FUNCTIONS IN THE SPACE $\mathbf{R}^{\mathbf{2}}{ }^{(E)}$ AT BOUNDARY POINTS OF THE INTERIOR

EDWIN WOLF
Department of Mathematics
Marshall University
Huntington, West Virginia 25701

(Received September 15, 1982)

ABSTRACT. Let E be a compact subset of the complex plane \mathbb{C}. We denote by $R(E)$ the algebra consisting of (the restrictions to E of) rational functions with poles off E. Let m denote 2 - dimensional Lebesgue measure. For $p \geq 1$, let $R^{p}(E)$ be the closure of $R(E)$ in $L^{p}(E, d m)$.

In this paper we consider the case $p=2$. Let $x \in \partial E$ be a bounded point evaluation for $R^{2}(E)$. Suppose there is a $C>0$ such that x is a limit point of the $\operatorname{set} S=\{y|y \in \operatorname{Int} E, \operatorname{Dist}(y, \partial E) \geq C| y-x \mid\}$. For those $y \in S$ sufficiently near x we prove statements about $|f(y)-f(x)|$ for all $f \in R(E)$.

KEY WORDS AND PHRASES. Rational functions, compact set L^{p} - spaces, bounded point evaluation, admissible function.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 30A98, $46 E 99$.

1. INTRODUCTION AND DEFINITIONS

Let E be a compact subset of the complex plane \mathbb{C}. We denote by $R(E)$ the algebra consisting of (the restrictions to E of) rational functions with poles off E. Let m denote 2 - dimensional Lebesgue measure. For $p \geq 1$, let $R^{p}(E)$ be the closure of $R(E)$ in $L^{p}(E, d m)$. A point $x \in E$ is said to be a bounded point evaluation (BPE) for $R^{p}(E)$ if there is a constant F such that

$$
|f(x)| \leq F \cdot\left\{\int_{E}|f(z)|^{\left.p_{d m}(z)\right\}^{\frac{1}{p}}} \text { for all } f_{\in R(E)}\right. \text {. }
$$

In [4] we studied the smoothness properties of functions in $R^{p}(E), p>2$, at BPE's. When $p=2$, the situation is quite different (see Fernström and Polking [2] and Fernström [1]). In [5] we showed that at certain BPE's the functions in $R^{2}(E)$ have the following smoothness property: Let $x \in \partial E$ be both a BPE for $R^{2}(E)$ and the vertex of a sector contained in Int E. Let L be a line segment that bisects the sector and has an end point at x. Then for each $\varepsilon>0$ there is a $\delta>0$ such that if
$y \in L$ and $|y-x|<\delta,|f(y)-f(x)| \leq \epsilon\|f\|_{2}$ for all $f \in R(E)$. The goal of this paper is to extend this result to certain cases where there may not be a sector in Int E having vertex at x, but x is still a limit point of Int E.

If $x \in E$ is a $B P E$ for $R^{2}(E)$, there is a function $g \in L^{2}(E)$ such that $f(x)=\int_{E} f g d m$ for any $f \in R(E)$. Such a function g is called a representing function for x .

A point $x \in E$ is a bounded point derivation (BPD) of order s for $R^{2}(E)$ if the map $f \rightarrow f^{(s)}(x), f \in R(E)$, extends from $R(E)$ to a bounded linear functional on $R^{2}(E)$.

Let $A_{n}(x)$ denote the annulus $\left\{z\left|2^{-n-1} \leq|z-x| \leq 2^{-n}\right\}\right.$. Let $A_{n}^{\prime}(x)=\left\{z\left|2^{-n-2} \leq|z-x| \leq 2^{-n+1}\right\}\right.$. If $x=0$, we will denote $A_{n}(0)$ by A_{n} and $A_{n}^{\prime}(0)$ by A_{n}^{\prime}.

For an arbitrary set $X \subset \mathbb{C}$ we let $C_{2}(X)$ denote the Bessel capacity of X which is defined using the Bessel kernel of order 1 (see [3]).

We say that \varnothing is an admissible function if \varnothing is a positive, nondecreasing function defined on $(0, \infty)$, and $r \cdot \phi(r)^{-1}$ is nondecreasing and tends to zero when $r \rightarrow 0^{+}$.

Using the techniques of [4] and [2] one can prove:
THEOREM 1.l. Let s be a nonnegative integer and E a compact set. Suppose that x is a BPE for $R^{2}(E)$ and \varnothing is admissible. Then x is
represented by a function $g \in L^{2}(E)$ such that

$$
\frac{g}{(z-x)^{s} \cdot \phi(|z-x|) \cdot} \in L^{2}(E)
$$

if and only if $\sum_{n=0}^{\infty} 2^{2 n(s+1)} \phi\left(2^{-n}\right)^{-2} c_{2}\left(A_{n}(x)-E\right)<\infty$.

2. THE MAIN RESULTS

Let $x \in \partial E$ be a BPE for $R^{2}(E)$. We may assume that $x=0$ and that $E \subset\{|z|<1\}$. Suppose there is a positive constant C such that 0 is a limit point of the set $S=\{y|y \in \operatorname{Int} E, \operatorname{Dist}(y, \partial E) \geq C| y \mid\}$. We will construct a function $g \in L^{2}(E)$ which represents 0 for $R^{2}(E)$ and has support disjoint from S.

LEMMA 2.1. Let 0 e ∂E be a $B P E$ for $R^{2}(E)$. Suppose there is a positive constant C such that 0 is a limit point of the set $S=\{y|y \in \operatorname{Int} E, \operatorname{Dist}(y, \partial E) \geq C| y \mid\}$. Then there is a function $g \in L^{2}(E)$ such that:
(i) g represents 0 for $R^{2}(E)$,
(ii) $m((\operatorname{supp} g) \cap S)=0$,

$$
\begin{gathered}
k=\left[\frac{n-2}{2}\right]+1 \\
\text { (iii) For all } n \geq 2, \int_{A_{n} \cap E}|g|^{2} d m \leq F \sum 2^{2 k} C_{2}\left(A_{2 k+1}^{\prime}-E\right) \\
k=\left[\frac{n-2}{2}\right]
\end{gathered}
$$

where F is a constant independent of n.
PROOF. For each $i, i=0,1,2, \ldots$ consider all the intersections of the set $A_{i}=\left\{z\left|2^{-i-1} \leq|z| \leq 2^{-i}\right\}\right.$ with the bounded components of \mathbb{C} - E. Let Y_{i} be the closure of the union of these intersections. Since Y_{i} is compact, it can be covered by finit ly many open discs of radius $<\mathrm{C}^{-1} 2^{-i-1}$. Let the union (finite) of these discs be denoted by B_{i}. The set B_{i} is bounded by finitely many closed Jordan curves each of which is the union of finitely many circular arcs. Each set B_{i} is contained in a set C_{i} bounded by finitely many closed Jordan curves $\Gamma_{i j}, j=1,2, \ldots, n_{i}$ such that if z belongs to any one of these
curves, Dist $\left(z, B_{i}\right)=2 \mathrm{Cl}^{-1} 2^{-i-1}$.
Now for each $k, k=0,1,2, \ldots$ choose a function $\lambda_{k} \in C_{o}^{1}$ such that:
(1) supp $\lambda_{k} \subset A_{2 k+1}^{\prime}$
(2)

$$
\lambda_{k}(z)=1 \text { for } z \in\left\{z\left|2^{-2 k-2} \leq|z| \leq 2^{-2 k-1}\right\} \cap B_{2 k+1}\right.
$$

(3) $\lambda_{k}(z)=0$ for $z \& \bigcup_{i=0}^{\infty} c_{i}$
(4) $\left|\frac{\partial \lambda_{k}(z)}{\partial x_{1}}\right| \leq F_{1} \cdot 2^{2 k+1},\left|\frac{\partial \lambda_{k}(z)}{\partial x_{2}}\right| \leq F_{2} \cdot 2^{2 k+1}$
where $z=x_{1}+i x_{2}$ and F_{1} and F_{2} are constants independent of k.
(5) $\quad \lambda_{k}(z)+\lambda_{k+1}(z)=1$ for $z \in\left\{z\left|2^{-2 k-3} \leq|z| \leq 2^{-2 k-2}\right\} \cap B_{2 k+2}\right.$.

Given any $\varepsilon>0$ we use a lemma of Fernström and Polking [2] to obtain functions $\psi_{k} \in C^{\infty}$ such that:
(1) $\psi_{k}(z) \equiv 1$ for z near $A_{k}^{\prime}-\{z \mid \operatorname{Dist}(z, E)<\epsilon\}$.

for $\beta=(0,0),(0,1)$, and $(1,0)$. Here the constant F is independent of ε and k.

$$
\text { Since supp } \lambda_{k} \subset A_{2 k+1}^{\prime} \text {, we have } \psi_{2 k+1} \cdot \lambda_{k}=\lambda_{k} \text { on the }
$$ set $\{z \mid \operatorname{Dist}(z, E) \geq \epsilon\}$. Thus $\sum_{0}^{\infty} \psi_{2 k+1} \cdot \lambda_{k} \equiv 1$ on $\left\{|z| \leq 4^{-1}\right\}-$ $\{z \mid \operatorname{Dist}(z, E)<\varepsilon\}$. Choose $X \in C_{o}^{\infty}$ with $X(z) \equiv 1$ near E. Set $h(z)=X(z) \cdot \frac{1}{\pi z}$. For each double index $\beta=(0,0),(0,1)$, and $(1,0)$ there is a constant F_{β} such that

$$
\begin{gathered}
\left|D^{\beta} h(z)\right| \leq F_{\beta} \cdot|z|^{-1-|\beta|} \\
\text { Set } f_{\epsilon}=\frac{h \cdot \sum_{o}^{\infty} \psi_{2 k+1} \cdot \lambda_{k}=\sum_{o}^{\infty} \psi_{2 k+1} \cdot h_{k}}{} .
\end{gathered}
$$

where $h_{k}=\lambda_{k} h$.

Since supp $\lambda_{k} \subset A_{2 k+1}^{\prime}$, the above inequalities imply that

$$
\left|D^{\beta} h_{k}(z)\right| \leq F_{\beta^{2}}^{(2 k+1)(1+|\beta|)}
$$

The subadditivity of C_{2} and the convergence of $\sum_{0}^{\infty} 2^{2 k} C_{2}\left(A_{k}-E\right)$ (see Theorem 1.1) imply that the net $\left\{f_{\epsilon}\right\}$ is bounded in L_{l}^{2}. There is a subsequence that converges weakly to a function $f \in L_{1, l o c}^{2}$ which satisfies. $f(z)=\frac{X(z)}{\pi z}$ for $z \in \mathbb{C}-E$ and $f(z)=0$ for every $z \in E \cap\{z|\operatorname{Dist}(z, \partial E) \geq C| z \mid\}$. Set $g=-\frac{\partial}{\partial \bar{z}} f$. Then $g \in L^{2}(E)$ since $f \in L_{l}^{2}(E)$, and g is a representing function for 0 . The proof of (iii) proceeds as in [5] .

The above lemma can be used to prove the following theorem in almost the same way that in [5] Lemma 5.1 is used to prove Theorem 5.l.

THEOREM 2.1. Let $0 \in \partial E$ be a BPE for $R^{2}(E)$. Let C be a positive constant such that 0 is a limit point of the set $S=\{y|y \in \operatorname{Int} E, \operatorname{Dist}(y, \partial E) \geq C| y \mid\}$. Let g be a representing function for 0 and suppose that $g(z) \cdot \phi(|z|)^{-1} \in L^{2}(E)$ where ϕ is an admissible function. Then for any $\epsilon>0$ there is a $\delta>0$ such that if $y \in S$ and $|y|<\delta$,

$$
|f(y)-f(0)| \leq \quad \epsilon \phi(|y|)\|f\|_{2}
$$

for all $f \in R(E)$.
Using this theorem and the methods in [4] one can prove:
COROLLARY 2.1. Suppose that all the conditions of Theorem 2.1 hold. Suppose, moreover, that s is a positive integer such that $g(z) \cdot z^{-s} \cdot \phi(|z|)^{-1} \epsilon L^{2}(E)$. Then for each $\varepsilon>0$ there exists a $\delta>0$ such that if $y \in S$ and $|y|<\delta$, $\left|f(y)-f(0)-\frac{f^{\prime}(0)}{1!}(y-0)-\cdots-\frac{f^{(s)} 0}{s!}(y-0)^{s}\right| \leq \epsilon|y-0|^{s} \phi(|y|)\|f\|_{2}$ for all $f \in R(E)$.

Finally, there is a corollary with weaker preconditions. COROLLARY 2.2. Let $0, g$, and \varnothing be as in Theorem 2.1. Suppose there is a positive constant C such that 0 is a limit point of the set

$$
S=\{Y|Y \in \operatorname{Int} E, \operatorname{Dist}(Y, \partial E) \geq C \cdot \phi(|Y|)| Y \mid\}
$$

Then for each $\epsilon>0$ there is a $\delta>0$ such that if $y \in S$ and $|y|<\delta$,

$$
|f(y)-f(0)| \leq \epsilon\|f\|_{2} \text { for all } f \in R(E) .
$$

The proof is similar to the proof of Theorem 2.1. One uses the fact that there exists an admissible function $\bar{\varnothing}$ such that $g \cdot \phi^{-1} \cdot \bar{\phi}^{-1} \epsilon L^{2}(E)$.

3. EXAMPLES

EXAMPLE 1. We will construct a compact set E such that $0 \in \partial E, 0$ is a BPE for $R^{2}(E)$, and 0 is a limit point of Int E. Let $D=$ $\{|z| \leq 1\}$. Let $D_{i}, i=1,2,3, \ldots$, be the open disc centered on the positive real axis at $3 \cdot 2^{-i-3}$ and having radius $r_{i}=\exp \left(-2^{2 i}{ }^{2}\right)$.

Let $E=D-\bigcup_{i=1}^{\infty} D_{i} . \quad$ Then since $C_{2}(B(x, r)) \leq F\left(\log \frac{1}{r}\right)^{-1}, r \leq r_{o}<1$, (see [3])., we have

$$
\sum_{n=1}^{\infty} 2^{2 n} C_{2}\left(A_{n}-E\right)=\sum_{n=1}^{\infty} 2^{2 n} C\left(D_{n}\right) \leq F \cdot \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty .
$$

Thus 0 is a BPE for $R^{2}(E)$. If C is a positive constant sufficiently small (any positive number $<\frac{1}{2}$ will do), the set $\{y \mid y \in$ Int E, Dist $(y, \partial E) \geq C|Y|\}$ intersects the positive real axis in a sequence of disjoint intervals $\left[a_{n}, b_{n}\right]$ such that $b_{n} \rightarrow 0$.

EXAMPLE 2. Next we construct a compact set E which is like Example 1 in that 0 is a limit point of Int E and a BPE for $R^{2}(E)$. In this example, however, there exists no sequence $\left\{y_{n}\right\} \subset$ Int E such that $\left|f\left(y_{n}\right)-f(0)\right| \leq \epsilon\|f\|_{2}$ for all $f \in R(E)$ if $\left|y_{n}\right|<\delta$. We will use
important parts of Fernströn's construction in [l]. Let F be a positive constant such that $C_{2}(B(z, r)) \leq F\left(\log \frac{1}{r}\right)^{-1}$ for all $r, r \leq r_{0}<1$. Choose $\alpha, \alpha \geq 1$ such that

$$
\frac{F}{\alpha} \cdot \sum_{n=1}^{\infty} \frac{1}{n \log ^{2} n}<C_{2}(B(0,1 / 2))
$$

Let A_{o} be the closed unit square with center at 0 . Cover A_{o} with 4^{n} squares of side 2^{-n}. Call the squares $A_{n}^{(i)}, i=1,2 \ldots 4^{n}$. In every set $A_{n}{ }^{(i)}$ put an open disc $B_{n}{ }^{(i)}$ such that $B_{n}{ }^{(i)}$ and $A_{n}{ }^{\text {(i) }}$ have the same center, and the radius of $B_{n}{ }^{(i)}$ is $\exp \left(-\alpha 4^{n} n \log { }^{2} n\right)$. Let $D_{i}, i=1,2,3, \ldots$ be an open disc centered on the positive real axis such that $D_{i} \subset\left\{z\left|2^{-i-1} \leq|z| \leq 2^{-i}\right\}\right.$ and $r_{i}=\exp \left(-2^{2 i} i^{2}\right)$. For each $n, n=1,2,3, \ldots$, let $G_{n}=\bigcup_{i} B_{n}{ }^{(i)}$ where the summation is over those indices i such that $1 \leq i \leq 4^{n}$ and $B_{n}(i) \cap\left(\bigcup_{l}^{\infty} D_{i}\right)=\varphi$. Set $E_{1}=A_{0}-\underset{n=2}{\infty} G_{n}$. Then $R^{2}\left(E_{1}\right)$ has no BPE's in ∂E_{1} as is shown in [1].

Now replace a suitable number of the discs $B_{n}{ }^{(i)}, B_{n}{ }^{(i)} \subset \bigcup_{j=2}^{\infty} G_{j}$, to obtain a compact set E_{2} such that 0 is the only boundary point of E_{2} that is a $B P E$ for $R^{2}\left(E_{2}\right)$, (see [1]). This can be done so that Int $E_{2}=\bigcup_{1}^{\infty} D_{i}$. If $y \in \operatorname{Int} E_{2}$, let norm(y) denote the norm of "evaluation at $y^{\prime \prime}$ as a linear functional on $R^{2}\left(E_{2}\right)$. Then if $\left\{y_{k}\right\} \subset D_{i}$, and $y_{k} \rightarrow \partial D_{i}, \operatorname{norm}\left(y_{k}\right) \rightarrow \infty$; otherwise some point on ∂D_{i} would be a BPE for $R^{2}\left(E_{2}\right)$.

For each i choose an open disc $D_{i}^{\prime} \subset D_{i}$ such that D_{i}^{\prime} and D_{i} are concentric and such that if $y \in D_{i}-D_{i}^{\prime}$, then norm (y) for the space $R^{2}\left(E_{2}-D_{i}^{\prime}\right)$ is greater than i.

Now let $E=E_{2}-\bigcup_{i=1}^{\infty} D_{i}^{\prime}$.
The radii of the D_{i}^{l} are so small that 0 is also a BPE for $R^{2}(E)$. Let $\left\{y_{n}\right\}$ be any sequence in Int E such that $y_{n} \rightarrow 0$. Let $\operatorname{norm}\left(y_{n}\right)=$ norm of "evaluation at Y_{n} " on $R^{2}(E)$. Then for no $\varepsilon>0$ is there a $\delta>0$ such that if $\left|Y_{n}\right|<\delta,\left|f\left(y_{n}\right)-f(0)\right| \leq \varepsilon\|f\|_{2}$ for all $f \in R(E)$.

EXAMPLE 3. Let \varnothing be an admissible function. Obtain a compact set E in the same way that the set E_{2} was obtained in Example 2 so that:
(1) D_{i} is centered at $3 \cdot 2^{-i-2}$ and has radius

$$
r_{i}=\varnothing\left(3 \cdot 2^{-i-2}\right) \cdot 2^{-i-2}
$$

$$
\begin{align*}
& \sum_{n=0}^{\infty} 2^{2 n} \cdot \phi\left(2^{-n}\right)^{-2} C_{2}\left(A_{n}(0)-E\right)<\infty, \text { and } \tag{2}\\
& \sum_{n=0}^{\infty} 2^{2 n} C_{2}\left(A_{n}(x)-E\right)=\infty \text { for } x \neq 0, x \notin \cup D_{i} . \tag{3}
\end{align*}
$$

Let $y_{i}=3 \cdot 2^{-i-2}$. Then by the choice of $r_{i}, \operatorname{Dist}\left(y_{i}, E\right) \geq$ $3^{-1} \cdot \phi\left(\left|y_{i}\right|\right)\left|y_{i}\right|$. But there is no $C>0$ such that $\operatorname{Dist}\left(y_{i}, \partial E\right) \geq$ $C\left|y_{i}\right|$ for all i. Hence Corollary 2.2 applies to the sequence $\left\{y_{i}\right\}$ but Theorem 2.2 does not.

REFERENCES

1. Fernström, C., Some remarks on the space $R^{2}(E)$, Math. Reports, University of Stockholm 1982.
2. Fernström, C. and Polking, J. C., Bounded point evaluations and approximation in L^{p} by solutions of elliptic partial differential equations. J. Functional Analysis, 28, 1-20 (1978).
3. Meyers, N. G., A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
4. Wolf, E., Bounded point evaluations and smoothness properties of functions in $R^{p}(X)$, Trans. Amer. Math. Soc. 238 (1978), 71-88.
5. Wolf, E., Smoothness properties of functions in $R^{2}(X)$ at certain boundary points, Internat. J. Math. and Math Sci., 2 (1979), 415-426.
