SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS

E.M. SILVIA

Department of Mathematics University of California, Davis
Davis, California 95616
(Received January 24, 1983)

Abstract

Let $\mathcal{K}[C, D],-1 \leq D<C \leq 1, d e n o t e t h e c l a s s o f f u n c t i o n s$ $g(z), g(0)=g^{\prime}(0)-1=0$, analyticinthe unit disk $\quad=\{z:|z|<1\}$ such that $1+\left(z g^{\prime}(z) / g^{\prime}(z)\right)$ is subordinate to (1+Cz)/(1+Dz), ze \quad (We investigate the subclasses of close-to-conver functionsf(z), $f(0)=f^{\prime}(0)-1=0, f o r w h i c h t h e r e x i s t s g e x[C, D] s u c h a t$ f^{\prime} / g^{\prime} is subordinate to $(1+A z) /(1+B z),-1 \leq B<A \leq 1 . \quad D i s t o r t i o n a n d$ rotation theorems and coefficiont bounds are obtained. It is also shown that these classes are preserved under certain integral operators.


```
KEY MORDS AND PHRASES, Univalent, convex, starlike, subordination, convolution.
```

AMS (MOS) SUBJECT CLASSIFICATION (1980) CODES: 30C45, 30C55.

1. INTRODUCTION.

```
    Let S denote theclass of functions f(z)= z+ [ < m=2 mananaly-
tic and univalent in the unit disk U = {z: |z|< l}. For functions g
and G analytic in U we say that g is subordinate to G, denoted
g< G, if there exists a Schwarz function w(z), w(z) analytic in U
with w(0)=0 and |w(z)|< < in U, such that g(z)=G(w(z)). If G
is univalent in U then g< G if and only iffg(0)=G(0) and g(U)\subset
```

 with $p(0)=1$ is in the ciass $P[A, B]$ if $p(z)<(1+A z) /(1+B z)$. This class was introduced by Janowski [4]. Given C and $D,-1 \leq D<$ $C \leq 1, K[C, D] a n d \mathcal{O}^{*}[C, D] d e n o t e t h e c l a s s e s$ of functions fanalytic in U With $f(0)=f^{\prime}(0)-1=0$ such that $1+f^{\prime} f^{\prime}(z) / f^{\prime}(z) \varepsilon P[C, D]$ and $z f^{\prime}(z) / f(z) \varepsilon P[C, D]$ respectively. The ciasses $\boldsymbol{o}^{*}[C, D]$ wereintroduced by Janowsif [4] and studied further by Goel and Mehrok ([1] and [3]). For $C=1$ and $D=-1, \mathcal{K}[1,-1]=K\left(d^{*}[1,-1]=d^{*}\right)$, the woll-kown subciass of convex (starlike) functions.

Afunction $f(z)=z+\sum_{n=2}^{\infty} n^{n}$ analytic in \quad is said to be in the class C[A,B;C,D], $-1 \leq B<A \leq 1,-1 \leq D<C \leq 1, i f t h e r e ~ e x i s t s$
 class of close-to-convex functions is $C[1,-1 ; 1,-1]=C w h i l e$ $\mathcal{H}[\mathbf{C}, \mathrm{D}] \subset \mathcal{K}$ and $\mathbb{P}[\mathbf{A}, \mathrm{B}] \subset \mathbb{P}[1,-1]$ shows $C[A, B ; C, D] \subset C \subset S . S i n c e$ $g \varepsilon \mathcal{O}^{*}[C, D]$ if and only if $\int_{0}^{2} g(\zeta) \zeta^{-1} d \zeta \varepsilon K[C, D]$, we also note that $C[1,-1 ; C, D]$ was studied by Goel and Mehrok ([2] and [3]).

In Section 2 of this paper we obtain distortion and rotation
 relating $C[A, B ; C, D]$ and $P[A, B]$. In Section 3 , it is shown that the class C[A,B;CD]is preserved under certain integral operators. We conclude with coefficiont inequalities.

2. DISTORTION AND ROTATION THEOREMS.

Uniess otherwise mentioned in the sequel, the only restrictions on the real constanta A, B, C and D arethat $-1 \leq D<C \leq 1$ and $-1 \leq B<A \leq 1$.

THEOREM 1. Fex $f \in C[A, B ; C, D],|z| \leq r<1$,
$\frac{\left(1-A_{r}\right)\left(1-D_{r}\right)^{(C-D) / D}}{1-B_{r}} \leq\left|f^{\prime}(z)\right| \leq \frac{\left(1+A_{r}\right)\left(1+D_{r}\right)^{(C-D) / D}}{1+B_{r}} \quad, D \neq 0$
and
$\frac{(1-A r) \exp \left(-C_{r}\right)}{1-B_{r}} \leq\left|f^{\prime}(z)\right| \leq \frac{\left(1+A_{r}\right) \exp \left(C_{r}\right)}{1+B r} \quad, \quad D=0$.

The bounds are sharp.

PROOF. For fe $C[A, B ; C, D]$, there exists a ge K[C,D] and per $\mathrm{P}[\mathrm{A}, \mathrm{B}]$ such that

$$
\begin{equation*}
f^{\prime}(z)=g^{\prime}(z) p(z) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-D_{r}\right)^{(C-D) / D} \leq\left|g^{\prime}(z)\right| \leq\left(1+D_{r}\right)^{(C-D) / D}, D \neq 0 \text {, and } \tag{2.2}
\end{equation*}
$$

$$
\exp (-\mathbf{C r}) \leq\left|g^{\prime}(z)\right| \leq \exp (\mathbf{C r}) \quad, D=0
$$

Forperpla, B], $|z| \leq r, t h e q n i v a l e n c e o f(1+A z) /(1+B z)$ gives

$$
\begin{equation*}
\frac{1-A r}{1-B_{r}} \leq|p(z)| \leq \frac{1+A r}{1+B r} \tag{2.3}
\end{equation*}
$$

The result follows immediately upon applying (2.3) and (2.2) to (2.1). Equality is obtained for fec C A, $B ; D]$ satisfying

$$
f^{\prime}(z)= \begin{cases}\frac{(1+A z)(1+D z)^{(C-D) / D}}{1+B z} & , D \neq 0 \tag{2.4}\\ \frac{(1+A z) \exp (C z)}{1+B z} & , D=0\end{cases}
$$

and $z= \pm \mathbf{r}$.

REMARK. For $A=1$ and $B=-1$, Theorem 1 agrees with Theorem 3 of Goel and Mehrot [2].

$\left|\arg f^{\prime}(z)\right| \leq \begin{cases}\frac{C-D}{D} \arcsin (D r)+\arcsin \frac{(A-B) r}{1-A B r^{2}} & , D \neq 0 \\ \arcsin (C r)+\arcsin \frac{(A-B) r}{1-A B r^{2}} & , D=0 .\end{cases}$

PROOF. From (2.1) we have

$$
\begin{equation*}
\left|\arg f^{\prime}(z)\right| \leq\left|\arg g^{\prime}(z)\right|+|\arg p(z)| . \tag{2.5}
\end{equation*}
$$

Since zg' $\boldsymbol{\rho}^{*}[\mathrm{C}, \mathrm{D}]$, we know [2] that for $|\boldsymbol{z}| \leq r<1$

$$
\left|\arg g^{\prime}(z)\right| \leq \begin{cases}\frac{C-D}{D} \arcsin (D r) & D \neq 0 \tag{2.6}\\ C r & D=0\end{cases}
$$

For $p e P[A, B], p(|z|<r)$ is contained in the disk $\left|v-\frac{1-A B r^{2}}{1-B r^{2}}\right|<\frac{(A-B) r}{1-B^{2} r^{2}}$ from which it follows that

$$
\begin{equation*}
|\arg p(z)| \leq \arcsin \frac{(A-B) r}{1-A B r^{2}} . \tag{2.7}
\end{equation*}
$$

Substituting (2.6) and (2.7) into (2.5) gives the result.

REMARIS 1. For $A=1$, $=-1$, Theorem 2 agrees with Theorem 4 of Goel and Mehrok [2].
2. For $A=C=1, B=D=-1$, Theorem 2 reduces to the result of Krzyz [7] that

$$
\left|\arg f^{\prime}(z)\right| \leq 2(\arcsin r+\arctan r),|z| \leq r<1
$$

The convolution or Hadamard product of two power series
$f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ is defined as the power series $(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}$. In order to obtain a subordination result linking $C[A, B ; C, D]$ and $P[A, B]$ weed the following

LEMMA (Ruscheweyh and Sheir-Small, [11]). Let
φ and ψ be convex in J and suppose $f<\psi . \quad$ Then $\varphi * f<\varphi * \psi$.

THEOREM 3. If fer C [A,B;C,D] then there exists per P[A,B] such that for all s and t with $|s| \leq 1,|t| \leq 1$,

$$
\frac{f^{\prime}(s z) p(t z)}{f^{\prime}(t z) p(s z)}< \begin{cases}\left(\frac{1+D s z}{1+D t z}\right)^{(C-D) / D} & , D \neq 0 \tag{2.8}\\ e x p[C(s-t) z] & , D=0\end{cases}
$$

PROOF. We will use an approach due to Ruscheweyh [10]. From (2.1) we have $\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+\frac{z p^{\prime}(z)}{p(z)}$ for $g \varepsilon \mathcal{K}[C, D]$ and $p \varepsilon P[A, B]$. Therefore,

$$
\begin{equation*}
\frac{z f^{\prime} \prime(z)}{f^{\prime}(z)}-\frac{z p^{\prime}(z)}{p(z)}=\left(1+\frac{z g^{\prime} \prime(z)}{g^{\prime}(z)}\right)-1<\frac{(C-D) z}{1+D z} . \tag{9}
\end{equation*}
$$

For s and t such that $|s| \leq 1,|t| \leq 1, ~ t h e f u n c t i o n$
$h(z)=\int_{0}^{z}\left(\frac{s}{1-s u}-\frac{t}{1-t u}\right) d u$ is convex in U. Appiying Lemma A to (2.9)
with this h, we have

$$
\begin{equation*}
\left(\frac{z f^{\prime} \prime(z)}{f^{\prime}(z)}-\frac{z p^{\prime}(z)}{p(z)}\right) * h(z)<\frac{(C-D) z}{1+D z} * h(z) . \tag{2.10}
\end{equation*}
$$

$$
\begin{align*}
& (\ell ⿻ \mathrm{~h})(\mathrm{z})=\int_{\mathrm{tz}}^{\mathrm{sz}} \mu(\mathrm{u}) \frac{\mathrm{du}}{\mathrm{u}}, \quad z \varepsilon \mathrm{U} \text {, so } \mathrm{that}(2.10) \text { reduces to } \\
& \log \left(\frac{f^{\prime}(s z) p(t z)}{p(s z) f^{\prime}(t z)}\right)<(C-D) \int_{t z}^{s z} \frac{d u}{1+D u} . \tag{2.11}
\end{align*}
$$

Integrating the righthand side of (2.11) and exponentiating both sides leads to (2.8).

COROLLARY 1. If fec $\mathcal{C}[A, B ; C, D]$ then there exists a $p e P[A, B]$ and a Schwarz function $w(z)$ such that

$$
f^{\prime}(z)= \begin{cases}p(z)(1+D w(z))^{(C-D) / D} & , D \neq 0 \\ p(z) \exp (C w(z)) & , D=0 .\end{cases}
$$

PROOF. The result follows directiy upon substituting s $=1$ and t $=0$ into Theorem 3.

COROLLARY 2. If $f(z)=z+\sum_{n=2}^{\infty}{ }^{\infty} n^{n}{ }^{n} \varepsilon C[A, B ; C, D]$ then $\left|a_{2}\right| \leq \frac{(C-D)+(A-B)}{2}$.

PROOF. If $g<F_{\text {then }}\left|g^{\prime}(0)\right| \leq\left|F^{\prime}(0)\right|$ [8]. From Corollary 1 , we take $g(z)=f^{\prime}(z) / p(z)$ and
$F(z)=\left\{\begin{array}{ll}\left(1+D_{z}\right)(C-D) / D & , D \neq 0 \\ \exp \left(C_{z}\right) & , D=0\end{array}\right.$.

Then $g^{\prime}(0)=2 a_{2}-c_{1}$ for $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ and $F^{\prime}(0)=C-D$. Therefore $2\left|a_{2}\right|-\left|c_{1}\right| \leq|C-D|$ and $\left|a_{2}\right| \leq \frac{(C-D)+\left|c_{1}\right|}{2} \leq \frac{(C-D)+(A-B)}{2}$ as claimed.

3. INVARIANCE PROPERTIES.

We will need the following lemas.
LEMMA B (Ruscheweyh and Sheil-Salil, [11]). Let φ be convex
and g starlike in U. Then for F analytic in U with $F(0)=1$, $\varphi \varphi_{\mathrm{Fg}}^{\varphi * g}(\mathrm{U})$ is contained in the convex hull of $\underline{f(U)}$.

LEMMA C (Silverman and Silvia, [12]). If g e $\boldsymbol{f}^{\star}[C, D]$ then for $\varphi \in \mathcal{K}, \varphi=\mathrm{g} \varepsilon \boldsymbol{o}^{*}[\mathrm{C}, \mathrm{D}]$.

THEOREM 4. If $\varphi \in \mathcal{K}$, and $f \varepsilon C[A, B ; C, D]$ then $\varphi * f \in C[A, B ; C, D]$.

PROOF. For fe $C[A, B ; C, D]$ there exists $g \varepsilon \mathcal{O}^{*}[C, D]$ and F $\mathcal{E} P[A, B] \operatorname{such} t h a t \quad z f^{\prime}(z)=g(z) F(z)$. Since (1+Az)/(1+Bz) is convex in U, by Lemma B,

$$
\frac{z(\varphi * f)^{\prime}}{\varphi * g}=\frac{\varphi * F_{g}}{\varphi * g}<\frac{1+A z}{1+B z} \quad\left(\begin{array}{lll}
z & \varepsilon & U \tag{3.1}
\end{array}\right)
$$

 $\varphi * \mathbf{f} \in[\mathbf{A}, \mathbf{B} ; \mathbf{C}, \mathbf{D}]$.

REMARK. For $A=C=1, B=D=-1$, Theorem 4 was proved by Ruscheweyh and Sheil-Small [11].

COROLLARY. If $f \in C[A, B ; C, D]$ then so are
(i) $F_{1}(z)=\frac{1+\gamma}{z} \int_{0}^{z} t^{\gamma-1} f(t) d t \quad$, $R e \gamma>0$
and
(ii) $F_{2}(z)=\int_{0}^{z} \frac{f(\zeta)-f(x \zeta)}{\zeta-x \zeta} d \zeta, \quad|x| \leq 1, x \neq 1$.

PROOF. Observe that $F_{j}(z)=\left(h_{j} *\right)(z), j=1,2$, where $h_{1}(z)=\sum_{n=1}^{\infty} \frac{1+\gamma}{n+\gamma} z^{n}, \quad$ Re $\gamma>0$, and $h_{2}(z)=\sum_{n=1}^{\infty} \frac{1-x^{n}}{(1-x) n^{n}} z^{n}=$ $\frac{1}{1-x} \log \left[\frac{1-x z}{1-z}\right], \quad|x| \leq 1, x \neq 1 . \quad S i n c e h_{1}$ was shown to be convex, by Ruscheveyh [9] and h_{2} is clearly convex, the result follows immediately from Theorem 4 .

REMARK. Goel and Mehrok [3] showed that C[1,-1; C, D] was preserved under $f_{1}(z)$ when $\gamma=1,2,3, \ldots$ and under $f_{2}(z)$ when $x=-1$ by a different method.

4. COEFFICIENT INEQUALITIES.

We begin with coefficient inequalities for $\mathbb{K}[C, D]$.

LEMMA. For $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \mathcal{K}[C, D]$ and μ complex

$$
\left|b_{2}\right| \leq \frac{C-D}{2}, \quad \text { and }
$$

$\left|b_{3}-\mu b_{2}{ }^{2}\right| \leq \frac{C-D}{6} \max \left\{1,\left|\frac{3}{2} \mu(C-D)-(C-2 D)\right|\right\}$.

$$
\begin{aligned}
& \text { PROOF. For } g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \text { e } K[C, D] \text {, there exists a }
\end{aligned}
$$

$$
\begin{aligned}
& (1+C w(z)) /(1+D w(z)) \text { or } z^{\prime \prime} g^{\prime}(z) / g^{\prime}(z)=(C-D) w(z) /(1+D w(z)) . \\
& \text { Substitution of the series expansions and comparison of the } \\
& \text { coefficients leads to }
\end{aligned}
$$

$$
b_{2}=\frac{C-D}{2} \gamma_{1} \quad \text { and } \quad b_{3}=\frac{C-D}{6}\left\{\gamma_{2}+(C-2 D) \gamma_{1}^{2}\right\}
$$

Therefore, $\left|b_{2}\right| \leq \frac{C-D}{2}$ and

$$
\begin{equation*}
b_{3}-\mu b_{2}^{2}=\frac{C-D}{6}\left\{\gamma_{2}+\left[(C-2 D)-\frac{3}{2} \mu(C-D)\right] \gamma_{1}^{2}\right\} \tag{4.1}
\end{equation*}
$$

We know [6] that for somplex

$$
\begin{equation*}
\left|\gamma_{2}-s \gamma_{1}^{2}\right| \leq \max \{1,|s|\} \tag{4.2}
\end{equation*}
$$

Combining (4.2) and (4.1) yields the result.

REMARK. If we apply the inequality $\left|\gamma_{2}\right| \leq 1-\left|\gamma_{1}\right|^{2}$ [8] to (4.1), the same proof shows that

$$
\left|b_{3}-\mu b_{2}{ }^{2}\right| \leq \frac{C-D}{6}+\frac{2}{3(C-D)}\left\{\left|(C-2 D)-\frac{3}{2} \mu(C-D)\right|-1\right\}\left|b_{2}\right|^{2}
$$

THEOREM 5. For $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \varepsilon C[A, B ; C, D]$

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{(C-D)+(A-B)}{2} \text { and } \\
& \left|a_{3}\right| \leq \begin{cases}\frac{C-D}{6}+\frac{(A-B)(C-D+1)}{3} & |C-2 D| \leq 1 \\
\frac{(C-D)(C-2 D)}{6}+\frac{(A-B)(C-D+1)}{3}, & |C-2 D|>1\end{cases}
\end{aligned}
$$

PROOF. There exists a $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \varepsilon[C, D]$ and a Schwarz function w(z) $=\sum_{n=1}^{\infty} \gamma_{n} z^{n}$ such that $f^{\prime}(z) / g^{\prime}(z)=(1+A w(z)) /(1+B w(z))$, $z \varepsilon U$. Comparing series expansions, we see $a_{2}=b_{2}+\frac{A-B}{2} \gamma_{1}$ and

$$
\begin{equation*}
a_{3}=b_{3}+\frac{2}{3}(A-B) b_{2} \gamma_{1}+\frac{(A-B)}{3}\left(\gamma_{2}-B \gamma_{1}^{2}\right) \tag{4.3}
\end{equation*}
$$

The bound for $\left|a_{2}\right|$ follows from the Lemma. Appiying (4.2) and the Lemma ($\mu=0$) to (4.3), we have

$$
\begin{aligned}
\left|a_{3}\right| \leq \frac{C-D}{6} & =a x\{1,|C-2 D|\}+\frac{(A-B)(C-D)}{3}+\frac{(A-B)}{3} \\
& =\frac{C-D}{6} \max \{1,|C-2 D|\}+\frac{(A-B)(C-D+1)}{3}
\end{aligned}
$$

REFERENCES

1. Goel, R. M. and Mehrok, B. S., On the coefficients of a subclass of starlike functions. Indian J. Pure Appi. Math.. 12(1981), 634-647.
2. Goel, R. M. and Mehrok, B. S., On a class of close-toconvex functions. Indian J. Pure Appl. Math. $12(1981)$, 648-658.
3. Goel, R. M. and Mehrok, B. S., Some invariance properties of a subclass of close-to-conver functions. Indian J. Pure App1. Math.e 12(1981), 1240-1249.
4. Janowski, W., Some extremal problems for certain families of analytic functions. Ann. Polon. Math., 28(1973), 297-326.
5. Kaplan, W., Close-to-convex schicht functions. Mich. Math.J., 1(1952), 169-185.
6. Keogh, F. R. and Merkes, E. P., A coefficient inequality for certainciasses of analytic functions. Proc. Amer. Math. Soc. 20(1969), 8-12.
7. Krzyz, J., On the derivative of closeto-convex functions. Collog. Math., $10(1963)$, 143-146.
8. Nehari, Z., Conformal Mapping. McGraw-Hill, New York, 1952 .
9. Ruschevegh, St., New criteria for univalent functions. Proc. Amer.Math. Soc.e 49(1975), 109-115.
 J. London Math. Soc.e 13(1976), 275-280.
10. Ruscheweyh, St. and Shei 1-Small, T., Hadamard products of schlicht functions and the Polyà-Schoenberg conjecture. Comm. Math. He1v. 48(1973), 119-135.
11. Silverman, H. and Silvia, E. M., Subciasses of starlike functions subordinate to convex functions (submitted).
