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1. INTRODUCTION.
In our recent papers [I, 2], we extended the theory of almost-periodic functions

from Banach spaces to topological vector spaces and gave a few results concerning its

applications to abstract differential equations. The following results are the

continuation of discussior=s begun there. Specifically Theorem 2 is a version of a
theorem, contained in [1, 2] (see Theorem 5.1 in [2]) which was originally inspired

from a result due to A. I. Perov (cf. [3] Theorem 1.1).
Let us first recall some useful facts (see [I, 2] for more details). The reader

can also find in [4] the elementary properties of linear topological spaces needed

here.

DEFINITION I. A continuous function f: R E, where E is a complete locally

convex space and R is the set of real numbers, is called almost periodic (a.p.) if

for each neighborhood (of the origin in E) U, there exists a real number- (U) > 0 such that every interval [a, a + 2] contains at least a point

such that

f(t / ) f(t) c U for every t R.
is ther called a U-translation number of the function f.

REMARK- U U(; pi, A _< n.)
{x E; ip (x) , -< -< n}

where each Pi Q’ the set of semi-norms on E.

Finally we recall Bochner’s crlteria: If E is a Frechet space, then a func-

tion f" E E is a.p. iff for every real sequence (srl)n__ ther exists a subse-

quence (sn)n= such that (f(t + Sm))n= converges uniformly in t c R.

DEFINITION 2. A Frechet space E is called a perfect Frechet space if the following

property is verified it, E: every function : R E such that
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(i) {(t); t R} is bounded in E

(ii) the derivative ’(t) is a.p. in E, is necessarily a.p. in E.
2. MAIN RESULTS.

Now let us state and prove"

THEOREM 1. If f(t) is a.p. in a complete locally convex space E, then for every
real sequence (Sn)n= there exists a subsequence (s’) such that for everyn n=1
neighborhood (of the origin in E) U,

f(t + s n’) f(t + S’)m U

ior all t R, m and n.

PROOF. Let U U(; Pi’ < -< n) be a neighborhood and V V(7[; Pi’ n)
a symmetric neighborhood such that V + V + V + V U. By the definition of almost-
periodicity, there exists (V) (therefore depends on U) such that in

every real interval of length 4, there exists such that

f(t + T) f(t) V
fur every t R.

Now for each s n, we can find and o
n such that s n T + o with an n n n

V-translation number of f and a [0 ] (it suffices to take Is sn n n n
ad then o sn n n

As f is uniformly continuous on R (cf. [I, 2]), there exists 6 6() such
that

f(t’) f(t") V (2.1)
For all t’, t", It’ t"l 26.

Also 0 < o -< for every n; we can then subtract from (o) a conver-n n n=1
gent subsequence (ank)k= I, by the Bolzano-Weierstrass theorem.

Let o im o with 0 -< o <-
k nk

Now consider the subsequence (onk)=l with

and let (snk)k=

o- 6 < o < o + 6, k 1, 2n k

be the corresponding subsequence where

s + o k 1, 2,n k nk n k
Let us prove the relation

f(t + s f(t + s Un k nj
for all t R.

For this, write

f(t + s f(t + s f(t + + o )- f(t + on k nj nk nk n k
+ f(t + o f(t + an k nj’
+ f(t + a f(t + + a

nj nj nj
Because Tnk and Snj are V-translation numbers of f, we shall get

(2.2)
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f(1: + Tnk + onk f(t + o e V, for every t a Rr k
(’.3)f(t + nj On f(t + o V, for’ every t R

j nj
On the other hand

(t + Onj) on 2l(t + onk onk J
therefore, by usir.g relaticr, (2.1), we get

f(t + o f(t + o V, for every t R (2.4)nk nj
Finally we can deduce (2.2) from (2.3) and (2.4). The theorem is [roved by taking

=s k= 2Sn n k’
3. APPLICATIONS

Let E be a perfect Frechet space and A a closed linear operator with domain

D(A) dense in E. Suppose A generates a strongly continuous one-parameter group

T(t), t R.
Consider in such E the differential equation

x’(t) Ax(t), t e R (3.1)
THEOREM 2. Assume for every semi-norm p e Q, there exists a semi-norm q e Q such

that

p(T(t)u) < q(u)
for every u E and t R.

Then every solution x(t) of (3.1) such that {x’(t); t e R} is relatively

compact in E is a.p.

PROOF. Let x(t) be such a solution; we can write x(t) T(t)x(O), t R; by the

property on T(t), x(t) is obviously bounded.

’) we can extract a subsequence (Sn)n=Consider a given real sequence (s n n=
such that (x’(Sn))n= is a Cauchy sequence in E, for {x’(t); t R} is rela-

tively compact in E. We have

x’(t + s n) Ax(t + Sn)
AT(t + Sn)X(O)
mT(t)T(Sn)X(O
aT(t)X(Sn)
T(t)Ax(sn)
T(t)x’(Sn)

for every n and every t e R. Therefore

x’(t / s n) x’(t + sm) T(t)[x’(s n) x’(Sm)]
for every n, m and t e R.

Take now any p Q; then there exists q Q such that

p[x’(t + s n) x’(t + Sm)] s q[x’(Sn) x’(Sm)
for every t e R; which shows x’(t) is a.p. by Bochner’s criteria. As E is a

perfect Frechet space, the conclusion is inmediate.
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