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ABSTRACT. A simple method for proving several theorems of Tauberian and Mercerian

type for (C,1) and gap (C,1) summability is presented.
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1. INTRODUCTION AND RESULTS.
Let a, be reals and
n n

s. = L a, o, = (n*-l)-l I s
v=0 v=0

v
We present here an elementary procedure for proving, in a simple and unified way, the
following five results relating the asymptotics of ° to that of st
1.1. G. Hardy’s classical Tauberian theorem with E. Landau’s convergence con-
dition, [1. 8§6.1].
THEOREM 1. If
o, *s n>e (1.1)
and
a > -M/n, M> o0, (1.2)
then sn + S, n > o,
The theorem still holds if the condition (1.2) is replaced by the weaker one
of R. Schmidt, [1. §6.2]:

lim inf(sq-sp) > 0, a> p, a/p > 1. (1.27)

n>e
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We prove in addition the following more general

THEOREM 2. From (1.1) and

1 P
lim inf = ¢ (s_, -s ) 2 0,
n¥v n
P v=1
- ”n
L p-1 p=o(n) (1.2")
lim inf = I (s -s__ ) 2 0,
n - n-v
P v=1

there follows Sh > s, n > o,

Although Theorem 1 is implied by Theorem 2 the proof of the former is also
given as being simpler than that of the implication.

1.2. Gap (C,1) summability. In all above results only the convergence condi-
tion has been gradually relaxed from the original Hardy’s & = 0(1/n) to (1.2") where-
as (1.1) - being considered exclusively as a summability method - is kept unaltered.
Contrary to that, we fix here the original Hardy’s convergence condition but treat
(1.1) as an assumption that may be relaxed by changing the notion of the (C,1) summa-
bilkty itself in such a way, that this, together with the convergence condition,still
leads to s - s. To that effect we introduce the notion of the "gap (C,1) summability"
by the following:

DEFINITION 1. A series Ia  is said to be gap (C,1) summable to s if for a
sequence {nk} of positive integers there follows 0 »> s, k > o,

We prove the following

THEOREM 3. Let{nk}be a sequence of positive integers such that

B By = o(nk), k > », (1.3)
Ir

g +> s, k> (l.’-&)

Ty
and

a = 0(1/n), (1.5)
then

S, ™ S» n > o,

Notice that o-and O-symbols can be interchanged in (1.3) and (1.5) without affecting
the statement of the theorem.

1.3. A Tauberian theorem with remainder. The above mentioned convergence
conditions, and in particular, the R. Schmidt’s one - (1.2°), (characterizing slowly
decreasing sequences) are related to the class R(y,I') of O-regularly varying functi-
ons as introduced in [2] and [3].

We exploit the class here for proving & Tauberian theorem with a remainder
term ("Numerical” Tauberian theorem) (cf. [4. §1.8]).

DEFINITION 2. A function f(x) is almost increasing if there exists a constant
A > 1 such that x; < x, implies f(xl) <A f(xe); elmost decreasing functions are de-

fined likewise.
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DEFINITION 3. A positive continuous function g(x) is of class R(y,I') if there

exist y > 0, T > 0 such that x'g(x) is almost increasing and x_rg(x) is almost de-

creasing for sufficiently large x.

We use here the definition from [3] but the class of functions in question

has been introduced and studied already in [2] in a more general form.

We prove
THEOREM L. Let ¢i(x) € R(y;»Ty), i=1,2,
0<ec, ¢ ¢, (x)o (x) g ¢ X2 for some ¢
1 1 2 2 i
and
0,(x) > = ¢ (x) = olo (x)}, x > o,
It
9, = s+0(1/®2(n)), n -+
and
2, > -¢l(n)/n,
then
1/2
s, = s+ 0((¢l(n)/¢2(n)) 1, n -+ ®,
1.4, A Merc-rian theorem. We prove
THEOREM 5. If
Sn + cnon -+ 0, n -+ o
and
lim inf ¢_ > -1,
N n
then
n - 0, n > o,

This contains as special cases the original Mercer’s theorem where Cpy

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

[+]

(¢ > -1), {1. §5.9], and a result of Vijayaraghaven where besides (1.11) one assumes

o(1), [€].

0
[}

2. PROOFS.

All mentinned results follow directly from the following simple identities

used occasionally by the second author, and for the first time in [5] in the case of

Fourier series.

For m > n cne has

m-n-1
mo 4= nO_ i = (m-n)sn+ vil (sn+v- sn)
or, with p > 1,
r
(n+p+l)on+p-(n+l)on = psn* vfl (Sn+v - sn)

For m < n << has

(1)

(i7)
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mo ,-no = -(n-m)s + :Zi (s, = sp_y) (ii)
or, with p > 1,
p-1
(n—p+1)cn_p—(n+1)on = -ps + v:l (sn- sn_v) (ii”)

REMARK. It is also useful to replace the sums in the right-hand sides of

Zq-l(p-v)an respectively.

(i”) and (ii”) by Zi(p—v+l)an+v, and sl

The proof of these identities follows by a straightforward calculation and
hence is omitted.

Throughou* the proofs we tacitly take s = 0 for otherwise one could consider
S~ instead. Also, all occuring inequaliries hold for large value: of the variable
ir. question.

PROOF OF THEOREM 1. Suppose contrary to the statement of the theorem that

rhere exists a sequence (nk} tending to infinity with k and such that for n = a,

s 2 A>0. (2.1)

Lt m denote an (arbitrary large) positive integer independent of n, and, having in

ring the Remark, write the identity (i”) with n = n, as

mes P
“Tn _ _ n+p+l
u+l o+l Cn+n o0 nel vil (p-v+1)an+v. (2.2)

low choose p = [ny/m] s then, because of (1.1), first two terms on the right-hand
side of (2.2) tend to zero for k »=. The third term is, due to (1.2), majorized by
Ml/m, Ml

however, due to (2.1), bounded away from zero. If S € =A< 0 for n= 0ys then the

> 0 and hence can be made arbitrary small. The left-hand side of (2.2) is,

identity (ii”) would lead tc a similar contradiction which completes the troof.

PROOF OF THEOREM 2. Suppose that there exists a sequence {nk} such that fer

D=, s A > 0. Then, write the identity (i”) for n = n, as
o+l o nipl o + L g (s - s )= -s
P n D n+p vel n+v v n’
Let € be an (arbitrary small) positive numoer independent of n(=nk) and put p = |en)

in the preceding identity. Then, the firs* two terms on its left-hand side are, duc
to (1.1), small for large n. Hence, because f the first condition (1.2"), the wheic
left-hand side is either small or nonnegative while the right-hand side cne is necra-

tive and bounded away from zerc. If for n = n <€ A < 0 then the identity (ii’)

k* 5n
and the second condition (1.2") are used in the same way to obtain a contradiztion.

PROOF OF THECREM 3. Tt is sufficient to prove that o, - 0, X » = and ther.

Py
2:ply Hardy’s original Tauberian theorem for (C,1 method (i.=. Theorem 1. with

A, = 0(1/n) instead of (1.2)).
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For any positive integer A there is a k such that
n(k) € X & n(k+1), (2.3)

where we put n_ = r(k) for convenience. With such a k write o

X as

A

o, = (A+l)-l{(n(k)+1)o
n(

N +s,}. (2.4)

K)Sn(x)at e

We shall show that sv are bounded fsr any index v between n(k)+1 and A\. To that end
choose a subsequerie m(k) of n(k) such that there exist two integers A, B, B> A > 1
such that

An(k) < m(k) < Bn(k) (2.5)
which is possible due to (1.3). Inegualities (2.5) imply also

m()n(x)
0 < mé,s —;TET—_ <M

- (2.6)

Further, having in mind the Remark, rewrite the identity (i ) with p=m - n - 1,take

m-1=m(k), n=n(k) and put £(k) = m(k) - n(k) to obtain

s = Eﬁhlil a - n(k)+1 o] - lék) (1- !:-—)a
n(k) 2(k) “m(k) 2(x)  “n(k) b=l 9 (k) n(k)+v”
Using (1.4), (1.5), (2.5) and (2.6) to estimate the right-hand side of the previous

identity one gets “n(x) = o(1).

k
Now, for any index in question, i.e. such that n(k)+l € v € A, one has

ls\)-sn(k)l < Ian<k)+l|+"' i Al,
or, by (1.5), (2.3 and (1.3),

[Sv -Sn(k)[= o(1).

llence s, is bounded since sn( ) is; consequently (2.4) and (2.3) lead 1o

K

n(k+1)-n(k)
lo, | < ]Un(k)]+ Moo

and o, > 0, A > o, because of (1.3) and (1.4) ged.

A
PROOF OF THEOREM 4. Again, write the identity (ii ) as

-ps ¢, (r) o,(n) p-1

_n - n-p+l "2 _ .2

n+l lt’2(“) -¢2(“>Gn+ n+l ¢2(n-p) 02(n T')on-p n+l vzl (p-v)an_v+l, (2.7)

and suppose first rhat s < O for a sequence (nk} (or for all n). Hence the left-hand
side »f (2.7) is non-negative for n = n - On the other hand, the first two terms on
the right-hand side are bound=d above. The Torm-r because of (1.7), and the later
becanse 51 (1.7) and *he fact that n 2¢2(n) ic almost decreasing, implying

¢,(n) T

¢2zn-p) € AT



474 V. MARIC and M. TOMIC

which is bounded for p/n < k < 1. The third term on the right hand side is majorized
by p2¢1(n)¢2(n)n'2 by using (1.8) and by exploiting, similarly as above, the fact
that nYlol(n) is almost increasing. Hence the identity (2.7) gives for n = n

N p¢, (n)
0 -s <M, P¢>2(n) + M5 - . (2.8)

k

-1/
Now put p = [Msn{¢l(n)¢2(n)} l’%], where M¢ = (Mu/Ms)l/z, into the right-hand side
of (2.8) which is thus minimized. Such a choice of p is legitimate since p > 1 and
p/n € k < 1 due to (1.6). Whence for n = n, one obtains

¢l(n) 1/2
0« -s <M, (3;(—5) . (2.9)

Next suppose 5, > 0 for a sequence {nk} (or for all n). By repeating the abo-
ve argument using this time the identity (i“) one obtains the same conclusion as in
(2.9) which completes the proof.

PROOF OF THEOREM 5. a/ In addition to (1.11) assume first that

< .
<, [o] (2.10)
and observe the following two obvious facts:
1° sy and o, are bounded. For, suppose that lim sup s, = A = + », Then,there

exists a subsequence n(k) such that i < S for all i < n(k) and Sa(k) T ™ Hence

k)

S0(10)* n(10)%(x) * %n(x) ¥ Cnx)) (2.11)

which is, due to (1.11), bounded away from zero, contradicting (1.10) (on(k) neither
can be non-positive nor can tend to zero because of (1.11), (2.10) and A = + »).Thus
A # + o and similarly lim inf sn = B # - ©, so that sn and on are bounded.

2° This implies that if cn(k) + 0 (or trivially cn( ) = 0), for any subsequ-

k
ence n(k) of n, then also Sa(x) 0, due to (1.10).

Whence, throughout a/ we may consider sequences cn not possessing zero as an
accumulation point.

Now assume A > |B| and substitute 0> 0, from (1.10) into the identity (i)
written as

(m+1)om-(n+1)on = s 4ttt s

n+l

this gives
m+1 n+l _ m+l n+l
n o - sn " + (sn+l+...+sm) = O(“;—)*O(—;_)
m n m n

(2.12)

Choose n = n(k), m = m(k) such that Sa(x) ” A, Su(x) ” A, and n(k)/m(k) » 0. Then,

the order of the left-hand side of (2.12) is that of the first term, i.e. sm(m+1)/|cm|.
For, the third term is majorized by m(A + €) which is of smaller order then the first
term due to (1.11) and (2.10). The second term, hcwever, is comparatively small due

to the choice of m and n and since ¢ ) # 0. But, for the same reason, the right-hand

n(k
side of (2.12) is of order o(m+l)/cm), which is a c¢ontradiction unless A = B = 0. If
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|B| > A one repeats the procedure with s, and s close to B instead of to A.

b/ Next suppose in addition to (1.11) that

c, > 0. (2.13)

Clearly, because of (1.10) and (2.13), A and B cannot be of the same sign,
(e.g. negative).

So, assume A > 0 (or A = +») and choose m = m(k) such that Su(x) ~ A. To choo-
se n = n(k) consider m(k)-i, i = 1,2,..., and take n(k) = m(k)-io where i is the
first value of the index i for which sm(k)-i becomes negative. It must exist for
otherwise cne would have B » O which is already pointed out as impossible unless
A=B-=0.

With such # choice of m and n one concludes, observing (2.13), that the order
of the left-hand side of (2.12) is not less then sm(m+l)/cm-sn(n+l)/cn whereas the
one of right-hand side is o(m+l)/cm)+o((n+l)/cn) which is impossible unless A = 0.
Similarly B = O.

To complete the proof we split the sequence e, into two subsequences cp(n)’
C4(n) i.e. {cp(n) U cq(n)}= ¢, such that for both p(n) and q(n) (1.10) holds, and
(1.11) and (2.10) hold for cp(n) (with the equality sign included), and for
Cq(n) holds (2.13). Then, from a/ and b/ there follows s, > 0, qed.
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