DOT PRODUCT REARRANGEMENTS

PAUL ERDOS and GARY WEISS

Mathematics Institute, Budapest; University of Cincinnati
(Received September 18, 1980)

Abstract

Let $a=\left(a_{n}\right), x=\left(x_{n}\right)$ denote nonnegative sequences; $x=\left(x_{n(n)}\right)$ denotes the rearranged sequence determined by the permutation π, a \mathbf{x} denotes the dot product $\Sigma a_{n} x_{n}$; and $S(a, x)$ denotes $\left\{a \cdot x_{\pi}: \pi\right.$ is a permuation of the positive integers $\}$. We examine $S(a, x)$ as a subset of the nonnegative real line in certain special circumstances. The main result is that if $a_{n} \uparrow \infty$, then $S(a, x)=[a \cdot x, \infty]$ for every $x_{n} \neq 0$ if and only if a_{n+1} / a_{n} is uniformly bounded.

KEY WORDS AND PHRASES. Dot product, series rearrangements, conditional convergence. 1982 MATHEMATICS SUBJECT CLASSIFICATION CODE. 40A05.

An elementary classical result of Riemann on infinite series states that a conditionally convergent series that is not absolutely convergent can be rearranged to sum to any extended real number. A slightly similar group of questions arose in connection with certain formulas in operator theory [1, p. 181]. Namely, if we let $a=\left(a_{n}\right)$, $x=\left(x_{n}\right)$ denote any two non-negative sequences and x_{π} denote the sequence $\left(x_{\pi(n)}\right)$ where π is any permutation of the positive integers, then what can be said about the set of non-negative real numbers $S(a, x)=\{a \cdot x: \pi$ is a permutation of the positive [integers\}. More specifically, which subsets of the non-negative real line can be realized as the form $S(a, x)$ for some such a and x ?

Various facts about $S(a, x)$ are obvious
(1) $S(a, x) \subset[0, \infty]$. The values 0 and ∞ may be obtained.
(2) If a and x are strictly positive sequences or are at most finitely zero, then $S(a, x) \subset(0, \infty]$.
(3) Not all subsets of $[0, \infty]$ are realizable as an $S(a, x)$ set. This follows by a cardinality argument. If c denotes the cardinality of $[0, \infty]$, then the cardinality of the class of subsets of $[0, \infty]$ is 2^{c}, but the cardinality of the class of sequences a and x is c and thus the cardinality of the subsets $S(a, x)$ is less than or equal to $c \cdot c=c \cdot$
(4) If either a or x is finitely non-zero then $S(a, x)$ is countable.
(5) An example: if $a=(0,2,0,2, \ldots)$ and $x=\left(3^{-n}\right)$, then $S(a, x)$ is precisely the Cantor set except for those non-negative real numbers whose ternary expansion consists of a tail of 0 's or a tail of 2^{\prime} s (i.e., a subset of the rational numbers.),

It seems too ambitious to consider the general question at this time. For this reason we shall restrict our attention to the cases when a is a non-decreasing sequence and x is a non-increasing sequence,

If $a \equiv 0$ or $x \equiv 0$, the problem is trivial and $S(a, x)=\{0\}$. If $a_{1} \neq 0$ and $x_{n} \nrightarrow 0$, the problem is trivial and $S(a, x)=\{\infty\}$. If a_{n} is bounded by M, then $S(a, x) \in\left[0, M \sum x_{n}\right]$. In any case, hereafter we shall assume $a_{n} \uparrow \infty$ and $x_{n} \downarrow 0$, unless otherwise specified.

The Lemma that follows is a well-known fact, but we give a proof for completeness and because the proof contains some of the ideas used in the main result.

LEMMA. If $a_{n} \uparrow$ and $x_{n} \downarrow$ then $S(a, x) \subset[a \cdot x, \infty]$. In addition, $a \cdot x \in S(a, x)$, and if $a_{n} \uparrow \infty$ and $x_{n} \neq 0$ for $a l l n$ or if $a_{n} \uparrow$ and $a_{n}>0$ for some n and $x_{n} \neq 0$, then $\quad \infty \varepsilon S(a, x)$.

PROOF. It suffices to show that for every permutation π of the positive integers, we have $a \cdot x \leq \sum a_{n} x_{\pi(n)}$ or, equivalently, $a \cdot x \leq \sum a_{\pi(n)} x_{n}$ for every π. The rest of the lemma is clear.

Define π_{1} in terms of π as follows. Set

$$
\pi_{1}(n)=\left\{\begin{array}{cl}
1 & n=1 \\
\pi(1) & n=\pi^{-1}(1) \\
\pi(n) & \text { otherwise }
\end{array}\right.
$$

It is straightforward to verify that π_{1} is also a permutation of the positive integers (one-to-one and onto) which fixes 1 . We assert that $a_{\pi} \cdot x \leq a_{\pi} \cdot x$ To see this, note that $\pi(1) \geq 1$ and $\pi^{-1}(1) \geq 1$. Hence $a_{\pi(1)}-a_{1} \geq 0$ and $x_{1}-x_{\pi_{(1)}} \geq 0 . \quad$ Therefore

$$
\begin{aligned}
\sum\left(a_{\pi(n)}-a_{\pi_{1}(n)}\right) x_{n} & =\left(a_{\pi(1)}-a_{\pi_{1}(1)}\right) x_{1}+\left(a_{\pi\left(\pi^{-1}(1)\right)}-a_{\pi_{1}\left(\pi^{-1}(1)\right)}\right) x_{\pi}^{-1} l_{(1)} \\
& =\left(a_{\pi(1)}-a_{1}\right)\left(x_{1}-x_{\pi^{-1}}\right) \\
& \geq 0
\end{aligned}
$$

Proceeding inductively, we obtain a sequence of permutations π_{k} that fix $1,2, \ldots, k$ for which $a_{\pi_{k}} \cdot x \leq a_{\pi_{k-1}} \cdot x$. Hence, for every k,

$$
\sum_{n=1}^{k} a_{n} x_{n}=\sum_{n=1}^{k} a_{\pi_{k}(n)} x_{n} \leq a_{\pi_{k}} \cdot x \leq a_{\pi} \cdot x
$$

Letting $\mathrm{k} \rightarrow \infty$, we obtain $\mathrm{a} \cdot \mathrm{x} \leq \mathrm{a}_{\pi} \cdot \mathrm{x} \cdot$
The main question of this paper is: for which a, x with $a_{n} \uparrow \infty$ and $x_{n} \downarrow 0$ is $S(a, x)=[a \cdot x, \infty]$?

The main result of this paper gives a partial answer. Namely, we can characterize which $a_{n} \uparrow \infty$ have the property that $S(a, x)=[a \cdot x, \infty]$ for every x such that $x_{n} \underset{\neq 0 .}{\neq 0}$

On first sight, it might appear that $S(a, x)$ can never be $[a \cdot x, \infty]$ or that it is quite rare. The first result in this direction was that if $a_{n}=n$ for every n, then $S(a, x)=[a \cdot x, \infty]$ for every x such that $x_{n} \neq 0$. That $S(a, x)$ may not be $[a \cdot x, \infty]$ was first decided by an example due to Robert Young. Namely, let $a_{n}=2^{2^{n}}$ and $x_{n}=2^{-2^{n+1}}$. Both results are unpublished. The succeeding results and techniques are due to the work of the authors in collaboration with Hugh Montgomery.

THEOREM 1. (The Main Theorem) Let $a=\left(a_{n}\right)$ where $a_{n}>0$ for every n and $a_{n} \rightarrow \infty$. Consider the following conditions:
(1) a_{n+1} / a_{n} is bounded.
(2) For the non-negative sequence $x=\left(x_{n}\right)$, there exist subsequences ($a_{n_{k}}$) and $\left(x_{m_{k}}\right)$ of a and x respectively such that
(a) $\mathrm{a}_{\mathrm{n}_{\mathrm{k}}} \mathrm{x}_{\mathrm{m}_{\mathrm{k}}} \rightarrow 0$ as $\mathrm{k} \rightarrow \infty$, and
(b) $\sum_{k} a_{n_{k}} x_{m_{k}}=\infty$.
(3) $S(a, x)=[a \cdot x, \infty]$.

Then (1) implies (2)for every strictly positive sequence $x=\left(x_{n}\right)$ that tends to 0 . Also if $a_{n} \uparrow \infty$ and $x_{n} \ngtr 0$ where $a_{n}, x_{n} \neq 0$ for all n, then (2) implies (3).

PROOF. To prove that (1) implies that (2) holds for every strictly positive sequence $x=\left(x_{n}\right)$ that tends to 0 , suppose $a_{n+1} / a_{n} \leq M$ for all n. We assert that for every positive integer k, there exist arbitrarily large positive integers n_{k} and m_{k} for which $(k+1)^{-1} \leq a_{n_{k}} x_{m_{k}} \leq M k^{-1}$. If this assertion were true, then clearly we could choose two strictly increasing subsequences of positive integers $\left(n_{k}\right)$ and $\left(m_{k}\right)$ such that $a_{n_{k}} x_{k} \rightarrow 0$ as $k \rightarrow \infty$ to prove the assertion.

For each fixed positive integer $k,(k+1)^{-1} \leq a_{n} x_{m} \leq M k^{-1}$ if and only if $x_{m} \varepsilon\left[\left(a_{n}(k+1)\right)^{-1}, M\left(a_{n} k\right)^{-1}\right]$. All we need show is that there exist arbitrarily large n, m for which $x_{m} \varepsilon\left[\left(a_{n}(k+1)\right)^{-1}, M\left(a_{n} k\right)^{-1}\right]$.

Suppose to the contrary that there exists a positive integer N for which $x_{m} \notin\left[\left(a_{n}(k+1)\right)^{-1}, M\left(a_{n} k\right)^{-1}\right]$ for every $n, m \geq N$. In other words, for every $m \geq N$, $x_{m} \notin \bigcup_{n \geq N}\left[\left(a_{n}(k+1)\right)^{-1}, M\left(a_{n} k\right)^{-1}\right] . \quad$ (Note: This would imply that $\bigcup_{n \geq N}\left[\left(a_{n}(k+1)\right)^{-1}\right.$, $\left.M\left(a_{n} k\right)-1\right]$ cannot contain any interval of the form $(0, \varepsilon)$ for some $\varepsilon>0$, since $x_{m} \rightarrow 0$ as $m \rightarrow \infty$. However, this is not the case. Indeed, the proof below can be used to show that for every N, there exists $\varepsilon>0$ such that
$\left.(0, \varepsilon) \subset \bigcup_{n \geq N}\left[\left(a_{n}(k+1)\right)^{-1}, M\left(a_{n} k\right)^{-1}\right].\right)$.
For each $m \geq N$, let n_{m} denote the least positive integer n such that $M\left(a_{n+1} k\right)^{-1}<x_{m}$, which exists since $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and hence $M\left(a_{n+1} k\right)-1 \rightarrow 0$
as $n \rightarrow \infty$. For m sufficiently large, we have $M\left(a_{n_{m}}+l^{-1} \leq x_{m} \leq M\left(a_{n_{k}} k\right)^{-1}\right.$. Also, since $M\left(a_{n}+1\right)^{-1}<x_{m}$ and $x_{m} \rightarrow 0$ as $m \rightarrow \infty$, we have $m \rightarrow \infty$ implies $a_{n_{m}+1} \rightarrow \infty$ and hence $n_{m} \rightarrow \infty$. Therefore $n_{m} \geq N$ for all m sufficiently large, and for these $m, x_{m} \notin\left[\left(a_{n_{m}}(k+1)\right)^{-1}, M\left(a_{n_{m}} k\right)^{-1}\right]$. Hence, for infinitely many m, we have $x_{m} \leq M\left(a_{n_{k}} k\right)^{-1}$ and $x_{m} \notin\left[\left(a_{n_{m}}(k+1)\right)^{-1}, ~ M\left(a_{n_{m}} k\right)^{-1}\right]$. Therefore, for infinitely many m, we have $M\left(a_{n_{m}} l^{-1}<x_{m}<\left(a_{n_{m}}(k+1)\right)^{-1}\right.$. This implies that $M\left(a_{n_{m}+1} k\right)^{-1}<\left(a_{n_{m}}(k+1)\right)^{-1}$ for infinitely many m, or equivalently, $a_{n}+1 / a_{n}>M(k+l) / k>M$ for infinitely many m, which contradicts our assumption that $a_{n+1} / a_{n} \leq M$ for all n. Hence (2) is proved.

To prove (2) \rightarrow (3) whenever $a_{n} \uparrow \infty$ and $x_{n} \neq 0$, suppose (2) holds for a and x, so that there exist subsequences $\left(a_{n_{k}}\right)$ 'and $\left(x_{m_{k}}\right)$ such $a_{n_{k}} x_{m_{k}} \rightarrow 0$ as $k \rightarrow \infty$, and $\sum_{k} a_{n} x_{k}=\infty$. We first assert that without loss of generality we may assume that $a \cdot x=\sum_{n} x_{n}<\infty$. To see this suppose $a \cdot x=\sum a_{n} x_{n}=\infty$. Then by the lemma we have that $S(a, x)=\{\infty\}$, and hence (3) holds.

Assuming that $\sum a_{n} x_{n}<\infty$, we next assert that without loss of generality we can assume that $n_{k}>m_{k}$ for every k. To see this, let Z_{l} denote the set $\left\{\mathrm{k}: \mathrm{n}_{\mathrm{k}}>\mathrm{m}_{\mathrm{k}}\right\}$ and let Z_{2} denote the set $\left\{\mathrm{k}: \mathrm{n}_{\mathrm{k}} \leq \mathrm{m}_{\mathrm{k}}\right\}$. Then

$$
\infty=\sum_{k} a_{n_{k}} x_{m_{k}}=\sum_{k \in Z_{1}} a_{n_{k}} x_{m_{k}}+\sum_{k \in Z_{2}} a_{n_{k}} x_{m_{k}}
$$

But $\sum_{k \in Z_{2}} a_{n_{k}} x_{m_{k}} \leq \sum_{k \in Z_{2}} a_{n_{k}} x_{n_{k}} \leq \sum_{n} a_{n} x_{n}<\infty$. Therefore $\sum_{k \in Z_{1}} a_{n_{k}} x_{m_{k}}=\infty$. Let Z_{1} determine subsequences of $\left(n_{k}\right)$ and $\left(m_{k}\right)$, whlch for simplicity we again call (n_{k}) and $\left(m_{k}\right)$, respectively, by taking only those entries n_{k}, m_{k} (in increasing order) for which $k \in Z_{1}$. This gives us subsequences $\left(a_{n_{k}}\right)$ and ($x_{m_{k}}$) of a and x which satisfy conditions a and b in the $2^{\text {nd }}$ condition of the theorem, and in addition satisfy $n_{k}>m_{k}$ for all k.

Next we assert that without loss of generality we may assume $n_{k} \neq m_{j}$ for all k, j. To see this, note that we have $\mathrm{n}_{\mathrm{k}}>\mathrm{m}_{\mathrm{k}}$ for all k and that $<\mathrm{n}_{\mathrm{k}}>$ and $<\mathrm{m}_{\mathrm{k}}>$ are strictly increasing (a property of subsequences). Therefore if $n_{k}=m_{j}$ for
some k, j, then $k<j$ and $n_{k} \neq m_{i}$ for all $i \neq j$. That is, n_{k} can occur at most once among the m_{j} 's. Put $\left(n_{l}, m_{l}\right), \ldots,\left(n_{k_{1}}, m_{k_{l}}\right) \varepsilon S_{l}$ where $k_{l}+1$ is the least positive integer such that $m_{k_{1}+1}=n_{k}$ for some $k<k_{1}+1$. Put $\left(n_{k_{1}+1}, m_{k_{1}+1}\right), \ldots,\left(n_{k_{2}}, m_{k_{2}}\right) \varepsilon S_{2}$ where $k_{2}+1$ is the least positive integer, if it exists, such that $m_{k_{2}+1}=n_{k}$ for some $k_{1}+1 \leq k<k_{2}+1$. Put ($n_{k_{2}+1}, m_{k_{2}+1}$), ..., $\left(n_{k_{3}}, m_{k_{3}}\right) \varepsilon S_{1}$ such that $k_{3}+1$ is the least positive integer, if it exists, such that $m_{k_{3}+1}=n_{k}$ for some $k \leq k_{1}$ or $k_{2} \leq k<k_{3}+1$. Continuing in this way, if no such least positive integer exists, then either S_{1} or S_{2} is finite. Otherwise both S_{1}, S_{2} are infinite. For either case, no $n_{k}=m_{j}$ when both $\left(n_{k}, m_{k}\right),\left(n_{j}, m_{j}\right)$ εS_{1} or S_{2}. Then clearly S_{1}, S_{2} is a disjoint partition of the set of all (n_{k}, m_{k}) and in each set, no n_{k} appears as an m_{j}. Therefore $\infty=\sum_{a_{n}} x_{m_{k}}=\sum_{S_{1}} a_{n_{k}} x_{m_{k}}+$ $+\sum_{S_{2}} a_{n_{k}} x_{m_{k}}$, and so either $\sum_{S_{1}} a_{n_{k}} x_{m_{k}}=\infty \quad$ or $\sum_{S_{2}} a_{n_{k}} x_{m_{k}}=\infty$. Choosing S_{1} or S_{2} accordingly we produce the sequence $\left(n_{k}, m_{k}\right)$ with the desired properties, (i.e., satisfying a) and b) in Theorem 1 and also satisfying $n_{k} \neq m_{j}$ for $a l l a, j$ and $n_{k}>m_{k}$ for every k.).

Now consider the series $\sum_{k}\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right)$. Since $n_{k}>m_{k}$, we have $0 \leq a_{n_{k}}-a_{m_{k}} \leq a_{n_{k}}$ and $0 \leq x_{m_{k}}-x_{n_{k}} \leq x_{m_{k}}$, and so $0 \leq\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right)$
 $\leq a \cdot x<\infty, \quad \sum_{k} a_{m_{k}} x_{m_{k}} \leq a \cdot x<\infty$, and $\sum a_{m_{k}} x_{n_{k}} \leq \sum_{n_{k}} x_{n_{k}}<\infty$, we have $\sum_{k}\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right)=\sum_{k}\left(a_{n_{k}} x_{m_{k}}+a_{m_{k}} x_{n_{k}}-a_{n_{k}} x_{n_{k}}-a_{m_{k}} x_{m_{k}}\right)$ $=\infty$.

We shall now show that for every $\varepsilon>0$, there exists a subsequence (k_{n}) of positive integers such that $\varepsilon=\sum_{k \in\left\{k_{n}\right\}}\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right)$. This follows from the following more general fact.

Suppose $(d(k))$ is a non-negative sequence for which $d(k) \rightarrow 0$ as $k \rightarrow \infty$ and $\sum d(k)=\infty$. We assert that very every $\varepsilon>0$, there exists a subsequence (k_{n}) such that $\varepsilon=\sum d\left(k_{n}\right)$. The proof of this fact proceeds along the same lines as the proof of Riemann'stheorem on rearrangments of conditionally convergent series. Fix
$\varepsilon>0$ and choose $n_{1} \geq N_{1}$ so that $d(k)<\varepsilon$ for every $k \geq N_{1}$, and so that n_{1} is the greatest integer greater than N_{1} such that $\sum_{n_{1}+1}^{n_{1}} d(k)<\varepsilon$. Hence
 choose n_{2} to be the largest integer greater than N_{2} such that $\sum_{k=N_{2}}^{2} d(k)<\varepsilon-$ $\sum_{k=N_{1}}^{n_{1}} d(k)$. Hence $\sum_{k=N_{2}}^{n_{2}} d(k)<\varepsilon-\sum_{k=N_{1}}^{n_{1}} d(k) \leq \sum_{k=N_{2}}^{n_{2}+1} d(k)$. Proceeding inductively in this way, we obtain sequences $\left(N_{p}\right)$ and $\left(n_{p}\right)$ of positive integers for which $n_{p} \geq N_{p}>n_{p-1}, 0 \leq d(k) \leq\left(\varepsilon-\sum_{q=1}^{p-1} \sum_{k=N}^{n_{q}} d(k)\right) / 2^{p-1}$ for every p and every $k \geq N_{p}, \quad$ and

$$
\sum_{k=N_{p}}^{n_{p}} d(k)<\varepsilon-\sum_{q=1}^{p-1} \sum_{k=N_{q}}^{n} d(k) \leq \sum_{k=N_{p}}^{n_{p}+1} d(k)
$$

This implies that

$$
\begin{aligned}
0<\varepsilon-\sum_{q=1}^{p} \sum_{k=N_{q}}^{n} d(k) \leq d\left(n_{p}+1\right) & \leq\left(\varepsilon-\sum_{q=1}^{p-1} \sum_{k=N_{q}}^{n} d(k)\right) / 2^{p-1} \\
& \leq \varepsilon / 2^{p-1} \rightarrow 0 \text { as } p \rightarrow \infty
\end{aligned}
$$

Therefore $\varepsilon=\sum_{q=1}^{\infty} \sum_{k=N_{q}}^{n} d(k)$. Hence, if we choose $\left(k_{n}\right)$ to be the strictly increasing sequence of positive integers k, where k is taken to range over the set
$\bigcup_{p=1}^{\infty}\left\{k: N_{p} \leq k \leq n_{p}\right\}$, we have $\varepsilon=\sum d\left(k_{n}\right)$.
Applying this result to the sequence $\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right)$, since it is nonnegative, tends to 0 , and sums to ∞, we obtain that for every $\varepsilon>0$, there exist subsequences of $\left(n_{k}\right)$ and $\left(m_{k}\right)$, which we shall again denote by $\left(n_{k}\right)$ and $\left(m_{k}\right)$, for which $\varepsilon=\sum_{k}\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right)$.

Now recall that we wish to show that $S(a, x)=[a \cdot x, \infty]$. We already know $a \cdot x$ and $\infty \varepsilon S(a, x)$. Suppose $a \cdot x<r<\infty$. It suffices to show $r \varepsilon S(a, x)$. Let $\varepsilon=r-a \cdot x$ and choose subsequences which we again call (n_{k}) and (m_{k}) so that

$$
\varepsilon=\sum_{k}\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right)
$$

We now choose π, the requisite permutation on Z^{+}, as follows. Let $\pi\left(n_{k}\right)=m_{k}$ and $\pi\left(m_{k}\right)=n_{k}$ for each k, and let π fix all other integers n (i.e., those n for which $\mathrm{n} \neq \mathrm{n}_{\mathrm{k}}, \mathrm{m}_{\mathrm{k}}$ for every k$)$. The permutation π is well-defined since $n_{i} \neq m_{j}$ for every i, j. Let Z_{π} denote the set $\left\{n: n=n_{k}\right.$ or $n=m_{k}$ for some $k\}$. Hence $\pi(n)=n$ for all $n \not \& z$. Then

$$
\begin{aligned}
\sum_{n} a_{n} x_{\pi(n)} & =\sum_{n \notin Z} a_{n} x_{n}+\sum_{k}\left(a_{n_{k}} x_{m_{k}}+a_{m_{k}} x_{n_{k}}\right) \\
& \left.=\sum_{n \neq Z} a_{n} x_{n}+\sum_{k}\left(a_{n_{k}} x_{n_{k}}+a_{m_{k}} x_{m_{k}}\right)+\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right)\right) \\
& =\sum_{n} a_{n} x_{n}+\sum_{k}\left(a_{n_{k}}-a_{m_{k}}\right)\left(x_{m_{k}}-x_{n_{k}}\right) \\
& =a \cdot x+\varepsilon=r
\end{aligned}
$$

and so $r \in S(a, x)$, which proves (3).
Q.E.D.

THEOREM 2. Let $a=\left(a_{n}\right)$ where $a_{1}>0$ and $a_{n} \uparrow \infty$. Then a_{n+1} / a_{n} is bounded if and only if, for every $x=\left(x_{n}\right)$ for which $x_{n} \neq 0, \quad S(a, x)=[a \cdot x, \infty]$.

PROOF. If a_{n+1} / a_{n} is bounded, then by Theorem 1 , if $x_{n} \neq 0$, then $x_{n}=\left(x_{n}\right)$ satisfies condition (2) of the theorem. Also by Theorem 1 , since $a_{n} \uparrow \infty a_{n} a_{1}>0$, condition (3) of the theorem is satisfied by x. That is, $S(a, x)=[a \cdot x, \infty]$.

Conversely, if $S(a, x)=[a \cdot x, \infty]$ for every $x=\left(x_{n}\right)$ for which $x_{n} \neq 0$, we claim that a_{n+1} / a_{n} must remain bounded.

Suppose to the contrary that a_{n+1} / a_{n} is not bounded. Let $h(n)$ denote the least positive integer k for which $k \geq n$ and $a_{k+1} / a_{k} \geq 4^{n}$. Clearly $h(n)$ is a non-decreasing function of n. Define $x_{n}=\left(a_{h(n)} 3^{n}\right)^{-1}$. Then $x_{n} \neq 0$. Letting $x=\left(x_{n}\right)$, we claim that $S(a, x) \neq[a \cdot x, \infty]$. In fact, we claim that $a \cdot x<1$ but $l \notin S(a, x)$. Indeed, $a \cdot x=\sum_{n} x_{n}=\sum_{n}\left(a_{h(n)} 3^{n}\right)^{-1} \leq \sum^{-n}=1 / 2<1$. Furthermore, letting π be any permuation of Z^{+}, if $\pi^{-1}(k)>h(k)$ for some k, then

$$
\begin{aligned}
\sum a_{n} x_{\pi(n)} \geq a_{\pi}^{-1}(k) x_{k} & \geq a_{h(k)+1} x_{k}=a_{h(k)+1}\left(a_{h(k)} 3^{k}\right)^{-1} \\
& \geq 4^{k} 3^{-k}>1
\end{aligned}
$$

On the other hand, if $\pi^{-1}(k) \leq h(k)$ for every k, then

$$
\sum a_{n} x_{\pi(n)}=\sum a_{\pi-1} x_{n)} x_{n} \leq a_{h(n)} x_{n}=\int 3^{-n}=1 / 2<1 .
$$

In any case, $\quad \sum a_{n} x_{\pi(n)} \neq 1$, hence $1 \notin S(a, x)$.
Q.E.D.

NOTE. In the proof of Theorem l, each time we constructed a permutation π to solve the equation $\sum a_{n} x_{\pi(n)}=r$, it sufficed to use only disjoint 2-cycles. That is, each such π that we constructed was the product of disjoint 2-cycles. This seems odd and leads us to ask if there are any circumstances in which the use of infinite-cycles or n-cycles yields more. In other words, is it always true that $S(a, x)$ is the same as $\left\{\sum_{n} x_{\pi(n)}: \pi\right.$ is a permutation of z^{+}which is a product of disjoint 2-cycles\} ?

The following question seems likely to have an affirmative answer. If so, this would give a characterization for those sequences a and x where $a_{n} \uparrow \infty, a_{1}>0$, and $x_{n} \neq 0$, which satisfy $S(a, x)=[a \cdot x, \infty]$. However, it remains unsolved.

QUESTION 1. If a and x are as above, does (3) $\Longrightarrow(2)$ in Theorem 1 ?

Finally, we wish to point out that Theorems 1 and 2 imply analogous theorems in which a and x switch roles. Indeed, the proofs of the following two corollaries follow naturally along the same lines as those of Theorems 1 and 2.

COROLLARY 3. Let $x=\left(x_{n}\right)$ where $x_{n}>0$ for all n, and $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Zonsider the following conditions.
(1) x_{n} / x_{n+1} is bounded below.
(2) For the non-negative sequence $a=\left(a_{n}\right)$, there exist subsequences ($a_{n_{k}}$) and ($x_{m_{k}}$) of a and x, respectively, such that
a) $\mathrm{a}_{\mathrm{n}_{\mathrm{k}}} \mathrm{X}_{\mathrm{k}} \rightarrow 0$ as $\mathrm{k} \rightarrow \infty$, and
b) $\quad \sum_{k} a_{n_{k}} x_{k}=\infty$.

Then (1) implies that (2) holds for every strictly positive sequence $a=\left(a_{n}\right)$ that tends to ∞.

COROLLARY 4. Let $x=\left(x_{n}\right)$ be a non-negative sequence. Then x_{n} / x_{n+1} is bounded below if and only if, for every $a=\left(a_{n}\right)$ for which $a_{n} \uparrow \infty$ and $a_{1}>0$, $S(a, x)=[a \cdot x, \infty]$.

QUESTION 2. Is there anything to be said about the qualitative nature of $S(a, x) ?$ Is it always a Borel set, measurable, F_{σ}, G_{σ} ?

REFERENCE

1. WEISS, GARY "Commutators and operator ideals", dissertation, University of Michigan, 1975.
