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ABSTRACT. Associated with each linear homogeneous differential equation

n-I(n) (i)
y Z ai(x)y of order n on the real line, there is an equivalent integral

i=O
equation

x x u
f(x) f(xO) + I h(u)du + f [I G (u v)a0(v)f(v)dv]dux

0
x
0

x
0

n-1

which is satisfied by each solution f(x) of the differential equation.
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i. INTRODUCTION.

Let n be a positive integer, I be an interval on the real line R and C(1)

be the class of all functions continuous on I. Let

(n) (n-l)
y a (x)y + + aO(x)y x I (I I)n-I

be any n-th order (normalized) ordinary linear homogeneous differential equation, where

ai(x) e C(I), i=0,I,2 (n-l).

The purpose of this article is to derive an equivalent integral equation satisfied

by the solutions of the linear homogeneous differential equation (I.I).

2. MAIN RESULTS.

THEOREM. Let f(x) be a solution of (l.l) defined on I and x
0

e I. Then f(x)

is also a solution of the integral equation

x x u
f(x) f(xO) + f h(u)du + I If Gn_l(U,V)ao(v)f(v)dv]du, (2.1)

x
0

x
0

x
0

where h(x) is the unique solution of the (n-l)-th order linear homogeneous

differential equation

(n-l) (x)y(n-2) + + a l(x)y x Iy an_ (2.2)



406 A.K. BOSE

satisfying the initial conditions

(n-2) (n-l)Y(X0) f (x0), Y (x0) f (x0) Y (x0) f (x0),
and G (x,u) is the well-known Green’s Function associated with the homogeneousn-I
equation (2.2)

PROOF OF THE THEOREM. In order to deduce the integral equation (2. I), we will

use the well-known Variation of Parameters formula

X

y(x) h(x) + f Gn_
x
0

(x,u) (u)du (2.3)

solving uniquely the non-homogeneous initial value problem

(n-l) (n-2)y a (x)y
n-1 + + a l(x)y + (x)

y(x0) f (Xo), Y (x0) f (x0) Y

for each (x) c C(1).

(n-2)
(Xo) f(n-l) (x

0

Consider the sequence of functions:

fl (x), f2(x) fk(x)

defined on I, where

X

fl(x) f(x0) + I h(u)du
x
0

X U

f2(x) fl(x) + I Ef G (u,v)a0(v)fn-1
x
0

x
0

(v)dv3du

X U

fk(x) fl (x) + I [I Gn_ (u,V)ao(V)fk_l (v)dv]du
x
0

x
0

(2.4)

Clearly, for each k, fk(x0) f(Xo) fk(x) is differentiable on I and for k 2

X

fk(x) h(x) + I Gn_l(X,u)a0(u)fk_l(U)du. (2.5)
x
0

Using (2.3), we conclude that, for each k a 2, fk(x) is the unique solution of the

non-homogeneous initial value problem

(n-l) (n-2)y a (x)y
n-l + + a l(x)y + aO(x)fk_l(x)

(n-2) (n-l)Y(X0) f (x0), Y (x0) f (x0) Y (x0) f (Xo).
(2.6)

C
nHence each fk(x) e (I). Both the sequences {fk(x)} and {fk(x)} converge uniformly on

every compact subset on the interval I. To see this, let B be a compact subset of

I. Then there exists a closed and bounded interval [a,b] such that B [a,b] I and
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x
0

e [a,b].
Let M max IGn-l(U’v)a0(v)l s max Ifl(v) for each u,v [a,b]. One can

now see very easily that for each x e [a,b],

Ifk+l(x) fk(x) -< Mksk(b-a)2k/2k!

Ifk+l(x) fk(x) _< Mksk(b-a)k/k!

using recursively the bounds for fi+l(x) fi(x) i 1,2,3, Since each of

the series Mksk(b-a)2k/2k!, Mksk(b-a)k/k! converges, we conclude by Weierstrass’

M-test that each of the series of functions

fl(x) + (fk+l (x) fk(x)), fl(x) + (fk+l (x) fk(x))
k=1 k=l

converges uniformly on [a,b] and hence on B. Therefore there is a function

g(x) e C I(I) such that

fl (x) + I (fk+l (x) fk (x)) lira fk(x) g(x)
k=l k+=

fl(x) + . (fk+l(X) fk(x)) lira fk(x) g (x)
k-I k=

for all x e I. In particular g(xO) f(Xo).
Also from (2.5) we get by taking limit as k-

x
g (x) h(x) + I G (x U)ao(u)g(u)du x e In-i

x
0

Hence
x x u

g(x) f(Xo) + I h(u)du + I [ Gn_l(U,V)ao(v)g(v)dv]du
x
0 x

0
x
0

Again, relation (2.7) implies by (2.3) that g (x) is the unique solution of the

initial value problem

(2.7)

(2.8)

Y(n-l) an_l(x)y(n-2) + + a l(x)y + aO(x)g(x
(n-l) (n-l)

Y (xO) f (xO) Y (xO) f (Xo).
C
n

Therefore g(x) e (I) and

(n) (x)gn-Ig (x) a (x) + + aO(x)g(x) x e In-I

In other words, g(x) is the unique solution of the homogeneous initial value problem

(n) (n-l)
y a (x)y (x) + + a0(x)y x e In-i

(n-l) (n-l)y(xO) f(Xo), Y (xO) f (xO) Y (xO) f (Xo).
Hence f(x) g(x) for all x e I. Therefore, by (2.8)

x x u
f(x) f(x0) + h(u)du + I [ G (u,v)ao(v)f(v)dv]dun-Ix

0
x
0

x
0



408 A.K. BOSE

This completes the proof.

REMARK. The above proof clearly shows how a solution of a linear homogeneous

equation with prescribed initial values can be constructed out Qf a solution h(x)

and the Green’s Function G (x u) of a lower order homogeneous linear equation.n-I
This is specially significant in case of second order homogeneous equations, as

A(x)-A(u)
solutions ceA-X’t and the Green’s function Gl(X,U) e

x
[A(x) f al(u)du], of first order homogeneous equation y al(x)y are readily

x
0

available.
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