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ABSTRACT. Let a (a), x (x) denote nonnegative sequences; x (x denotes
n n (n)

the rearranged sequence determined by the permutation n, a" x denotes the dot product

Z a x and S(a,x) denotes {a x is a permuation of the positive integers}. We
n n

examine S(a,x) as a subset of the nonnegative real line in certain special circum-

stances. The main result is that if a +, then S(a,x) [a" x,] for every x , 0
n n

if and only if an+l/a is uniformly bounded.
n
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An elementary classical result of Riemann on infinite series states that a condi-

tionally convergent series that is not absolutely convergent can be rearranged to sum

any extended real number. A slightly similar group of questions arose in connec-

tion with certain formulas in operator theory [i, p. 181]. Namely, if we le’t a (a),
n

M (x) denote any two non-negative sequences and x denote the sequence (x
n (n)

where n is any permutation of the positive integers, then what can be said about the

Set of non-negative real numbers S(a,x) {a" x n is a permutation of the positive

ntegers}. More specifically, which subsets of the non-negative real line can be

realized as the form S(a,x) for some such a and x?

Various facts about S (a, x) are obvious
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(i) S(a,x) [0,]. The values 0 and may be obtained.

(2) If a and x are strictly positive sequences or are at most finitely zero,

then S(a,x) (0,].

(3) Not all subsets of [0,] are realizable as an S(a,x) set. This follows by

a cardinality argument. If c denotes the cardinality of [0,], then the

c
cardinality of the class of subsets of [0,] is 2 but the cardinality

of the class of sequences a and x is c and thus the cardinality of the

subsets S(a,x) is less than or equal to c- c c

(4) If either a or x is finitely non-zero then S(a,x) is countable.

-n
(5) An example: if a (0,2,0,2 and x (3 ), then S(a,x) is precisely

the Cantor set except for those non-negative real numbers whose ternary expan-

sion consists of a tail of O’s or a tail of 2’s (i.e., a subset of the

rational numbers.

It seems too ambitious to consider the general question at this time. For this

reason we shall restrict our attention to the cases when a is a non-decreasing

sequence and x is a non-increasing sequence,

If a 0 or x 0, the problem is trivial and S(a,x) {0}. If a
I

0

and x 0, the problem is trivial and S(a,x) {} If a is bounded by M,
n n

then S(a,x) t [0, M x ]. In any case, hereafter we shall assume a " and
n n

x + 0, unless otherwise specified.
n

The Lemma that follows is a well-known fact, but we give a proof for complete-

ness and because the proof contains some of the ideas used in the main result.

LEMMA. If a % and x + then S(a,x) [a. x,]. In addition, a. x e S(a,x),
n n

and if a + and x 0 for all n or if a % and a > 0 for some n and
n n n n

x 0, then e S(a,x).
n

PROOF. It suffices to show that for every permutation n of the positive

integers, we have a. x _< . anXz(n) or, equivalently, a- x --< az(n)Xn for

every . The rest of the lemma is clear.

Define nl in terms of n as follows. Set
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1 n= 1

zl(n) (I) n -i(i)
(n) otherwise

It is straightforward to verify that z
I

is also a permutation of the positive

integers (one-to-one and onto) which fixes 1 We assert that a x < a x

-i 1
To see this, note that z(1) > 1 and n (i) i. Hence a a

I
0 and

(i)

X > 0. ThereforeX1 -i
(i)

[(a(n) al(n))X (a -a )Xl+ (a
-i

a
-i

)x
-in n(1)

I
(i)

( (i)) H
I
(n (I)) z (I)

(a aI) (x x
(i) i -i

(i)

0

Proceeding inductively, we obtain a sequence of permutations n that fix 1,2 ,k
k

for which a x < a x Hence, for every k,
k k-i

k k

n n Zk (n) n z
n=l n=l k

Letting k we obtain a x < a x

The main question of this paper is: for which a,x with a and x 0
n n

is S(a,x) [a x,]?

The main result of this paper gives a partial answer. Namely, we can char-

acterize which a + have the property that S(a,x) [a- x,] for every x
n

such that x +, 0.
n

On first sight, it might appear that S(a,x) can never be [a" x,] or that

it is quite rare. The first result in this direction was that if a n for every
n

n, then S(a,x) [a- x,] for every x such that x 0. That S(a,x) may not
n

be [a- x,] was first decided by an example due to Robert Young. Namely, let

n _2n+l
a 2

2
and x 2

n n
Both results are unpublished. The succeeding results

and techniques are due to the work of the authors in collaboration with Hugh

Montgomery.
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THEOREM i. (The Main Theorem) Let a (a) where a > 0 for every n and
n n

a . Consider the following conditions:
n

(i) a is bounded.n+i/an
(2) For the non-negative sequence x (x), there exist subsequences (a

n n
k

and (x of a and x respectively such that

(a) a x 0 as k and
n
k
m
k

(b) [ a x .
k nk mk

(3) S(a,x) [a- x,]

Then (i) implies (2)for every strictly positive sequence x= (x) hat tends to 0
n

Also if a + and x + 0 where a ,x 0 for all n, then (2) implies (3).
n n n n

PROOF. To prove that (i) implies that (2) holds for every strictly positive

sequence x (x) that tends to 0, suppose a i/an M for all n We assert
n n+

that for every positive integer k, there exist arbitrarily large positive integers

-i -i
n_K and Kn for which (k+l) < ankX < Mk If this assertion were true, then

clearly we could choose two strictly increasing subsequences of positive integers

(nk) and (mk) such that ankxmk 0 as k to prove the assertion.

-i -i
For each fixed positive integer k, (k+l) < a x < Mk if and only if

n m
-i -i

x e (a (k+l)) M(a k) ]. All we need show is that there exist arbitrarily
m n n

-i -i
large n,m for which x e [(a (k+l)) M(a k) ].

m n n

Suppose to the contrary that there exists a positive integer N for which

-i -i
x [(a (k+l)) M(a k) for every n,m > N. In other words, for every m _> N,
m n n

x U [(a (k+l))-i M(a k)-l]. (Note: This would imply that [(a (k+l))-I
m n n n

n>N n>N

M(a k)-l] cannot contain any interval of the form (0,e) for some e 0, since
n

x 0 as m However, this is not the case. Indeed, the proof below can be
m

used to show that for every N, there exists e 0 such that

(0 e) U [(a (k+l))-i M(a k) -1].).
n n

n>N

For each m > N, let n denote the least positlve integer n such that
m

-i -i

M(an+lk)__ < Xm which exists since an as n and hence M(an+ik) 0
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as n . For m sufficiently large, we have M(a
i
k) x M(a k)

nm+ m-- n
k

Also, since M(a
i
k)_ x and x 0 as m , we have m implies

n + m m
m

a and hence n =. Therefore n > N for all m sufficiently large,
n +i m m--

and for these m, x [(a (k+l)) M(a k) ]. Hence, for infinitely many m,
m n n

m m
we have x < M(a k)

-I -i]and x [(a (k+l))-i M(a k) Therefore for
m-- n

k
m n n

m m

infinitely many m, we have M(a
1
k) x < (a (k+l)) This implies that

n + m n
m m

-i -iM(a
+1

k) < (a (k+l)) for infinitely many m, or equivalently,n n
m m

an +l/an M(k+l)/k M for infinitely many m, which contradicts our assumption
m m

that an+l/an_ < M for all n. Hence (2) is proved.

To prove (2)/ (3) whenever a + and x 0, suppose (2) holds for a
n n

and x, so that there exist subsequences (a ’and (x such a x 0 as
n
k

m
k

n
k
m
k

k and a x We first assert that without loss of generality we may
k nk m

k
assume that a- x a x . To see this suppose a- x a x Then by

n n n n

the lemma we have that S(a,x) {} and hence (3) holds.

Assuming that .a x , we next assert that without loss of generality we
n n

can assume that n
k

> m
k

for every k. To see this, let Z
1

denote the set

{k n
k

> mk} and let Z2 denote the set {k n
k <_ mk} Then

[kankx [ ankX + [ a x
mk keZ

1
mk keZ

2
nk m

k

n
k
m
kk e Z

2
k Z

2

i x Therefore i a x Let ZankXnk nan n
k e Z

n
k

m
k

1
1

determine subsequences of (nk) and (mk), which for simplicity we again call (nk)
and (mk), respectively, by taking only those entries n

k
m
k

(in increasing order)

for which k e Z This gives us subsequences (a and (x of a and x
1 n

k
m
k

nd
which satisfy conditions a and b in the 2 condition of the theorem, and in

addition satisfy n
k

> m
k

for all k.

Next we assert that without loss of generality we may assume n
k

# m0 for all

k,j. To see this, note that we have n
k

> m
k

for all k and that < n
k

> and < mk>
are strictly increasing (a property of subsequences). Therefore if n

k
m. for
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some k, j, then k and n
k

M m.l for all i j. That is, n
k

can occur at

most once among the m0 ’s. Put (nl,mI) (n ,m
k

S where kl+l is the
kl 1

1

least posltive integer such that mkl+l n
k

for some k < k
I

+ I. Put

(nkl+l’ mkl+l) (nk2’mk2) e S
2

where k2+l is the least positive integer, if it

exists, such that mk2+l n
k

for some kl+l <_ k < k2+l. Put (nk2+l, mk2+l)
(n mk3) S

1
such that k3+l is the least positive integer, if it exists, such

k
3

that mk +i nk for some k <_ k
I

or k
2 <_ k < k3+l. Continuing in this way, if

3
no such least positive integer exists, then either S

1
or S

2
is finite. Othez-ise

(n
k
mk)both SI,S2 are infinite. For either case, no n

k mj when both (nj,mj)
e S

1
or S

2. Then clearly SI,S2
is a disjoint partition of the set of all (nk,mk)

and in each set, no n
k

appears as an m0 Therefore ankX a x +
m
k

n
k
m
k

1
+ a x and so either Z a x or . a x Choosing S or

$2
n
k
m
k S1

n
k
m
k $2

n
k
m
k

1

S
2

accordingly we produce the sequence (nk,mk) with the desired properties, (i.e.,

satisfying a) and b) in Theorem 1 and also satisfying n
k M m0 for all k,j and

n
k

> m
k

for every k.).

hNow consider the series k(an
k amk) (xmk xnk). Since n

k
mk, we ave

0 a a a and 0 < x x x and so 0 (a a (x x
n
k

m
k

n
k

m
k

n
k

m
k

n
k

m
k

m
k

n
k

0 as k . Furthermore since [ a x a x 0 [ a x<-- ankXmk k n
k
m
k

m
k

n
k

k n
k

n
k

a" x a x a" x < and amkX a x we have
k m

k
m
k

n
k

n
k

n
k

[k(an
k

a (x x . (a x + a x a x a x
m
k

m
k

n
k

k n
k
m
k

m
k

n
k

n
k

n
k

m
k

We shall now show that for every e 0, there exists a subsequence (k) of posi-
n

tive integers such that [ (a a (x x ). This follows from the

k e k nk mk mk nk
n

following more general fact.

Suppose (d(k)) is a non-negative sequence for which d(k) 0 as k and

[d(k) We assert that very every e > 0, there exists a subsequence (k) such
n

that e [d(k ). The proof of this fact proceeds along the same lines as the
n

proof of Riemann’stheorem on rearrangments of conditionally convergent series. Fix
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e > 0 and choose n
I >_ N

I
so that d(k) < e for every k >_ N l, and so that n

I
n
1

is the greatest integer greater than N such that [ d(k) < e Hence

nl nl+l
1

k=Nl
I d(k) < e <_ I d(k). This can be done since d(k) 0 as k/ and d(k)

k=N
1

k=N
1

n
1

Choose N
2

> n
I

so that d(k) < (e [ d(k))/2 for every k N
2

and then
k=N

1
n
2

choose n
2

to be the largest integer greater than N
2

such that d(k) e

n
I

n
2

n
I n2+l

k=N
2

[ d(k). Hence [ d(k) < e y d(k) < [ d(k). Proceeding inductively
k=N

1
k=N

2 k=Nl k=N2
in this way, we obtain sequences (N) and (n) of positive integers for which

P Pn
p-i q

n > N > n 0 < d(k) < (e . d(k))/2
p-I

for every p and every
p-- p p-i

q=l k=N
q

k > N and
p

n n n +i
p p-i q p

d(k) < e I d(k) < d(k)
k=N q=l k=N k=N

P q P

This implies that

n n
p q p-i q

0 < e [ d(k) < d(n + i) (e I d(k))/2P-i
q=l k=N P q=l k=N

q q

e/2
p-I

0 as p .
n

Therefore e q d(k). Hence, if we choose (k) to be the strictly increasing
q=l k=N

n
q

sequence of positive integers k, where k is taken to range over the set

U {k N < k < n we have e d(k
p=l

p-- p n

Applying this result to the sequence (a a (x x ), since it is non-
n
k

m
k

m
k

n
k

negative, tends to 0, and sums to we obtain that for every > 0, there

exist subsequences of (nk) and (mk), which we shall again denote by (nk) and

()’K for which e Yk (an
k amk) (xmk xnk)

Now recall that we wish to show that S(a,x) [a- x, ]. We already know

a- x and e S(a,x). Suppose a. x r <. It suffices to show r e S(a,x).

Let e r- a. x and choose subsequences which we again call (nk) and (mk)
so th at
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e k(an
k amk) (xmk xnk)

+
We now choose n the requisite permutation on Z as follows. Let n(nk) m

k

and z(mk) n
k

for each k, and let fix all other integers n (i.e., those

n for which n nk,mk for every k). The permutation n is well-defined since

ni m.3 for every i,j. Let Z denote the set {n n n
k

or n m
k

for some

k Hence (n) n for all n Z Then

I anX(n) I a x + (a x + a x
n nZ n n n

k
m
k

m
k

n
k. a x + [ (a x + a x + (a a (x x ))

n Z
n n n

k
n
k

m
k

m
k

n
k

m
k

m
k

n
k

I a x + [ (a a )(x x
n n n

k
m
k

m
k

n
k

a-x+ g r

and so r e S(a,x) which proves (3). Q.E.D.

THEOREM 2. Let a (a) where a 0 and a . Then an+l/an- is
n 1 n

bounded if and only if, for every x (x) for which x 0 S(a,x) [a x, ].
n n

PROOF. If a /a is bounded, then by Theorem i, if x 0, then x (x)
n+l’ n n n

satisfies condition (2) of the theorem. Also by Theorem i, since a + and a 0,
n 1

condition (3) of the theorem is satisfied by x. That is, S(a,x) [a x, ].

Conversely, if S(a,x) [a x, for every x (x) for which x % 0, we
n n

claim that a /a must remain bounded.n+ i’ n

Suppose to the contrary that an+i/an is not bounded. Let h(n) denote the

least positive integer k for which k >_ n and ak+l/ak >_ 4
n

Clearly h (n) is

a non-decreasing function of n. Define x (a
h

3n) -I
n (n)

Then x 0. Letting
n

x (x), we claim that S(a,x) [a" x, ]. In fact, we claim that a" x 1 but
n

I S(a,x). Indeed, a x anXn -7an(ah(n) 3n)-I _< 3-n
1/2 i. Furthermore,

+ -i
letting z be any permuation of Z if z (k) h(k) for some k, then

> a
_i

x
k

> a ah (ah 3k) -iI anXn(n)
z (k) h (k) +iXk (k) +i (k)

4
k k

>_ 3- > 1
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-i
On the other hand, if (k) h(k) for every k, then

lanXz(n) lan_1 x < a
h

x
n

).3-n 1/2 < 1
n (n)

(n)

In any case, [anXn(n) i, hence 1 S(a,x). Q.E.D.

NOTE. In the proof of Theorem i, each time we constructed a permutation w to

solve the equation [anX(n) r, it sufficed to use only disjoint 2-cycles. That

is, each such that we constructed was the product of disjoint 2-cycles. This

seems odd and leads us to ask if there are any circumstances in which the use of

infinite-cycles or n-cycles yields more. In other words, is it always true that

S(a,x) is the same as [anX(n) z is a permutation of Z
+

which is a product of

disjoint 2-cycles} ?

The following question seems likely to have an affirmative answer. If so, this

would give a characterization for those sequences a and x where an / ’ al > 0,

and x 0 which satisfy S(a,x) [a- x, However, it remains unsolved
n

QUESTION I. If a and x are as above, does (3) = (2) in Theorem i?

Finally, we wish to point out that Theorems i and 2 imply analogous theorems in

which a and x switch roles. Indeed, the proofs of the following two corollaries

follow naturally along the same lines as those of Theorems 1 and 2.

COROLLARY 3. Let x (x) where x > 0 for all n, and x 0 as n .
n n n

Consider the following conditions.

(i) Xn/Xn+1 is bounded below.

(2) For the non-negative sequence a (a), there exist subsequences (a
n n

k
and (x of a and x, respectively, such that

a) a x 0 as k , and
n
k
m
k

b) .a x
Knk m

k

Then (i) implies that (2) holds for every strictly positive sequence a (a)
n

that tends to
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COROLLARY 4. Let x (x) be a non-negative sequence. Then x /x is
n n n+l

bounded below if and only if, for every a (an) for which an + and a
I

> 0,

S(a,x) [a x, ].

QUESTION 2. Is there anything to be said about the qualitative nature of

S(a,x)? Is it always a Borel set, measurable, F G ?
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