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ABSTRACT. In 1973, Stieglitz [5] introduced a notion of FB-Convergence which provided

a wide generalization of the classical idea of almost convergence due to Lorentz [i].

The concept of strong almost convergence was introduced by Maddox [3] who later on

generalized this concept analogous to Stieglitz’s extension of almost convergence [4].

In the present paper we define absolute FB-Convergence which naturally emerges from

the concept of FB-Convergence.
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1 INTRODUCT ION

Let o’ c, and co denote respectively the Banach spaces of bounded, convergent,

and null sequences x (Xk) of complex numbers with norm lxll sp Xkl and let v

be the space of sequences of bounded variation, that is,

v {x: llxll- Ixk Xk_ll < + oo, x_I 0}.
k=O

Suppose that B (B.) is a sequence of infinite complex matrices with Bi=(bnp(i)
Then x oo is said to be FB-Convergent [5], to the value Lim Bx, if

lim (Bix) n lira bnp(i)x Lira Bx,
n n p=O P

uniformly for i 0,I,2

The space F
B

of FB-Convergent sequences depends on the fixed chosen sequence

B (Bi). In case B B
0

(I) (unit matrix), the space FB is same as c and, for
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B B
I (B (I)i ), it is same as the space f of almost convergent sequences [i], where

B(1). (b(1) (i)) with
i np

I I
n+l

i -< p -< i + n

b(l) (i)
np ! 0 elsewhere

Maddox [4] generalized strong almost convergence by saying that x -- s[FB] if
P

and only if

_Dnp(i) IXp s 0 (n- oo, uniformly in i)
P

(i.1)

assuming that the series in (i.i) converges for each n and i.

In particular, if B B0, the [FB] c; if B Bi, then [FB] [f], the space of

strongly almost convergent sequences [3]. We shall write e
k

(0,0,...,0,i (kth

entry), 0 and e (i,I,i ).

Let s be the space of all complex sequences and

d
B

{x s: Lim Bx lira (BiX)n exists for each i}

F
B

{x (dB ): lim t (i x) exists uniformly in i
n

and the limit is independent of i},

where

and

t (i,x)
n

g bnp(i)xp (n >- I)

p0 0p(i)Xp (n 0)

0 (n =-I)

0 otherwise.

Let

Therefore, we have

(i,x)
n

(i x) t (i x) (i,x)n n tn-i

[bnp(i) bn_l, p

Op(i) x
P

(i)]Xp, (n -> l)

(n 0)
(1.2)
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DEFINITION. Let B (Bi) be a sequence of infinite matrices with B
i (bnp(i)).

A sequence x is said to be absolutely FB-Convergent if 19 (i x) converges
n=0 n

uniformly for i >- 0, and lim t (i,x) which must exist should take the same value for
n->oo n

all i. We denote the space of absolute FB-Convergent sequences by v(B).

2. THE MAIN RESULT.

In this note, we denote by (v,v(B)) the set of matrices which give new classes

of absolute B-conservative matrices and absolute almost B-conservative matrices.

Let A be any infinite complex matrix for which the pth row-sum converges for a

given x for all x in some class.

We have

and

Therefore,

A x (Ax)
P P apk x

k

(BiX)n p0 bnp(i) Xp

(BiAX)n bnp(i) A
P

p=o
np k=O

apk xk"

and, assuming the interchange of order of summation can be justified (see lemma), we

get that

(BiAx) bnpn
k=O p--0

Now, by (1.2) and (2.1), we have

(i) apk x
k

(2.1)

n(i’Ax) tn(i,Ax) tn_l(i,Ax)

p0 [bnp(i)- bn-l’ p

gnk (i) Xk,
k=O

(i) ]ApX, (n .. I),

(n 0),

(2.2)

where
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gnk(i)

[bnp(i) bn_l, p
p=O

30p (i) apk
p=O

(i)]apk (n > i),

(n 0).

HEOREM. Let B (Bi) be a sequence of infinite matrices with

SUPn p0= bnp (i) < o, for each i.

Let A be an infinite matrix. Then A: v--> v(B) if and only if

(i) sup me <
p,k =k

(ii) there is an N such that for r,i 0,i,2,...

r
E gnk(i) < K (constant),

n=N k=0

(iii) (apk)p>_0 e v(B) for each k, and

(iv) apk) v(B)
k=0 p->0

Let A e (v,v(B)). For each k, let apk be FB-Convergent with limit k" And let

k=OE apk be FB-Convergent with limit c. (In each case, limit is taken for p > 0).

If x (Xk) v, then

lim t (i Ax) lira x
k
+ (xk lim xk) k"nn-o k-o k=0 k-o

We use the following lemma in the proof.

LEMMA. If either the necessity part or the sufficiency part of the theorem

holds, then, for x v,

p=0 bnp(i) K=0 apkxk kO Xk p0 bnp(i)apk’=

PROOF. If either A: v- v(B) or the conditions (i)-(iv) of the theorem hold,

then by part_ i summation, for x v,

apkXk k:O dpk (xk Xk_I)
k=O

where dpk a
%=k p%" Since condition (i) holds, dpk is bounded for all p,k. Thus
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(i) d (x
k. bnp (i) apkxk bnp pk Xk-i

p=O p=O k=O

k=0 (xk Xk-l) = bnp(i) ape’

(where the inversion is justified by absolute convergence)

k=0
xk bnp(i) apk

since

lim x
k p0 b (i) d 0.

k_o np pk

PROOF OF THEOREM. Necessity. Condition (i) follows from the fact that A: v

Since ek,e v, necessity of (iii) and (iv) is obvious.

It is clear that, for fixed p and j,

J
x / apk x

k
k=0

is a continuous linear functional on v. We are given that, for all x e v, it tends to

a limit as j (for fixed p) and hence, by the Banach-Steinhaus Theorem [2], this

limit A x is also a continuous linear functional on v.
P

We observe that, although Y. I (i,Ax) is uniformly convergent in i it needs
n=0 n

(i,Ax) i and (i,Ax) onot be uniformly bounded in i. For example, if t n

(n -> i and i), then l ln(i,Ax) is uniformly convergent in i -> o but not uniformly
n-o

bounded. Now, we can say that uniforn convergence bears only on the behaviour of

(i,Ax) for sufficiently large n. Thus, by definition, there is an m such that
n

qm,i(x) [n(i’Ax)["
n=l

For m >- o, i >- o, qm, i
is a continuous seminorm on v, and there is an integer N such

is pointwise bounded on v. Such an N exists. For suppose not. Thenthat {qN,i
i_>O

for r 0,1,2,... ther exists x v with
r

sup qr i(Xr)
i_>o

By the principle of condensation of singularities [6],

{x e v: sup qr (x) for r 0,1,2,..
i_>o

i
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is of second category in v and hence nonempty, i.e., there is x v with

sup q (x) for r 0,1,2
i>o r, i

But this contradicts the fact that to each x e v there exists an integer N with
x

i->oSUp qNx,i(x < o.

Now, by another application of the Banach-Steinhaus Theorem, there exists a con-

stant M such that

qN,i(x) -< M Ixll. (2.3)

Apply (2.3) with x (xk) defined by x
k

i for k -< r and o for k > r. Hence (ii)

must hoid.

Sufficiency. Suppose that the conditions (i)-(iv) hold and that x v. We have

defined v(B) as a subspace of % Thus, in order to show that Ax v(B), it is

necessary to prove that Ax is bounded. By virtue of condition (i), this follows im-

mediately.

Now, it follows from (iv) and the lemma that

gnk (i)
k=O

converges for all i,n. Hence, if we write

hnk(i) gnu(i),
%--k

then hnk(i) is defined, also for fixed i,n,

hnk (i) --> 0 (2.4)

as k--. Now condition (iv) gives us that

n=O
(2.5)

converges aniformly in i, and, for suitable chosen N,

lhno (i)
n=N

(2.6)

is bounded. By virtue of condition (iii), for fixed k, we get that

n=O
converges uniformly in i. Since

k-i

hnk(i) hn0(i) gnu(i)’
%=0

(2.7)
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it follows that, for fixed k,

converges uniformly in i.

lhnk (i)
n=O

(2.8)

Now

(i,Ax) gnk(i) x
kk=O

[hnk(i) h
n k+l(i)] x

k
k=O

hnk(i) (x
k Xk_l)

k=O
(2.9)

by (2.4) and the boundedness of xk.

Condition (ii) and the boundedness of (2.6) show that

lhnk(i) (2.10)
n=N

is bounded for all k,i. We can make

k=k +1
o

arbitrarily small by choosing k sufficiently large. It therefore follows that, given
o

c > o, we can choose k so that, for all i,
o

hnk(i)(xk Xk_l) < - (2.11)
n=N k=k +1

o

By the uniform convergence of (2.8), it follows that, once k has been chosen, we can
o

choose n so that, for all i,o
k
o

hnk(i)(xk Xk_l) < g.

n=n +i k=o
o

It follows from (2.11) that the same inequality holds when 7. is replaced by 7.
n=N n=no+l

hence, for all i,

hnk(i)(xk Xk_l) < 2g. (2.12)
n=n +1 k=O

o

Hence,

Thus

ln(i,Ax) < 2g.

n=n +i
o

I@n(i,Ax)
n=O
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converges uniformly.

Now, by virtue of (2.9), we have

lim tn(i,Ax) tN_l(i,Ax)

_
__-- hnk(i (x

k Xk_l)
n-oo n=N k=O

k=0
(xk Xk-l) N= hnk(i) (2.13)

the assertion being justified by absolute convergence because of the boundedness of

(2.10). By (2.7), we have

k-i- hnk(i)= hno(i)- gn%(i)
n=N n=N %=0 n=N

(i) ap% bN_1 p "=0 %=k p=O

Thus,

lim t (i Ax) lira x
k
+ >- (xk lim Xk) knn-o k-o k=0 k-o

This completes the proof.
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