to E of) rational functions with poles off E. Let m denote 2 - dimensional Lebesgue measure. For $p \ge 1$, let $R^{P}(E)$ be the closure of R(E) in $L^{P}(E,dm)$. A point x ϵ E is said to be a bounded point evaluation (BPE) for $R^{P}(E)$ if there is a constant F such that

$$|f(x)| \leq F \cdot \{\int_{E} |f(z)|^{p} dm(z)\}^{\overline{p}} for all f \in R(E).$$

E. WOLF

In [4] we studied the smoothness properties of functions in $\mathbb{R}^{p}(E)$, p > 2, at BPE's. When p = 2, the situation is quite different (see Fernström and Polking [2] and Fernström [1]). In [5] we showed that at certain BPE's the functions in $\mathbb{R}^{2}(E)$ have the following smoothness property: Let x ε ∂E be both a BPE for $\mathbb{R}^{2}(E)$ and the vertex of a sector contained in Int E. Let L be a line segment that bisects the sector and has an end point at x. Then for each $\varepsilon > 0$ there is a $\delta > 0$ such that if

y ε L and $|y - x| < \delta$, $|f(y) - f(x)| \le \varepsilon ||f||_2$ for all $f \varepsilon R(E)$. The goal of this paper is to extend this result to certain cases where there may not be a sector in Int E having vertex at x, but x is still a limit point of Int E.

If $x \in E$ is a BPE for $R^2(E)$, there is a function $g \in L^2(E)$ such that $f(x) = \int_E fg \, dm$ for any $f \in R(E)$. Such a function g is called a representing function for x.

A point x $_{\varepsilon}$ E is a bounded point derivation (BPD) of order s for $R^{2}(E)$ if the map f \rightarrow f^(s)(x), f $_{\varepsilon} R(E)$, extends from R(E) to a bounded linear functional on $R^{2}(E)$.

Let $A_n(x)$ denote the annulus $\{z | 2^{-n-1} \le |z - x| \le 2^{-n}\}$. Let $A'_n(x) = \{z | 2^{-n-2} \le |z - x| \le 2^{-n+1}\}$. If x = 0, we will denote $A_n(0)$ by A_n and $A'_n(0)$ by A'_n .

For an arbitrary set $X \subset \mathbb{C}$ we let $C_2(X)$ denote the Bessel capacity of X which is defined using the Bessel kernel of order 1 (see [3]).

We say that ϕ is an admissible function if ϕ is a positive, nondecreasing function defined on $(0, \infty)$, and $r \cdot \phi(r)^{-1}$ is nondecreasing and tends to zero when $r \rightarrow 0^+$.

Using the techniques of [4] and [2] one can prove:

THEOREM 1.1. Let s be a nonnegative integer and E a compact set. Suppose that x is a BPE for $R^2(E)$ and ϕ is admissible. Then x is

364

represented by a function g $_{\varepsilon}$ $L^{2}(E)$ such that

 $\frac{g}{(z-x)^{s} \cdot \phi(|z-x|)} \in L^{2}(E)$ if and only if $\sum_{n=0}^{\infty} 2^{2n(s+1)} \phi(2^{-n})^{-2} C_{2}(A_{n}(x)-E) < \infty$.

2. THE MAIN RESULTS

Let $x \in \partial E$ be a BPE for $R^2(E)$. We may assume that x = 0 and that $E \subset \{|z| < 1\}$. Suppose there is a positive constant C such that 0 is a limit point of the set $S = \{y | y \in Int E, Dist(y, \partial E) \ge C|y|\}$. We will construct a function $g \in L^2(E)$ which represents 0 for $R^2(E)$ and has support disjoint from S.

LEMMA 2.1. Let $0 \in \partial E$ be a BPE for $R^2(E)$. Suppose there is a positive constant C such that 0 is a limit point of the set $S = \{y|y \in Int E, Dist(y, \partial E) \ge C|y|\}$. Then there is a function $g \in L^2(E)$ such that:

- (i) g represents 0 for $R^2(E)$,
- (ii) $m((supp g) \cap S) = 0$,

(iii) For all $n \ge 2$, $\int_{A_n \cap E} |g|^2 dm \le F \sum 2^{2k} C_2(A_{2k+1} - E)$ $k = \left[\frac{n-2}{2}\right]$

where F is a constant independent of n.

PROOF. For each i, i = 0,1,2,... consider all the intersections of the set $A_i = \{z | 2^{-i-1} \le |z| \le 2^{-i}\}$ with the bounded components of \mathbb{C} - E. Let Y_i be the closure of the union of these intersections. Since Y_i is compact, it can be covered by finitely many open discs of radius $< C3^{-1}2^{-i-1}$. Let the union (finite) of these discs be denoted by B_i . The set B_i is bounded by finitely many closed Jordan curves each of which is the union of finitely many circular arcs. Each set B_i is contained in a set C_i bounded by finitely many closed Jordan curves Γ_{ij} , $j = 1, 2, ..., n_i$ such that if z belongs to any one of these curves, Dist $(z,B_i) = 2C3^{-1}2^{-i-1}$.

Now for each k, k = 0,1,2,... choose a function $\lambda_k \in C_0^1$ such that:

(1) supp
$$\lambda_k \subset A_{2k+1}$$

(2)
$$\lambda_k(z) = 1$$
 for $z \in \{z | 2^{-2k-2} \le |z| \le 2^{-2k-1}\} \cap B_{2k+1}$

(3)
$$\lambda_{k}(z) = 0$$
 for $z \notin \bigcup_{i=0}^{\infty} C_{i}$
(4) $\left|\frac{\partial \lambda_{k}(z)}{\partial x_{1}}\right| \leq F_{1} \cdot 2^{2k+1}$, $\left|\frac{\partial \lambda_{k}(z)}{\partial x_{2}}\right| \leq F_{2} \cdot 2^{2k+1}$

where $z = x_1 + ix_2$ and F_1 and F_2 are constants independent of k.

(5)
$$\lambda_k(z) + \lambda_{k+1}(z) = 1$$
 for $z \in \{z \mid 2^{-2k-3} \le |z| \le 2^{-2k-2}\} \cap B_{2k+2}$.

Given any $\epsilon > 0$ we use a lemma of Fernström and Polking [2] to obtain functions $\psi_k \in C^{\infty}$ such that:

(1)
$$\psi_k(z) \equiv 1 \text{ for } z \text{ near } A_k - \{z \mid \text{Dist}(z, E) < \varepsilon\}.$$

(2)
$$\int |\mathbf{D}^{\beta} \psi(z)|^{2} dm(z) \leq F \cdot 2^{-2k(1-|\beta|)} C_{2}(A_{k}' - E)$$

 $|z| \le 2$ for $\beta = (0,0)$, (0,1), and (1,0). Here the constant F is independent of ε and k.

Since supp $\lambda_k \subset A_{2k+1}^{\prime}$, we have $\psi_{2k+1} \cdot \lambda_k = \lambda_k$ on the set $\{z \mid \text{Dist}(z,E) \geq \varepsilon\}$. Thus $\sum_{0}^{\infty} \psi_{2k+1} \cdot \lambda_k \equiv 1$ on $\{|z| \leq 4^{-1}\} - \{z \mid \text{Dist}(z,E) < \varepsilon\}$. Choose $\chi \in C_0^{\infty}$ with $\chi(z) \equiv 1$ near E. Set $h(z) = \chi(z) \cdot \frac{1}{\pi z}$. For each double index $\beta = (0,0), (0,1), \text{ and } (1,0)$ there is a constant F_{β} such that

$$|D^{\beta}h(z)| \leq F_{\beta} \cdot |z|^{-1-|\beta|}.$$

Set
$$f_{\epsilon} = h \cdot \tilde{\Sigma} \psi_{2k+1} \cdot \lambda_k = \tilde{\Sigma} \psi_{2k+1} \cdot h_k$$

where $h_k = \lambda_k h$.

Since supp $\lambda_k \subset A_{2k+1}$, the above inequalities imply that

 $|D^{\beta}h_{k}(z)| \leq F_{\beta^{2}}(2k+1)(1+|\beta|)$

The subadditivity of C_2 and the convergence of $\sum_{0}^{\infty} 2^{2k} C_2(A_k - E)$ (see Theorem 1.1) imply that the net $\{f_{\varepsilon}\}$ is bounded in L_1^2 . There is a subsequence that converges weakly to a function $f \in L_{1,loc}^2$ which satisfies $f(z) = \frac{\chi(z)}{\pi z}$ for $z \in \mathbb{C} - E$ and f(z) = 0 for every $z \in E \cap \{z | \text{Dist}(z, \partial E) \ge C | z | \}$. Set $g = -\frac{\partial}{\partial \overline{z}} f$. Then $g \in L^2(E)$ since $f \in L_1^2(E)$, and g is a representing function for 0. The proof of (iii) proceeds as in [5].

The above lemma can be used to prove the following theorem in almost the same way that in [5] Lemma 5.1 is used to prove Theorem 5.1.

THEOREM 2.1. Let $0 \in \partial E$ be a BPE for $R^2(E)$. Let C be a positive constant such that 0 is a limit point of the set $S = \{y | y \in Int E, Dist(y, \partial E) \ge C | y | \}$. Let g be a representing function for 0 and suppose that $g(z) \cdot \phi(|z|)^{-1} \in L^2(E)$ where ϕ is an admissible function. Then for any $\varepsilon > 0$ there is a $\delta > 0$ such that if $y \in S$ and $|y| < \delta$,

 $|f(y) - f(0)| \le \epsilon \phi(|y|) ||f||_2$

for all f \in R(E).

Using this theorem and the methods in [4] one can prove: COROLLARY 2.1. Suppose that all the conditions of Theorem 2.1 hold. Suppose, moreover, that s is a positive integer such that $g(z) \cdot z^{-s} \cdot \phi(|z|)^{-1} \epsilon L^{2}(E)$. Then for each $\epsilon > 0$ there exists a $\delta > 0$ such that if $y \epsilon S$ and $|y| < \delta$,

 $|f(y) - f(0) - \frac{f'(0)}{1!} (y - 0) - \cdots - \frac{f(s)_0}{s!} (y - 0)^s | \le \epsilon |y - 0|^s \phi(|y|) ||f||_2$ for all $f \in R(E)$. Finally, there is a corollary with weaker preconditions.

COROLLARY 2.2. Let 0,g, and ϕ be as in Theorem 2.1. Suppose there is a positive constant C such that 0 is a limit point of the set

 $S = \{y \mid y \in \text{Int } E, \text{ Dist}(y, \partial E) \ge C \cdot \phi(|y|) |y|\}$ Then for each $\varepsilon > 0$ there is a $\delta > 0$ such that if $y \in S$ and $|y| < \delta$,

$$|f(y) - f(0)| \le \varepsilon ||f||_2$$
 for all $f \in R(E)$.

The proof is similar to the proof of Theorem 2.1. One uses the fact that there exists an admissible function $\overline{\phi}$ such that $g_{\cdot}\phi^{-1}$. $\overline{\phi}^{-1}\epsilon L^{2}(E)$.

3. EXAMPLES

EXAMPLE 1. We will construct a compact set E such that $0 \in \partial E$, 0 is a BPE for $\mathbb{R}^2(E)$, and 0 is a limit point of Int E. Let D = $\{|z| \leq 1\}$. Let D_i, i = 1,2,3,..., be the open disc centered on the positive real axis at 3 · 2⁻ⁱ⁻³ and having radius r_i = exp(-2²ⁱi²).

Let $E = D - \bigcup_{i=1}^{\infty} D_i$. Then since $C_2(B(x,r)) \le F(\log \frac{1}{r})^{-1}, r \le r_o < 1$, (see [3]), we have

$$\sum_{n=1}^{\infty} 2^{2n} C_2(A_n - E) = \sum_{n=1}^{\infty} 2^{2n} C(D_n) \le F \cdot \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$$

Thus 0 is a BPE for $R^2(E)$. If C is a positive constant sufficiently small (any positive number $< \frac{1}{2}$ will do), the set $\{y|y \in Int E$, Dist $(y, \partial E) \ge C |y|$ intersects the positive real axis in a sequence of disjoint intervals $[a_n, b_n]$ such that $b_n \rightarrow 0$.

EXAMPLE 2. Next we construct a compact set E which is like Example 1 in that 0 is a limit point of Int E and a BPE for $R^2(E)$. In this example, however, there exists no sequence $\{y_n\} \subset Int E$ such that $|f(y_n) - f(0)| \le \varepsilon ||f||_2$ for all $f \in R(E)$ if $|y_n| < \delta$. We will use important parts of Fernström's construction in [1]. Let F be a positive constant such that $C_2(B(z,r)) \leq F(\log \frac{1}{r})^{-1}$ for all r, $r \leq r_0 < 1$. Choose $\alpha, \alpha \geq 1$ such that

$$\frac{F}{\alpha} \cdot \sum_{n=1}^{\infty} \frac{1}{n \log^2 n} < C_2(B(0, 1/2)).$$

Let A_0 be the closed unit square with center at 0. Cover A_0 with 4^n squares of side 2^{-n} . Call the squares $A_n^{(i)}$, $i = 1, 2..., 4^n$. In every set $A_n^{(i)}$ put an open disc $B_n^{(i)}$ such that $B_n^{(i)}$ and $A_n^{(i)}$ have the same center, and the radius of $B_n^{(i)}$ is $\exp(-\alpha 4^n \operatorname{nlog}^2 n)$. Let D_i , $i = 1, 2, 3, \ldots$ be an open disc centered on the positive real axis such that $D_i \subset \{z | 2^{-i-1} \le |z| \le 2^{-i}\}$ and $r_i = \exp(-2^{2i}i^2)$. For each $n, n = 1, 2, 3, \ldots$, let $G_n = \bigcup B_n^{(i)}$ where the summation is over those indices i such that $1 \le i \le 4^n$ and $B_n^{(i)} \cap (\bigcup D_i) = \emptyset$. Set $E_1 = A_0 - \bigcup_{n=2}^{\infty} G_n$. Then $R^2(E_1)$ has no BPE's in ∂E_1 as is shown in [1].

Now replace a suitable number of the discs

$$\begin{split} & B_n^{(i)}, B_n^{(i)} \subset \bigcup_{j=2}^{\infty} G_j, \text{ to obtain a compact set } E_2 \text{ such that 0 is the} \\ & \text{only boundary point of } E_2 \text{ that is a BPE for } R^2(E_2) \text{ , (see [1]).} \end{split}$$
 $This can be done so that Int E_2 = \bigcup_{1}^{\infty} D_i. \text{ If } y \in \text{Int } E_2, \text{ let norm}(y) \\ & \text{denote the norm of "evaluation at y" as a linear functional on } R^2(E_2). \end{aligned}$ $Then if \{y_k\} \subset D_i, \text{ and } y_k \rightarrow \partial D_i, \text{ norm}(y_k) \rightarrow \infty; \text{ otherwise some point} \\ & \text{on } \partial D_i \text{ would be a BPE for } R^2(E_2). \end{split}$

For each i choose an open disc $D_i \subset D_i$ such that D_i and D_i are concentric and such that if $y \in D_i - D_i$, then norm(y) for the space $R^2(E_2 - D_i)$ is greater than i.

Now let
$$E = E_2 - \bigcup_{i=1}^{\infty} D'_i$$
.

The radii of the D_1^1 are so small that 0 is also a BPE for $R^2(E)$. Let $\{y_n\}$ be any sequence in Int E such that $y_n \rightarrow 0$. Let norm $(y_n) =$ norm of "evaluation at y_n " on $R^2(E)$. Then for no $\varepsilon > 0$ is there a $\delta > 0$ such that if $|y_n| < \delta$, $|f(y_n) - f(0)| \le \varepsilon ||f||_2$ for all $f \in R(E)$.

EXAMPLE 3. Let ϕ be an admissible function. Obtain a compact set E in the same way that the set E₂ was obtained in Example 2 so that:

(1)
$$D_i$$
 is centered at $3 \cdot 2^{-1-2}$ and has radius
 $r_i = \phi(3 \cdot 2^{-1-2}) \cdot 2^{-1-2}$
(2) $\sum_{n=0}^{\infty} 2^{2n} \cdot \phi(2^{-n})^{-2} C_2(A_n(0) - E) < \infty$, and
(3) $\sum_{n=0}^{\infty} 2^{2n} C_2(A_n(x) - E) = \infty$ for $x \neq 0$, $x \notin \cup D_i$.

Let $y_i = 3 \cdot 2^{-i-2}$. Then by the choice of r_i , $Dist(y_i, E) \ge 3^{-1} \cdot \phi(|y_i|) |y_i|$. But there is no C > 0 such that $Dist(y_i, \partial E) \ge C|y_i|$ for all i. Hence Corollary 2.2 applies to the sequence $\{y_i\}$ but Theorem 2.2 does not.

REFERENCES

- Fernström, C., Some remarks on the space R²(E), Math. Reports, University of Stockholm 1982.
- Fernström, C. and Polking, J. C., Bounded point evaluations and approximation in L^P by solutions of elliptic partial differential equations. J. Functional Analysis, 28, 1-20 (1978).
- Meyers, N. G., A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
- Wolf, E., Bounded point evaluations and smoothness properties of functions in R^P(X), Trans. Amer. Math. Soc. 238 (1978), 71-88.
- Wolf, E., Smoothness properties of functions in R²(X) at certain boundary points, <u>Internat. J.</u> Math. and Math Sci., <u>2</u> (1979), 415-426.