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ABSTRACT. The main aim of this paper is to consider the numerical approximation of

mildly nonlinear elliptic problems by means of finite element methods of mixed type.

The technique is based on an extended variational principle, in which the constraint

of interelement continuity has been removed at the expense of introducing a Lagrange

multiplier.

It is shown that the saddle point, which minimizes the energy functional over the

product space, is characterized by the variational equations. The eauivalence is

used in deriving the error estimates for the finite element approximations. We give

an example of a mildly nonlinear elliptic problem and show how the error estimates can

be obtained from the general results.
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i. INTRODUCTION.

Recently much attention has been given to the merical approximation of boundary

value problems for elliptic equations by means of finite element methods of mixed typ

The main motivation of this paper is to extend these methods for a class of mildly

nonlinear elliptic problems. The mildly nonlinear problems considered in this paper

are special cases of more general nonlinear problems in which the differential opera-

tor is monotone. However, their form enables the theory for the linear case to be ex-

ploited.
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For simplicity, we consider the second order elliptic model problem:

L{u(_x)} f(_x,u(_x)), x_ e

u(_x) 0, x I’ (i.i)

where is a bounded open subset of R
n

with boundary , u its clo-

sure, L is a linear, self-adjoint, coercive elliptic operator, and f is a non-

linear given function o and u on the space L2().
The usual variational form of (i.I) (see Noor and Whiteman [I]) consists in find-

ing u e H(), which minimizes the energy functional
v

l{v} a(v,v) 2;I f(x,n)dndx

0

where the bilinear form a(u,v) is associated with the operator L, and is in fact

<Lu,v> after the integration by parts has been performed over the space H().
Standard finite element methods for numerically solving problems are based on

this variational principle. Such methods have been extensively studied and conver-

gence results are now classical, see for example Noor and Whiteman [I] and Noor [2].

In this paper, we shall use a more general approach in order to construct a

finite element approximation of (I.i). It is based on an extended variational prin-

ciple, in which the constraint of interelement continuity has been removed at the ex-

pense of introducing a lagrange multiplier. This type of methods have been introduced

and analyzed by Brezzi [3], Raviart and Thomas [4], Falk and Osborn [5] and Fortin [6]

for linear elliptic boundary value problems.

Section 2 contains the abstract theory for obtaining the general error estimates.

In Section 3, we give an example of a mildly nonlinear elliptic problem and show how

error estimates can be derived from the results in section 2. We also would like to

remark that this approach can be applied to a wider class of mildly nonlinear elliptic

problems having more complicated boundary conditions.

2. ABSTRACT RESULTS.

Let V, W, and H be three real Hilbert spaces with their duals V’, W and H’

and norms II .IIV, II.IIw and II .II H respectively. Let a(.,.) and b(.,.) be

continuous bilinear forms on VxV and VxW respectively and F be a continuous

functional on V and geW’. We denote by <.,.>, the pairing between V and V’
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or W and W’.

We now consider the functional

l{v,} a(v,v) + 2b(v,) 2F(v) 2<g,>. (2.1)

If a(u,v) is a positive symmetric bilinear fo=m, then the problem of finding

the saddle point of l{v,} on VxW for "given FeV’, geW’ (see Brezzi [3]) is equi-

valent to finding (u,)eVxW such that

a(u,v) + b(v,) <F,v>, for all veV

b(u,) <g,>, for all eW.I (2.2)

We now study those conditions for a Frchet differentiable nonlinear functional

F on V under which the minimum of l{v,} defined by (2.1) can be characterized by

the variational equations. In this case, we now state and prove the following result.

THEOREM i. Let F’, the Fr4chet differential of a nonlinear continuous func-

tional F on V, be antimonotone, a(.,.) and b(.,.) be continuous bilinear forms

on VV and VW respectively. If a(u,v) is a positive symmetric bilinear form

on VxV, then, for given geW’, (u,)eVW minimizes the functional l{v,}, if and

only if (u,)eVW satisfies the variational equations

a(u,v) + b(v,) <F’(u),v>, for all veV (2.3)

b(u,%) <g,%> for all %eW. (2.4)

PROOF. Let (u,)eVxW minimize the functional l{v,%}; then, for all te R,

and weV, eW,

I{u,} < I{u+tw,+tn}.

Hence, from (2.1), it follows that

a (u,w)+b (w, )+b (u, ) < F(u+tw)-F(u) + <g,> 21_ta(w,w) b(w,).t

Since F is Fr4chet differentiable, as t 0, we obtain

a(u,w) + b(w,) <F’(u),w>, for all w e V

b(u,n) <g,n>, for all e W

which are (2.3) and (2.4), the required equations.

For the converse, if (u,)eVW satisfies (2.3) and (2.4), then, using (2.1)
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and the positivity and symmetry of a(u,v), we obtain

I{u,} l{v,} a(u,u) + 2b(u,@) 2F(u) 2<g,> a(v,v)

2b(v,) + 2F(v) + 2<g,>

< 2a(u,u- v) 2F(u) + 2F(v) + 2<g,->

+ 2b(u,) 2b(v,)

2{<F’(u),u-v> F(u) + F(v)} + 2b(u,)

2b(v,) 2b(u-v,@) + 2<g,->, by (2.3).

Since F’ is antimonotone, so F is a concave functional, see Noor [2]. Thus it

follows that

<F’(u),u-v> F(u) + F(v) < 0.

From (2.4) and the above inequality it follows that

I{u,} I{v,} < 0 for all veV and

REMARK I. Note that for the case when F is a linear continuous functional,

then the result of Theorem i is exactly the same as in [3].

REMARK 2. Since the bilinear form a(u,v) is symmetric on VxV, one can easi-

ly check that the solution (u,) of (2.3) and (2.4) may be characterized as the

unique saddle point of the quadratic functional l{v,} defined by (i.i) over the

space VxW, i.e., (u,) satisfies

I{u,} < I{u,} < l{v,}, for all veV and eW.

Thus it follows that u is the unique solution of the constrained minimization pro-

blem

where I{v} a(v,v) 2F(v),

I{u}
inf

l{v},v z
g

z {veV; for all ueW, b(v,u) <g,u>}
g

while @ is the Lagrange multiplier associated with the constraint ueZ
g

Theorem i shows that the variational problem (2.1) and the weak formulations

(2.3) and (2.4) are equivalent. We use the weak formulation for deriving the error

estimates for the finite element method of the mixed type.

In many applications, we are led to the problems (2.3) and (2 4) by the following
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procedure. Let V and V be real Hilbert spaces, with V a closed subspace of
O O

V, and let a(u,v) be a continuous coercive bilinear form on VV. We want to

solve the problem:

Find ueV such that
o

a(u,v) <F’(u),v>, for all veV ,%
0

(2.5)

where F’ (u)eV’ is the Fr4chet differential of the nonlinear functional F(u)

f(n)dnd at u. For this, we consider the space W (the polar space of
0

o

V), which is a closed subspace of V’. Thus in this setting, problem (2.5) is

equivalent to:

Find (u,)eVW such that

a(u,v) + <v,> <F’(u),v> for all

<u,> 0, for all

(2.6)

Taking

b(v,) <,v> for all veV, eW H’

it is obvious that (2.6) is of the form (2.3) and (2.4).

[e consider the following problem, which we refer to as problem P:

Find (u,) e VW satisfying

a(u,v) + b(v,) <F’(u),v>, for all veV (2.7)

b(u,) <g,> for all eW (2.8)

We consider this problem for a subclass of data, i.e., for (F’(u),g)eD, where

D is a subclass of V’W’. We assume that;

HI. For (F’(u),g)eD, P has a unique solution.

In the analysis of P, we shall also consider the adjoint problem"

Given deG’, where G is a Hilbert space satisfying W <G with a continuous

embedding, find (y,%) (yd,%d)eVW satisfying

a(v,y) + b(v,%) 0 for all veV (2.9)

v(y,) <d,>, for all eW (2.10)

We shall assume that:

H2. Problem (2.9) and (2.10) has a unique solution for deG’.
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Let V
h

and W
h

be given finite dimensional subspaces of V and W respec-

tively. We now consider the following approximate problem Ph:
Find (Uh’ @h SVhXWh such that

a(uh,Vh) + b(Vh,h <F’(Uh),Vh>, for all VheVh, (2.11)

b(Uh,h) <g,h> for all heWh (2.12)

We are interested in obtaining error estimates for u u
h

and h" We now

state several assumptions which are required in the proof of our main results.

H3. There is a constant > 0 such that

a(vh,vh) >_ all Vhll 2 for all VhZh
where Z

h {VhSVh: b(Vh,h) 0 for all hSWh}.

H4. There exists a number S(h) satisfying

II vh II v <_ S(h) llVhll H, for all VheVh
H5. There is an operator h:Y-------+Vh satisfying b(Y-hy,h) 0, for all

yY and hWh, where Y span({Yd}dG,,U), (u,) is the solution of P and

(yd,%d) is the solution of (2.9) and (2.10) corresponding to dG’.

H6. F’(u) is antimonotone on V, i.e., <F’(u) F’(v),u-v> < 0, for all u,vV.

HT. F’(u) is required to satisfy the Lipschitz condition, that is there exists

a constant y > 0 such that

II F’ (u) F’ ()II <_ II u-vll fo= a ,v

We would like to remark that hypothesis (HI)-(H5) are due to Falk and Osborn [5]

and (H6)-(H7) are due to Noor [2].

From (2.7), we observe that

a(hU,Vh) + b(Vh,) a(u,vh) + b(Vh,) + a(hU-U,Vh)
<F’(u),Vh> + a(hU-U,Vh), for all vgV

h. (2.13)

Substracting (2.11) from (2.13), we get for all VhgVh,

a(hU-Un,Vh) + b(Vh,-h <F’(u) F’(Un),Vh> + a(hU-U,Vh). (2.14)

In order to derive the error estimate for U-Uh, we define u
h

V
h

by the

conditions
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a(hU-,vh) + b(Vh,-h) a(hU-U,Vh), for all v
h

g V
h (2.15)

b(hU-Uh,h) 0, for all h g Wh" (2.16)

Furthermore, let a(.,.) and b(.,.) be continuous bilinear forms on HxH and VxW

respectively, that is

for all u v g H (2 17)a(u,v) < Ilu IH Iv] IH
for all u g V and W (2 18)

We now derive the main results of this section, which are the abstract error

bounds for u-u
h

and -h"
THEOREM 2. Suppose that the hypothesis (HI)-(H7) hold. If (u,) and (Uh,h)

are solutions of problems P and Ph respectively, then

lU-Uhl]H <- ClllU-hUI’iH + CEII@-+hIIW’ for all +h e W
h

(2.19)

lU- hl Iv lU- hUl Iv / I hU-Ul / c41 I*-%11w.
If n addition, ZhZ {v V, b(v,) 0, for all }, then

IU-Uh!H -< C511hu-ulIH (2.21)

and

lU-Uhl V
-< lU-hU IV + C61 lu -hUl H, (2.21)

where C’s are constants independent of u and .
PROOF. From (2.8) and (H5), we see that

b(hU,h) b(U,h) <g,h>,

Subtracting (2.12) from (2.23), we obtain

for all h Wh" (2.23)

b(hU-Uh,h) O, for all h Wh"
Now taking v

h hu u
h

in (2.15), we get

a(hU-Uh,hU-Uh) a(hU-U,hU-Uh) + b(hU-Uh,h-)
a(hU-U,hU-Uh) + b(hU-Uh,h-)

+ b (hU-h,h-h
Thus from (2.16) and (2.25), we have

a(hU-Uh,hU-Uh) a(hU-U,hU-Uh) + b(u
h hU,,-h),

from which, using (H3), (H5), (2.17) and (2.18), it follows that

2 < [[ IH + i I[hu-h[l IfIhU-Uhl IH all lhU-Ul IH hU-Uh V

(2.24)

(2.25)

lllhU-Ul IHI IhU-hllH + iS<h) llhU-llHll,-hllW.
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Hence, we have

< i + 81S(h) ll)-qbhllW, for all )h e W
h-lhU-Ull ;{ell IShU-Ul 1H

Consider now

a(-Uh,Uh-Uh) < a(uh-Uh,Uh-Uh) <F’ (u)-F’ (uh) ,Uh-Uh>, using (H6).

a(uh-hU,Uh-Uh + a(hU-Uh,Uh-Uh)
-<F’ (Uh)-F’ (u) ,Uh-Uh > <F’ (u)-F’ (uh) ,Uh-Uh>.

Taking v
h Uh-Uh in (2.15), we have

a(uh-hU,Uh-) b(Uh-,-h) a(hU-U,Uh-Uh).
Thus

a(uh-Uh,Uh-Uh) < b(Uh-Uh,-h) a(hU-U,Uh-Uh) + a(hU-Uh,Uh-Uh)
<F’ (u)-F’ (uh) ,Uh-> + <F’ (u)-F’ (uh) ,Uh-Uh>.

Using (2.14), we have

a(hU-Uh,h-) + b(h-Uh,-h)-<F’ (u)-F’ (uh) ,Uh-Uh >

-a(hU-U,Uh-Uh) 0.

From (2.27), (2.28) and (H7), it follows that

a(uh-Uh,Uh-Uh) <- <F’ (u)-F’ (uh) ,-Uh>
-< y]]U-h]]H ]]uh-uh[] H’

from which it follows that

< Y u-lUh-Uh{ IN a II
Now

-< /c<l iU-hU[ I+ IhU-Uh[

+ llhU-hll + II- IIlU-Uhl IH [U-hUl IH H Uh-Uh H

< + (14) [hU-h IN by (2 29)(I) lU-hUl H

(--1)1 + 3 (T2./_) S(h)[[t_)h[[ w by (2.26)-< [U-hU{ [H
ClllU-hUl IN + C2[[@-qbhl[W,

by (H4). (2.30)

(2.26’)

(2.27)

(2.28)

(2.29)

which is the required (2.20) with CI= (e+y)(a+l)/a2, and C
2 S(h)(+Y)8i/a

2
are

constants

In order to prove (2.19), we first note that

[U-Uhl [v -< iU-hU[ [v +1 [hU-Uh [V
<- lU-hU{ {v + S(h) lihU-Uhl
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But

ihU-Uhl H
< lhU-hl H + l-Uhl H

Y by (2 29)< (+Y)/{[ [hU-h IN + [ [U-hU[ IN
< {I +

_
i)[ [U_hU[ [H + (+Y)BIS(h)/2 l-h[ [w,

by (2.26), (2.31)

From (2.30) and (2.31), we obtain (2.20), the required result with

C
3

S(h){y/ + (+y)i/2 and C
4 --l{S(h)}2.

To prove (2.21), we observe that (2.24) and (2.16) together with ZhC Z implies that

h(hU-Uh, $) 0, for all $ W (2.32)

and

a(hU-, hU-Uh a(hU-U,hU-Uh
Hence from (H3) and (2.33), we get

c[hU-h [H -< [hU-Uh IN
Now from (2.34), (2.29) and the triangle inequality, we obtain

I--%1 H
-< (a+’O/a){(-)/c} lhU-Ul H,

which is (2.21) with C
5 (-----).

To establish (2.22), we note that

(2.33)

(2.34)

l!U-Uhl v < I!U-hU V
+ lhU-Uh! v
+ S(h)[[hU-Uh[ IV by OH4).

(+)+ SCh){Y-- + l}l [U-hUl H

by (2.34) and (2.30) which is the required (2.22).

REMARK 3. If F is independent of u, that is F(u) f (say), then the

Lipschitz constant y is zero. Consequently theorem 2 is exactly the same as one

proved by Falk and ONborn [5] for linear elliptic problems. It is obvious that

our results include their results as special cases.

THEOREM 3. Assume that (HI), (H2), (H3) and (H5) hold and that (o,) and

(Oh,h) are solutions of problems (P) and (Ph), then

suP{b (Yd ,-h)+a (Uh-u (U-Uh, -n)[[-h [[G dG’ -hYd ’hYd-Yd)+b d

+ <F’(u)-F’(Uh),Ud>}/i [d[ IG for all h,neWh. (2.35)
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PROOF. Substracting (2.11) from (2.7) and (2.12) from (2.8), we have

and

a(u-uh,Vh)+b(Vh,-h) <F’(u)-F’(Uh),Vh>, for all VheVh. (2.36)

Combining (2.9),

b(U-Uh,Nh) 0, for all Nh e Wh.

(H5), (2.36) and (2.37), we obtain

(2.37)

b(Yd,-h) b(Yd-hYd,-h) + b(hYd,-h)
bYd-hYd,-h)+b (Yd-hYd h-h)+a (Uh-U, hYd

+<F’(u)-F’(Uh),hYd>, by (37).

b(Yd-hYd,-h)+a(uh-U,hYd)+<F’ (u)-F’ (uh) ,hYd
b (yd-hYd,-h)+a (Uh-U, hYd-Yd)+a (Uh-U, yd)

+ <F’ (u)-F’ (Uh),hYd>

b (yd-hyd ,-h)+a (Uh-U hYd)+b (U-Uh, %d)
+<F’ (u)-F’ (Uh),hYd >

Thus by using (2.37), we get

b(Yd,--h) b(Yd-hYd,-h)+a(uh-u, hYd-Yd)+b(U-Uh,%d-N)
+ <F’ (u)-F’ (Uh),hYd

Since from (2.10), we have
<d b(Yd -hsup -h sup[I-h G deC’ deC’

Thus (2.35) follows from (2.38) and (2.39).

(2.38)

(2.39)

Note that for F(U) f, (say), the term <F’(u)-F’(Uh),hYd drops out, we

have the same estimate for -@h as proved in [5]. Theorem 2 and 3 allow us to

consider the mildly nonlinear elliptic boundary value problems.

3. APPLICATIONS.

We consider the following problem"

-Au (x_) f (x_, u (x)), _x e ! (3. i)
u(x) O, x ,

where A is the Laplacian operator, the given function feC() is Lipschitz continuous

and antimonotone. Throughout, we shall use the classical Sobolev spaces, see [7] for

notations and definitions.
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Following Raviart and Thomas [4], let

H(div;) {ve {e2 () }2 :div v__gL2 ()
with the norm

2 + lldiv vll 2 .lvl IH(div; ={I Ivl o o

In this setting, the energy functional associated with (3.1) can be written in the

form:

j l i/vl{v,} (v)2dx + div v dx- 2 f(N)dNdx. (3.2)

It follows from theorem i that (u,)eH(div;)xL2() minimizes the functional

l[v,], defined by (3.2) if and only if (u,)gH(div;)xL2() such that

/u vdx + div vdx f(u).vdx, for all vH_(div;) (3.3)

and

Idiv u dx 0, for all eL2() (3.4)

One can easily see that (3.3) and (3.4) is an example of problem P with V H(div;2),

W L2( H {L2()}
2 /u <F’ >a(u,v) .vdx, b(u,) div udx, g 0, (u),v

f(u)vdx, see [1,2].

The subclass D of data for which (HI) is satisfied is given by D OxW’. Since

the bilinear form a(u,v) is symmetric, it can be easily shown that H(2) and (H3) are

satisfied where i.

where

Let {Th}h>0 be a regular family (see[7]) of triangulations of f and define

V
h {VhgH(div;) for all TTh, VhITgQ_T}

QT {vgH__(div;T):E_} see [4,5].

and W
h {hgL2(), for all TTh, hlTePk},

where Pk is a polynomial of degree k.

To apply the results of section ,o we must verify that the appropriate hypothesis

are satisfied. Actually (H4) and (HS) are shown in [5] to hold in this case. Further-

more, it has been shown that for vg{Hr-l()} 2, r>2, the following results hold.

IV-hV I0_< Ch%l Ivl I%, 1 <_ < min(r-l,k+l) (3.5)

and

0<m<min (r- 2, k+l 3 6Ildiv(v-hV) II 0 _< Chml Idiv v m,
From the definitions of V

h
and Wh, it follows that for all VhSVh, div VhITPk.

Thus VhZh implies that div v
h

0 and so v
h

Z. Thus Z
h
cZ and so we are in special

cases of theorem 2.
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In order to apply our results, it remains to show that (H6) and (H7) are satisfied.

Actually these have been proved in [1,2]. Thus from the above discussion we gather

that all the hypotheses (HI) (H7) are satisfied for our model problem (3.1) and so

we can apply the results of theorem 2 and 3.

Furthermore, we now derive the error estimates. Assuming 4e.Hr(), r > 2, from

(2.21) and (3.5), we obtain

llU-Uhll0 < Cllu hullo for k > 0.

< Cht 11411 if u grad4,< Chtl lul It t+l

where t min(r-l,k+l).

(3.7)

Again using the technique and results of Falk and Osborn [5], we can show that in

our case the following estimates are true.

I14-4hI 0
< hU11411U min(r,k+l)

and

I14-4hI 0
< I14112, k=2"
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