DOT PRODUCT REARRANGEMENTS

PAUL ERDOS and GARY WEISS

Mathematics Institute, Budapest; University of Cincinnati (Received September 18, 1980)

<u>ABSTRACT</u>. Let $a = (a_n)$, $x = (x_n)$ denote nonnegative sequences; $x = (x_{\pi(n)})$ denotes the rearranged sequence determined by the permutation π , $a \cdot x$ denotes the dot product $\sum a_{n,n}$; and S(a,x) denotes $\{a \cdot x_{\pi} : \pi \text{ is a permuation of the positive integers}\}$. We examine S(a,x) as a subset of the nonnegative real line in certain special circumstances. The main result is that if $a_n \uparrow \infty$, then $S(a,x) = [a \cdot x,\infty]$ for every $x_n \neq 0$ if and only if a_{n+1}/a_n is uniformly bounded.

<u>KEY WORDS AND PHRASES</u>. Dot product, series rearrangements, conditional convergence. 1982 MATHEMATICS SUBJECT CLASSIFICATION CODE. 40A05.

An elementary classical result of Riemann on infinite series states that a conditionally convergent series that is not absolutely convergent can be rearranged to sum to any extended real number. A slightly similar group of questions arose in connection with certain formulas in operator theory [1, p. 181]. Namely, if we let $a = (a_n)$, $\mathbf{x} = (\mathbf{x}_n)$ denote any two non-negative sequences and \mathbf{x}_{π} denote the sequence $(\mathbf{x}_{\pi(n)})$ where π is any permutation of the positive integers, then what can be said about the Bet of non-negative real numbers $S(a, \mathbf{x}) = \{a \cdot \mathbf{x} : \pi \text{ is a permutation of the positive} integers}\}$. More specifically, which subsets of the non-negative real line can be realized as the form $S(a, \mathbf{x})$ for some such a and \mathbf{x} ?

Various facts about S(a,x) are obvious

- (1) $S(a,x) \subset [0,\infty]$. The values 0 and ∞ may be obtained.
- (2) If a and x are strictly positive sequences or are at most finitely zero, then $S(a, x) \subset (0, \infty]$.
- (3) Not all subsets of $[0,\infty]$ are realizable as an S(a,x) set. This follows by a cardinality argument. If c denotes the cardinality of $[0,\infty]$, then the cardinality of the class of subsets of $[0,\infty]$ is 2^{C} , but the cardinality of the class of sequences a and x is c and thus the cardinality of the subsets S(a,x) is less than or equal to $c \cdot c = c$.
- (4) If either a or x is finitely non-zero then S(a,x) is countable.
- (5) An example: if a = (0,2,0,2,...) and $x = (3^{-n})$, then S(a,x) is precisely the Cantor set except for those non-negative real numbers whose ternary expansion consists of a tail of 0's or a tail of 2's (i.e., a subset of the rational numbers.),

It seems too ambitious to consider the general question at this time. For this reason we shall restrict our attention to the cases when a is a non-decreasing sequence and \mathbf{x} is a non-increasing sequence,

If $a \equiv 0$ or $x \equiv 0$, the problem is trivial and $S(a,x) = \{0\}$. If $a_1 \neq 0$ and $x_n \neq 0$, the problem is trivial and $S(a,x) = \{\infty\}$. If a_n is bounded by M, then $S(a,x) \subset [0, M \sum x_n]$. In any case, hereafter we shall assume $a_n + \infty$ and $x_n \neq 0$, unless otherwise specified.

The Lemma that follows is a well-known fact, but we give a proof for completeness and because the proof contains some of the ideas used in the main result.

LEMMA. If $a_n \uparrow$ and $x_n \downarrow$ then $S(a,x) \subset [a \cdot x, \infty]$. In addition, $a \cdot x \in S(a,x)$, and if $a_n \uparrow \infty$ and $x_n \neq 0$ for all n or if $a_n \uparrow$ and $a_n > 0$ for some n and $x_n \neq 0$, then $\infty \in S(a,x)$.

PROOF. It suffices to show that for every permutation π of the positive integers, we have $\mathbf{a} \cdot \mathbf{x} \leq \sum a_n \mathbf{x}_{\pi(n)}$ or, equivalently, $\mathbf{a} \cdot \mathbf{x} \leq \sum a_{\pi(n)} \mathbf{x}_n$ for every π . The rest of the lemma is clear.

Define π_1 in terms of π as follows. Set

$$\pi_{1}(n) = \begin{cases} 1 & n = 1 \\ \pi(1) & n = \pi^{-1}(1) \\ \pi(n) & \text{otherwise} \end{cases}$$

It is straightforward to verify that π_1 is also a permutation of the positive integers (one-to-one and onto) which fixes 1. We assert that $a_{\pi_1} \cdot \mathbf{x} \leq a_{\pi} \cdot \mathbf{x}$ To see this, note that $\pi(1) \geq 1$ and $\pi^{-1}(1) \geq 1$. Hence $a_{\pi(1)} - a_1 \geq 0$ and $X_1 - X_{\pi^{-1}(1)} \geq 0$. Therefore

$$\sum_{n=1}^{\infty} (a_{\pi(n)} - a_{\pi_{1}(n)}) x_{n} = (a_{\pi(1)} - a_{\pi_{1}(1)}) x_{1} + (a_{\pi(\pi^{-1}(1))} - a_{\pi_{1}(\pi^{-1}(1))}) x_{\pi^{-1}(1)}$$
$$= (a_{\pi(1)} - a_{1}) (x_{1} - x_{\pi^{-1}(1)})$$
$$\geq 0 .$$

Proceeding inductively, we obtain a sequence of permutations π_k that fix 1,2,...,k for which $a_{k} \cdot x \leq a_{k-1} \cdot x$. Hence, for every k,

$$\sum_{n=1}^{k} a_{n} x_{n} = \sum_{n=1}^{k} a_{\pi_{k}(n)} x_{n} \leq a_{\pi} \cdot x \leq a_{\pi} \cdot x$$

Letting $k \rightarrow \infty$, we obtain $a \cdot x \leq a_{\pi} \cdot x$.

The main question of this paper is: for which a, x with $a \uparrow \infty$ and $x \downarrow 0$ is $S(a,x) = [a \cdot x, \infty]$?

The main result of this paper gives a partial answer. Namely, we can characterize which $a_n \uparrow \infty$ have the property that $S(a,x) = [a \cdot x, \infty]$ for every x such that $x_n \neq 0$.

On first sight, it might appear that S(a, x) can never be $[a \cdot x, \infty]$ or that it is quite rare. The first result in this direction was that if $a_n = n$ for every n, then $S(a, x) = [a \cdot x, \infty]$ for every x such that $x_n \neq 0$. That S(a, x) may not be $[a \cdot x, \infty]$ was first decided by an example due to Robert Young. Namely, let $a_n = 2^{2^n}$ and $x_n = 2^{-2^{n+1}}$. Both results are unpublished. The succeeding results and techniques are due to the work of the authors in collaboration with Hugh Montgomery. THEOREM 1. (The Main Theorem) Let $a = (a_n)$ where $a_n > 0$ for every n and $a_n \rightarrow \infty$. Consider the following conditions:

- (1) a_{n+1}/a_n is bounded.
- (2) For the non-negative sequence $x = (x_n)$, there exist subsequences $(a_n)_k^{n_k}$ and (x_k) of a and x respectively such that (a) $a_n x_{k-m_k} \to 0$ as $k \to \infty$, and (b) $\sum_{k=n_k} a_{n_k-m_k} x_{k-m_k} = \infty$. (3) $S(a,x) = [a \cdot x,\infty]$.

Then (1) implies (2) for every strictly positive sequence $\mathbf{x} = (\mathbf{x}_n)$ that tends to 0. Also if $\mathbf{a}_n \uparrow \infty$ and $\mathbf{x}_n \neq 0$ where $\mathbf{a}_n, \mathbf{x}_n \neq 0$ for all n, then (2) implies (3).

PROOF. To prove that (1) implies that (2) holds for every strictly positive sequence $\mathbf{x} = (\mathbf{x}_n)$ that tends to 0, suppose $a_{n+1}/a_n \leq M$ for all n. We assert that for every positive integer k, there exist arbitrarily large positive integers n_k and m_k for which $(k+1)^{-1} \leq a_n x_m \leq M k^{-1}$. If this assertion were true, then clearly we could choose two strictly increasing subsequences of positive integers (n_k) and (m_k) such that $a_n x_m \neq 0$ as $k \neq \infty$ to prove the assertion.

For each fixed positive integer k, $(k+1)^{-1} \leq a_n x_m \leq Mk^{-1}$ if and only if $x_m \in [(a_n(k+1))^{-1}, M(a_n k)^{-1}]$. All we need show is that there exist arbitrarily large n,m for which $x_m \in [(a_n(k+1))^{-1}, M(a_n k)^{-1}]$.

Suppose to the contrary that there exists a positive integer N for which $x_m \notin [(a_n(k+1))^{-1}, M(a_nk)^{-1}]$ for every $n, m \ge N$. In other words, for every $m \ge N$, $x_m \notin \bigcup_{n\ge N} [(a_n(k+1))^{-1}, M(a_nk)^{-1}]$. (Note: This would imply that $\bigcup_{n\ge N} [(a_n(k+1))^{-1}, M(a_nk)^{-1}]$). (Note: This would imply that $\bigcup_{n\ge N} [(a_n(k+1))^{-1}, M(a_nk)^{-1}]$) cannot contain any interval of the form $(0, \varepsilon)$ for some $\varepsilon > 0$, since $x_m \ne 0$ as $m \ne \infty$. However, this is not the case. Indeed, the proof below can be used to show that for every N, there exists $\varepsilon > 0$ such that $(0, \varepsilon) \subset \bigcup_{n\ge N} [(a_n(k+1))^{-1}, M(a_nk)^{-1}]$.).

For each $m \ge N$, let n_m denote the least positive integer n such that $M(a_{n+1}k)^{-1} < x_m$, which exists since $a_n \to \infty$ as $n \to \infty$ and hence $M(a_{n+1}k)^{-1} \to 0$

as $n \to \infty$. For m sufficiently large, we have $M(a_{n_m+1}k)^{-1} \leq x_m \leq M(a_{n_k}k)^{-1}$. Also, since $M(a_{n_w}+1^{k})^{-1} < x_m$ and $x_m \to 0$ as $m \to \infty$, we have $m \to \infty$ implies a $\rightarrow \infty$ and hence $n \rightarrow \infty$. Therefore $n \geq N$ for all m sufficiently large, $n \geq 1$ and for these m, $x_m \not\in [(a_n^{(k+1)})^{-1}, M(a_n^{k})^{-1}]$. Hence, for infinitely many m, we have $x_m \leq M(a_n^{k})^{-1}$ and $x_m \not\in [(a_n^{(k+1)})^{-1}, M(a_n^{k})^{-1}]$. Therefore, for infinitely many m, we have $M(a_{n_m+1}^{k}k)^{-1} < x_m < (a_{n_m}^{k}(k+1))^{-1}$. This implies that $M(a_{n_{+}+1}k)^{-1} < (a_{n_{-}}(k+1))^{-1}$ for infinitely many m, or equivalently, a /a > M(k+1)/k > M for infinitely many m, which contradicts our assumption m m that $a_{n+1}/a_n \leq M$ for all n. Hence (2) is proved.

To prove (2) \rightarrow (3) whenever $a_n \uparrow \infty$ and $x_n \neq 0$, suppose (2) holds for a and x, so that there exist subsequences (a) 'and (x) such a $x \rightarrow 0$ as $k = k = \frac{n_k m_k}{k} k$ $k \to \infty$, and $\sum_{k=n}^{k} a_{k} x = \infty$. We first assert that without loss of generality we may assume that $a \cdot x = \sum_{n=1}^{k} a_{n} x < \infty$. To see this suppose $a \cdot x = \sum_{n=1}^{k} a_{n} x = \infty$. Then by the lemma we have that $S(a,x) = \{\infty\}$, and hence (3) holds.

Assuming that $\sum_{n=1}^{\infty} a_n x_n < \infty$, we next assert that without loss of generality we can assume that $n_k > m_k$ for every k. To see this, let Z_1 denote the set $\{k: n_k > m_k\}$ and let Z_2 denote the set $\{k: n_k \le m_k\}$. Then

$$^{\infty} = \sum_{k} a_{n_{k}} x_{m_{k}} = \sum_{k \in Z_{1}} a_{n_{k}} x_{m_{k}} + \sum_{k \in Z_{2}} a_{n_{k}} x_{m_{k}}$$

<
$$\infty$$
. Therefore $\sum_{k \in \mathbb{Z}_1} a_k x = \infty$. Let \mathbb{Z}_1

But $\sum_{\mathbf{k} \in \mathbb{Z}_{2}} a_{\mathbf{n}\mathbf{k}} \mathbf{x}_{\mathbf{k}} \leq \sum_{\mathbf{k} \in \mathbb{Z}_{2}} a_{\mathbf{n}\mathbf{k}} \mathbf{x}_{\mathbf{n}\mathbf{k}} \leq \sum_{\mathbf{n} a_{\mathbf{n}\mathbf{n}}} a_{\mathbf{n}\mathbf{n}} \mathbf{x}_{\mathbf{n}\mathbf{n}\mathbf{n}}$ determine subsequences of (n_k) and (m_k) , which for simplicity we again call (n_k) and (m_k) , respectively, by taking only those entries n_k , m_k (in increasing order) for which $k \in \mathbb{Z}_1$. This gives us subsequences (a) and (x) of a and x $\binom{n_k}{k}$ which satisfy conditions a and b in the 2nd condition of the theorem, and in addition satisfy $n_k > m_k$ for all k.

Next we assert that without loss of generality we may assume $n_k \neq m_j$ for all k,j. To see this, note that we have $\binom{n}{k} > \binom{m}{k}$ for all k and that < $\binom{n}{k} >$ and < $\binom{m}{k} > \binom{m}{k}$ are strictly increasing (a property of subsequences). Therefore if $n_{\mu} = m_{j}$ for

some k,j, then k < j and $n_k \neq m_i$ for all $i \neq j$. That is, n_k can occur at most once among the m_j 's. Put $(n_1, m_1), \ldots, (n_{k_1}, m_{k_1}) \in S_1$ where k_1 +1 is the least positive integer such that $m_{k_1+1} = n_k$ for some $k < k_1 + 1$. Put $(n_{k_1+1}, m_{k_1+1}), \ldots, (n_{k_2}, m_{k_2}) \in S_2$ where k_2 +1 is the least positive integer, if it exists, such that $m_{k_2+1} = n_k$ for some $k_1+1 \leq k < k_2+1$. Put $(n_{k_2+1}, m_{k_2+1}), \ldots, (n_{k_3}, m_{k_3}) \in S_1$ such that k_3+1 is the least positive integer, if it exists, such that $m_{k_3+1} = n_k$ for some $k \leq k_1$ or $k_2 \leq k < k_3+1$. Continuing in this way, if no such least positive integer exists, then either S_1 or S_2 is finite. Otherwise both S_1, S_2 are infinite. For either case, no $n_k = m_j$ when both $(n_k, m_k), (n_j, m_j) \in S_1$ or S_2 . Then clearly S_1, S_2 is a disjoint partition of the set of all (n_k, m_k) and in each set, no n_k appears as an m_j . Therefore $\infty = \sum a_{n_k} m_k = \sum_{s_1} a_{n_k} m_k + \sum_{s_2} a_{n_k} m_k$ and so either $\sum_{s_1} a_{n_k} m_k = \infty$ or $\sum_{s_2} a_{n_k} m_k = \infty$. Choosing S_1 or S_2 accordingly we produce the sequence (n_k, m_k) with the desired properties, (i.e., satisfying a) and b) in Theorem 1 and also satisfying $n_k \neq m_j$ for all k,j and $n_k > m_k$ for every k.).

Now consider the series $\sum_{k} (a_{n_{k}} - a_{m_{k}})(x_{m_{k}} - x_{n_{k}})$. Since $n_{k} > m_{k}$, we have $0 \le a_{n_{k}} - a_{m_{k}} \le a_{n_{k}}$ and $0 \le x_{m_{k}} - x_{n_{k}} \le x_{m_{k}}$, and so $0 \le (a_{n_{k}} - a_{m_{k}})(x_{m_{k}} - x_{n_{k}})$ $\le a_{n_{k}} x_{m_{k}} + 0$ as $k \to \infty$. Furthermore, since $\sum_{k} a_{n_{k}} x_{m_{k}} = \infty$, $a_{m_{k}} x_{n_{k}} \ge 0$, $\sum_{k} a_{n_{k}} x_{n_{k}}$ $\le a \cdot x < \infty$, $\sum_{k} a_{m_{k}} x_{m_{k}} \le a \cdot x < \infty$, and $\sum_{k} a_{m_{k}} x_{n_{k}} \le \sum_{k} a_{n_{k}} x_{n_{k}} < \infty$, we have $\sum_{k} (a_{n_{k}} - a_{m_{k}})(x_{m_{k}} - x_{n_{k}}) = \sum_{k} (a_{n_{k}} x_{m_{k}} + a_{m_{k}} x_{n_{k}} - a_{n_{k}} x_{n_{k}} - a_{m_{k}} x_{m_{k}})$

We shall now show that for every $\varepsilon > 0$, there exists a subsequence $\binom{k}{n}$ of positive integers such that $\varepsilon = \sum_{k \in \{k_n\}} \binom{a}{k} - a \binom{w}{k} \binom{x}{k} - \frac{x}{k}$. This follows from the following more general fact.

Suppose (d(k)) is a non-negative sequence for which $d(k) \neq 0$ as $k \neq \infty$ and $\sum d(k) = \infty$. We assert that very every $\varepsilon > 0$, there exists a subsequence $\binom{k}{n}$ such that $\varepsilon = \sum d\binom{k}{n}$. The proof of this fact proceeds along the same lines as the proof of Riemann's theorem on rearrangments of conditionally convergent series. Fix

$$\begin{split} \varepsilon > 0 & \text{and choose } n_1 \geq N_1 & \text{so that } d(k) < \varepsilon & \text{for every } k \geq N_1, \text{ and so that } n_1 \\ \text{is the greatest integer greater than } N_1 & \text{such that } \sum_{\substack{k=N_1 \\ k = N_1}}^{n_1} d(k) < \varepsilon & \text{. Hence } \\ n_1 & n_1 + 1 & k = N_1 \\ \sum_{\substack{k=N_1 \\ k = N_1}}^{n_1} d(k) < \varepsilon \leq \sum_{\substack{k=N_1 \\ k = N_1}}^{n_1} d(k) & \text{. This can be done since } d(k) \neq 0 & \text{as } k + \infty & \text{and } d(k) = \infty \\ \text{.} \\ \text{Choose } N_2 > n_1 & \text{so that } d(k) < (\varepsilon - \sum_{\substack{k=N_1 \\ k = N_1}}^{n_1} d(k))/2 & \text{for every } k \geq N_2 & \text{and then } \\ \text{choose } n_2 & \text{to be the largest integer greater than } N_2 & \text{such that } \sum_{\substack{l=N_2 \\ k = N_2}}^{n_2 + 1} d(k) < \varepsilon - \sum_{\substack{k=N_1 \\ k = N_2}}^{n_1} d(k) & \text{Hence } \sum_{\substack{l=N_2 \\ k = N_2}}^{n_2} d(k) < \varepsilon - \sum_{\substack{k=N_1 \\ l=1}}^{n_1} d(k) & \text{. Proceeding inductively } \\ \text{in this way, we obtain sequences } (N_p) & \text{and } (n_p) & \text{of positive integers for which } \\ n_p \geq N_p > n_{p-1}, & 0 \leq d(k) \leq (\varepsilon - \sum_{\substack{p=1 \\ l=1}}^{p-1} \sum_{\substack{k=N_q \\ q = 1}}^{n_q} d(k))/2^{p-1} & \text{for every } p & \text{and every } \\ k \geq N_p, & \text{and } \\ & \sum_{\substack{k=N_p \\ k = N_p}}^{n_p} d(k) < \varepsilon - \sum_{\substack{q=1 \\ q = 1}}^{p-1} \sum_{\substack{k=N_q \\ q = 1}}^{n_q} d(k) \leq \sum_{\substack{k=N_p \\ k = N_p}}^{n_p+1} d(k) & . \\ \end{split}$$

This implies that

$$0 < \varepsilon - \sum_{q=1}^{p} \sum_{k=N_q}^{n_q} d(k) \le d(n_p + 1) \le (\varepsilon - \sum_{q=1}^{p-1} \sum_{k=N_q}^{n_q} d(k))/2^{p-1}$$
$$\le \varepsilon/2^{p-1} \to 0 \text{ as } p \to \infty.$$

Therefore $\varepsilon = \sum_{q=1}^{\infty} \sum_{k=N_q}^{n_q} d(k)$. Hence, if we choose (k_n) to be the strictly increasing sequence of positive integers k, where k is taken to range over the set $\bigcup_{p=1}^{\infty} \{k : N_p \leq k \leq n_p\}$, we have $\varepsilon = \sum d(k_n)$.

Applying this result to the sequence $(a_{n_k} - a_{n_k})(x_{n_k} - x_{n_k})$, since it is nonnegative, tends to 0, and sums to ∞ , we obtain that for every $\varepsilon > 0$, there exist subsequences of (n_k) and (m_k) , which we shall again denote by (n_k) and (m_k) , for which $\varepsilon = \sum_k (a_{n_k} - a_{m_k})(x_{m_k} - x_{n_k})$.

Now recall that we wish to show that $S(a,x) = [a \cdot x, \infty]$. We already know $a \cdot x$ and $\infty \in S(a,x)$. Suppose $a \cdot x < r < \infty$. It suffices to show $r \in S(a,x)$. Let $\varepsilon = r - a \cdot x$ and choose subsequences which we again call $\binom{n}{k}$ and $\binom{m}{k}$ so that

$$\varepsilon = \sum_{k} (a_{n_k} - a_{m_k}) (x_{m_k} - x_{n_k}) .$$

We now choose π , the requisite permutation on Z^+ , as follows. Let $\pi(n_k) = m_k$ and $\pi(m_k) = n_k$ for each k, and let π fix all other integers n (i.e., those n for which $n \neq n_k, m_k$ for every k). The permutation π is well-defined since $n_i \neq m_j$ for every i,j. Let Z_{π} denote the set $\{n : n = n_k \text{ or } n = m_k \text{ for some} k\}$. Hence $\pi(n) = n$ for all $n \notin Z$. Then

$$\sum_{n} a_{n} \mathbf{x}_{\pi(n)} = \sum_{n \not\in Z} a_{n} \mathbf{x}_{n} + \sum_{k} (a_{n} \mathbf{x}_{m} + a_{m} \mathbf{x}_{n})$$

$$= \sum_{n \not\in Z} a_{n} \mathbf{x}_{n} + \sum_{k} (a_{n} \mathbf{x}_{n} + a_{m} \mathbf{x}_{m}) + (a_{n} - a_{m}) (\mathbf{x}_{m} - \mathbf{x}_{n})$$

$$= \sum_{n \not\in Z} a_{n} \mathbf{x}_{n} + \sum_{k} (a_{n} - a_{m}) (\mathbf{x}_{m} - \mathbf{x}_{n})$$

$$= \sum_{n} a_{n} \mathbf{x}_{n} + \sum_{k} (a_{n} - a_{m}) (\mathbf{x}_{m} - \mathbf{x}_{n})$$

$$= \mathbf{a} \cdot \mathbf{x} + \mathbf{\varepsilon} = \mathbf{r},$$

and so $r \in S(a, x)$, which proves (3).

THEOREM 2. Let $a = \begin{pmatrix} a \\ n \end{pmatrix}$ where $a_1 > 0$ and $a_n \uparrow \infty$. Then a_{n+1} / a_n is bounded if and only if, for every $x = \begin{pmatrix} x \\ n \end{pmatrix}$ for which $x_n \neq 0$, $S(a,x) = [a \cdot x, \infty]$.

PROOF. If a_{n+1}/a_n is bounded, then by Theorem 1, if $x_n \neq 0$, then $x = (x_n)_n$ satisfies condition (2) of the theorem. Also by Theorem 1, since $a_n \uparrow \infty$ and $a_1 > 0$, condition (3) of the theorem is satisfied by x. That is, $S(a,x) = [a \cdot x, \infty]$.

Conversely, if $S(a,x) = [a \cdot x, \infty]$ for every $x = (x_n)$ for which $x_n \neq 0$, we claim that a_{n+1}/a_n must remain bounded.

Suppose to the contrary that a_{n+1}/a_n is not bounded. Let h(n) denote the least positive integer k for which $k \ge n$ and $a_{k+1}/a_k \ge 4^n$. Clearly h(n) is a non-decreasing function of n. Define $x_n = (a_{h(n)}^{3n})^{-1}$. Then $x_n \ne 0$. Letting $x = (x_n)$, we claim that $S(a, x) \ne [a \cdot x, \infty]$. In fact, we claim that $a \cdot x < 1$ but $1 \ne S(a, x)$. Indeed, $a \cdot x = \sum a_n x_n = \sum a_n (a_{h(n)}^{3n})^{-1} \le \sum 3^{-n} = 1/2 < 1$. Furthermore, letting π be any permuation of Z^+ , if $\pi^{-1}(k) > h(k)$ for some k, then

$$\sum_{n=1}^{\infty} a_{n} x_{\pi(n)} \stackrel{2}{\to} a_{\pi^{-1}(k)} x_{k} \stackrel{2}{\to} a_{h(k)+1} x_{k} = a_{h(k)+1} (a_{h(k)} 3^{k})^{-1}$$

$$\stackrel{2}{\to} 4^{k} 3^{-k} > 1 .$$

On the other hand, if $\pi^{-1}(k) \leq h(k)$ for every k, then

$$\sum_{n=1}^{\infty} \mathbf{x}_{n} = \sum_{n=1}^{\infty} \mathbf{x}_{n} \leq \mathbf{a}_{h(n)} \mathbf{x}_{n} = \sum_{n=1}^{\infty} 3^{-n} = 1/2 < 1 .$$

In any case, $\sum_{n=1}^{\infty} x_{\pi(n)} \neq 1$, hence $l \notin S(a,x)$. Q.E.D.

NOTE. In the proof of Theorem 1, each time we constructed a permutation π to solve the equation $\sum_{n=1}^{\infty} a_n x_{\pi(n)} = r$, it sufficed to use only disjoint 2-cycles. That is, each such π that we constructed was the product of disjoint 2-cycles. This seems odd and leads us to ask if there are any circumstances in which the use of infinite-cycles or n-cycles yields more. In other words, is it always true that S(a,x) is the same as $\{\sum_{n=1}^{\infty} a_n x_{\pi(n)} : \pi \text{ is a permutation of } Z^+ \text{ which is a product of disjoint 2-cycles}\}$?

The following question seems likely to have an affirmative answer. If so, this would give a characterization for those sequences a and x where $a_n + \infty$, $a_1 > 0$, and $x_n \neq 0$, which satisfy $S(a,x) = [a \cdot x, \infty]$. However, it remains unsolved.

QUESTION 1. If a and x are as above, does (3) \implies (2) in Theorem 1?

Finally, we wish to point out that Theorems 1 and 2 imply analogous theorems in which a and x switch roles. Indeed, the proofs of the following two corollaries follow naturally along the same lines as those of Theorems 1 and 2.

COROLLARY 3. Let $x = (x_n)$ where x > 0 for all n, and $x_n \neq 0$ as $n \neq \infty$. Consider the following conditions.

(1) x_n/x_{n+1} is bounded below.

(2) For the non-negative sequence $a = \begin{pmatrix} a \\ n \end{pmatrix}$, there exist subsequences $\begin{pmatrix} a \\ n_k \end{pmatrix}$ and $\begin{pmatrix} x \\ m_k \end{pmatrix}$ of a and x, respectively, such that a) a x + 0 as $k \neq \infty$, and b) $\sum_k a_n x = \infty$.

Then (1) implies that (2) holds for every strictly positive sequence $a = \begin{pmatrix} a \\ n \end{pmatrix}$ that tends to ∞ .

COROLLARY 4. Let $x = (x_n)$ be a non-negative sequence. Then x_n/x_{n+1} is bounded below if and only if, for every $a = (a_n)$ for which $a_n \uparrow \infty$ and $a_1 > 0$, $S(a,x) = [a \cdot x, \infty]$.

QUESTION 2. Is there anything to be said about the qualitative nature of S(a,x)? Is it always a Borel set, measurable, $F_{\sigma}^{}$, $G_{\sigma}^{}$?

REFERENCE

 WEISS, GARY "Commutators and operator ideals", dissertation, University of Michigan, 1975.