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1. Introduction

Motivated by many applications in control engineering, problems of robust stability of
dynamical systems have attracted a lot of attention of researchers during the last twenty
years. In the study of these problems, the notion of stability radius was proved to be an
effective tool, see [1–5]. In this paper, we study the robustness of strong stability of the
homogeneous difference equation under parameter perturbations.

The organization of this paper is as follows. In Section 2, we recall some results on
nonnegative matrices and present preliminary results on homogeneous equations for later
use. In Section 3, we study a complex strong stability radius under multiperturbations.
Next, we present some results on strong stability radii of the positive class equations under
parameter perturbations. It is shown that complex, real, and positive strong stability radii
of positive systems coincide. More important, estimates and computable formulas of these
stability radii are also derived. Finally, a simple example is given.

2. Preliminaries

2.1. Nonnegative matrices

We first introduce some notations. Let n, l, q be positive integers, a matrix P = [pij] ∈ R
l×q

is said to be nonnegative (P ≥ 0) if all its entries pij are nonnegative. It is said to be positive
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(P > 0) if all its entries pij are positive. For P,Q ∈ R
l×q, P > Qmeans that P −Q > 0. The set of

all nonnegative l × q-matrices is denoted by R
l×q
+ . A similar notation will be used for vectors.

Let K = C or R, then for any x ∈ K
n and P ∈ K

l×q, we define |x| ∈ R
n
+ and |P | ∈ R

l×q
+ by

|x| = (|xi|), |P | = [|pij |]. For any matrix A ∈ K
n×n the spectral radius and the spectral abscissa

of A is defined by r(A) = max{|λ| : λ ∈ σ(A)} and μ(A) = max{Rλ : λ ∈ σ(A)}, respectively,
where σ(A) is the spectrum of A. We recall some useful results, see [6].

A norm ‖·‖ on K
n is said to be monotonic if it satisfies

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖, ∀x, y ∈ K
n. (2.1)

It can be shown that a vector norm ‖·‖ on K
n is monotonic if and only if ‖x‖ = ‖|x|‖ for all

x ∈ K
n, see [7]. All norms on K

n we use in this paper are assumed to be monotonic.

Theorem 2.1 (Perron-Frobenius). Suppose that A ∈ R
n×n
+ . Then

(i) r(A) is an eigenvalue of A and there is a nonnegative eigenvector x ≥ 0, x /= 0 such that
Ax = r(A)x.

(ii) If λ ∈ σ(A) and |λ| = r(A) then the algebraic multiplicity of λ is not greater than the
algebraic multiplicity of the eigenvalue r(A).

(iii) Given α > 0, there exists a nonzero vector x ≥ 0 such thatAx ≥ αx if and only if r(A) ≥ α.

(iv) (tI −A)−1 exists and is nonnegative if and only if t > r(A).

Theorem 2.2. Let A ∈ K
n×n, B ∈ R

n×n
+ . If |A| ≤ B then

r(A) ≤ r(|A|) ≤ r(B). (2.2)

2.2. Homogeneous difference equations

Consider the neutral differential difference equation of the following form:

d

dt

[
D(r,A)yt

]
= f(t, yt), (2.3)

where D(r,A) : C([−h; 0],Rn) → R
n is linear continuous defined by

D(r,A)φ = φ(0) −
N∑

i=1

Aiφ
( − ri

)
, φ ∈ C

(
[−h; 0],Rn). (2.4)

Here each Ai is an n × n-matrix, each ri is a constant satisfying ri > 0 and h = max{ri : i ∈
N}, N = {1, 2, . . . ,N} and yt ∈ C([−h; 0],Rn) is defined by yt(s) = y(t + s), s ∈ [−h; 0], t ≥ 0.
Recall that there is a strictly close relation between the asymptotic behavior of solutions of
(2.3) and that of associated linear homogeneous difference equations

D(r,A)yt = 0, t ≥ 0, (2.5)
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or equivalently,

y(t) −
N∑

i=1

Aiy
(
t − ri

)
= 0. (2.6)

A study of the asymptotic behavior of solutions of system (2.6) plays a fundamental role in
understanding the asymptotic behavior of solutions of linear neutral differential equations of
the form (2.3), see [8].

We recall the definition in [8]: the operator D(r,A) or system (2.6) is called stable if the
zero solution of (2.6) with y0 ∈ CD(r,A) = {φ ∈ C([−h, 0],Rn) : D(r,A)φ = 0} is uniformly
asymptotically stable.

Associated with system (2.6) we define the quasipolynomial

H(s) = I −
N∑

k=1

e−srkAk. (2.7)

For s ∈ C, if detH(s) = 0, then s is called a characteristic root of the quasipolynomial matrix
(2.7). Then, a nonzero vector x ∈ C

n satisfying H(s)x = 0 is called an eigenvector of H(·)
corresponding to the characteristic root s. We set σ(H(·)) = {λ ∈ C : detH(λ) = 0}, the
spectral set of (2.7), and aH = sup{Rλ : λ ∈ σ(H(·))}, the spectral abscissa of (2.7). The
following lemma is a well-known result in [8].

Theorem 2.3. System (2.6) is stable if and only if aH < 0.

It is well known that aH is not continuous in the delays (r1, . . . , rN), see [9]. One
consequence of the noncontinuity is that arbitrarily small perturbations on the delays may
destroy stability of the difference equation. This has led to the introduction of the concept of
strong stability in Hale and Verduyn Lunel [10].

Definition 2.4. System (2.6) is strongly stable in the delays if it is stable for each (ri)i∈N ∈ R
N
+ .

The concept of strong stability has interested many researchers as in [8–13] and
references therein. Now we recall a result in [10].

Theorem 2.5. The following statements are equivalent:

(i) system (2.6) is strongly stable,

(ii) sup{r(∑N
i=1ziAi) : |zi| = 1, i ∈ N} < 1.

We set C1 = {z ∈ C : |z| < 1} and ∂C1 = {z ∈ C : |z| = 1}. Since r(·) is continuous in
C

n×n, we imply the continuity of the following function g : (∂C1)
N → R defined by

g
(
z1, . . . , zn

)
= r

(
N∑

i=1

ziAi

)

. (2.8)
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Moreover, by the compactness of the set (∂C1)
N , there exists z∗ = (z∗1, . . . , z

∗
N) such that

r

(
N∑

i=1

z∗i Ai

)

= sup

{

r

(
N∑

i=1

ziAi

)

: |zi| = 1, i ∈ N

}

. (2.9)

By the above result, we can get the following statement: system (2.6) is strongly stable if and
only if

max

{

r

(
N∑

i=1

ziAi

)

:
(
zi
)
i∈N ∈ (∂C1

)N
}

< 1. (2.10)

3. Main results

3.1. Complex strong stability radius

Suppose that system (2.6) is strongly stable. Now we assume that each matrixAi is subjected
to the perturbation of the form

Ai −→ Ai +DiΔiEi, i ∈ N, (3.1)

where Di ∈ C
n×pi , Ei ∈ C

qi×n are given matrices defining the structure of the perturbations
and Δi ∈ C

pi×qi are unknown matrices, i ∈ N. We write the perturbed system

y(t) −
N∑

i=1

(
Ai +DiΔiEi

)
y
(
t − ri

)
= 0. (3.2)

Definition 3.1. Let system (2.6) be strongly stable. The complex, real, and positive strong
stability radii of system (2.6) under perturbations of the form (3.1) are defined by

rC = inf

{
N∑

i=1

∥∥Δi

∥∥ : Δi ∈ C
pi×qi , i ∈ N, system (3.2) is not strongly stable

}

,

rR = inf

{
N∑

i=1

∥∥Δi

∥∥ : Δi ∈ R
pi×qi , i ∈ N, system (3.2) is not strongly stable

}

,

r+ = inf

{
N∑

i=1

∥∥Δi

∥∥ : Δi ∈ R
pi×qi
+ , i ∈ N, system (3.2) is not strongly stable

}

,

(3.3)

respectively, we set inf∅ = +∞.

If system (2.6) is strongly stable, we define a functionH(·, ·) : C \ C1 × (∂C1)
N → C

n×n

byH(λ, z) = (λI −∑N
i=1ziAi)

−1, λ ∈ C \ C1, z = (zi)i∈N ∈ (∂C1)
N . It is easy to see thatH(·, ·) is

well-defined. For any λ ∈ C \ C1, z = (zi)i∈N ∈ (∂C1)
N , we set

Gij(λ, z) = EiH(λ, z)Dj ∈ C
qi×pj . (3.4)
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Theorem 3.2. Let system (2.6) be strongly stable. Then we have

(i)

1
maxi,j∈N sup|λ|≥1,z∈(∂C1)

N

∥∥Gij(λ, z)
∥∥ ≤ rC ≤ 1

maxi∈N sup|λ|≥1,z∈(∂C1)
N

∥∥Gii(λ, z)
∥∥ , (3.5)

(ii) in particular, if Di = Dj (or Ei = Ej) for all i, j ∈ N, then we have

rC =
1

maxi∈N sup|λ|≥1,z∈(∂C1)
N

∥∥Gii(λ, z)
∥∥ . (3.6)

Proof. LetΔ = (Δi)i∈N be a destabilizing disturbance. Then there exists (λ, z) ∈ C\C1×(∂C1)
N

such that λ ∈ σ(
∑N

i=1zi(Ai+DiΔiEi)). Thismeans that there exists a nonzero vector x satisfying

(
N∑

i=1

zi
(
Ai +DiΔiEi

)
)

x = λx. (3.7)

This follows that

(
N∑

i=1

ziDiΔiEi

)

x =

(

λI −
N∑

i=1

ziAi

)

x, (3.8)

or equivalently,

x =
N∑

i=1

ziH(λ, z)DiΔiEix. (3.9)

Choose q ∈ N such that ‖Eqx‖ = max{‖Eix‖ : i ∈ N}. Multiplying the above equation with
Eq, we obtain

Eqx =
N∑

i=1

ziEqH(λ, z)DiΔiEix

=
N∑

i=1

ziGqi(λ, z)ΔiEix.

(3.10)

This implies that

∥∥Eqx
∥∥ ≤

N∑

i=1

∥∥zi
∥∥∥∥Gqi(λ, z)

∥∥∥∥Δi

∥∥∥∥Eix
∥∥

≤
N∑

i=1

max
i,j∈N

sup
|λ|≥1,z∈(∂C1)

N

∥∥Gij(λ, z)
∥∥∥∥Δi

∥∥∥∥Eqx
∥∥.

(3.11)



6 Journal of Applied Mathematics

From this inequality and the definition of rC, the left-hand inequality of (i) follows:

rC ≥ 1
maxi,j∈N sup|λ|≥1,z∈(∂C1)

N

∥∥Gij(λ, z)
∥∥ . (3.12)

Now it remains to prove the right-hand inequality of (i):

rC ≤ 1
maxi∈N sup|λ|≥1,z∈(∂C1)

N

∥∥Gii(λ, z)
∥∥ . (3.13)

Indeed, for any (λ, z) ∈ C \ C1 × (∂C1)
N , and i ∈ N, there exists nonzero vector x ∈ C

pi such
that ‖x‖ = 1 and ‖Gii(λ, z)x‖ = ‖Gii(λ, z)‖. By Hahn-Banach theorem, there exists y∗ ∈ (Cqi)∗

satisfying ‖y∗‖ = 1 and y∗(Gii(λ, z)x) = ‖Gii(λ, z)x‖. We define a matrix Δ ∈ C
pi×qi by setting

Δ =
1

∥∥Gii(λ, z)
∥∥xy

∗ ∈ C
pi×qi . (3.14)

Now we construct the disturbance Δ = (Δ1, . . . ,ΔN) defined by

Δj =

⎧
⎨

⎩

z−1i Δ, j = i,

0, j /= i.
(3.15)

It is easy to check that
∑N

i=1‖Δi‖ = ‖Δ‖ = 1/‖Gii(λ, z)‖. Moreover, we have

λx̂ =

(
N∑

i=1

zi
(
Ai +DiΔiEi

)
)

x̂, (3.16)

where x̂ = H(λ, z)Dix. This means that Δ is a destabilizing disturbance. Thus,

rC ≤ 1
maxi∈N sup|λ|≥1,z∈(∂C1)

N

∥∥Gii(λ, z)
∥∥ . (3.17)

The proof of (i) is complete, and (ii) can be obtained directly from (i).

In general, the complex, real, and positive radius are distinct, see [4, 5]. Theorem 3.2
reduces the computation of the complex strong stability radius to a global optimization
problem with many variations while the problem for the real stability radius is much more
difficult, see [5]. It is therefore natural to investigate for which kind of systems these three
radii coincide. The answer will be found in the next section.

3.2. Strong stability radii of positive systems

In this section, we restrict system (2.6) to be positive, that is,Ai are nonnegative for all i ∈ N.

Lemma 3.3. Let Ai ∈ R
n×n
+ . Then we have

(i) r(
∑N

i=1Ai) = supz∈(∂C1)
Nr(
∑N

i=1ziAi);

(ii) r(
∑N

i=1Ai) < t1 ≤ t2 ⇒ 0 ≤ (t2I −
∑N

i=1Ai)
−1 ≤ (t1I −

∑N
i=1Ai)

−1
,
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Proof. (i) By Theorem 2.2, we have

r

(
N∑

i=1

ziAi

)

≤ r

(
N∑

i=1

∣∣ziAi

∣∣
)

= r

(
N∑

i=1

Ai

)

; (3.18)

(ii) the positivity of (t1I −
∑N

i=1Ai)
−1
, (t2I −

∑N
i=1Ai)

−1 can be implied by Theorem 2.1.
The right-hand inequality can be obtained by the following formula:

(

t2I −
N∑

i=1

Ai

)−1
−
(

t1I −
N∑

i=1

Ai

)−1
= −(t2 − t1)

(

t1I −
N∑

i=1

Ai

)−1(

t2I −
N∑

i=1

Ai

)−1
. (3.19)

This completes the proof.

It is important to note from above lemma that under positivity assumptions, system
(2.6) is strongly stable if and only if r(A1 + · · · +AN) < 1.

Lemma 3.4. Suppose that system (2.6) is positive and strongly stable. Then, for any D ∈ R
n×p
+ , E ∈

R
q×n
+ , λ ∈ C \ C1, z ∈ (∂C1)

N , we have

∥∥∥∥∥
E

(

λI −
N∑

i=1

ziAi

)−1
D

∥∥∥∥∥
≤
∥∥∥∥∥
E

(

I −
N∑

i=1

Ai

)−1
D

∥∥∥∥∥
. (3.20)

Proof. For any λ ∈ C \ C1, z ∈ (∂C1)
N , we have r(

∑N
i=1ziAi) < 1 ≤ |λ|. Thus, for an arbitrary

vector x ∈ R
p,

∣∣∣∣∣
E

(

λI −
N∑

i=1

ziAi

)−1
Dx

∣∣∣∣∣
≤ E

∣∣∣∣∣

(

λI −
N∑

i=1

ziAi

)−1∣∣∣∣∣
D|x|

≤ E
1
|λ|

( ∞∑

n=0

∣∣∣∣

∑N
i=1ziAi

λ

∣∣∣∣

n
)

D|x|

≤ E
1
|λ|

( ∞∑

n=0

(∑N
i=1

∣∣ziAi

∣∣

|λ|

)n)

D|x|

≤ E

( ∞∑

n=0

(
N∑

i=1

Ai

)n)

D|x|

≤ E

(

I −
N∑

i=1

Ai

)−1
D|x|.

(3.21)

By Lemma 3.3, we have (I −∑N
i=1Ai)

−1 ≥ 0. Thus, we imply

∥∥∥∥∥
E

(

λI −
N∑

i=1

ziAi

)−1
D

∥∥∥∥∥
≤
∥∥∥∥∥
E

(

I −
N∑

i=1

Ai

)−1
D

∥∥∥∥∥
. (3.22)
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Theorem 3.5. Let system (2.6) be strongly stable and positive. Assume that all Di, Ei, i ∈ N are
nonnegative matrices. If Di = Dj or Ei = Ej, ∀i, j ∈ N, then

rC = rR = r+ =
1

maxi∈N
∥∥Gii(1, 1)

∥∥ , (3.23)

where Gii(1, 1) = Ei(I −
∑N

i=1Ai)
−1
Di.

Proof. By Theorem 3.2, we have

rC =
1

maxi∈N sup|λ|≥1,z∈(∂C1)
N

∥∥Gii(λ, z)
∥∥ . (3.24)

Moreover, using Lemma 3.4, we get

rC =
1

maxi∈N
∥∥Gii(1, 1)

∥∥ . (3.25)

Since rC ≤ rR ≤ r+, we only need to prove that

r+ ≤ 1
maxi∈N

∥∥Gii(1, 1)
∥∥ . (3.26)

Indeed, for any i ∈ N, since Gii(1, 1) is a nonnegative matrix, there exists nonnegative vector
x ∈ R

pi
+ such that ‖x‖ = 1 and ‖Gii(1, 1)x‖ = ‖Gii(1, 1)‖. Using Krein-Rutman theorem, see

[14], there exists y∗ ∈ (Rqi
+ )

∗
satisfying ‖y∗‖ = 1 and y∗(Gii(1, 1)x) = ‖Gii(1, 1)x‖. We define a

nonnegative matrix Δ ∈ R
pi×qi
+ by setting

Δ =
1

∥∥Gii(1, 1)
∥∥xy

∗ ∈ R
pi×qi
+ . (3.27)

Now we construct the positive disturbance Δ = (Δ1, . . . ,ΔN) defined by

Δj =

⎧
⎨

⎩

Δ, j = i,

0, j /= i.
(3.28)

It is easy to check that
∑N

i=1‖Δi‖ = ‖Δ‖ = 1/‖Gii(1, 1)‖. Moreover, we have

λx̂ =

(
N∑

i=1

(
Ai +DiΔiEi

)
)

x̂, (3.29)

where x̂ = H(1, 1)Dix. It means that Δ is a destabilizing disturbance. Thus

r+ ≤ 1
maxi∈N

∥∥Gii(1, 1)
∥∥ . (3.30)

The proof is complete.
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Now we turn to a different perturbation structure and assume that each matrix Ai is
subjected to perturbations of the form

Ai −→ Ai +
K∑

j=1

δijBij , (3.31)

where Bij are given matrices defining the structure of the perturbations and δij are unknown
scalars representing parameter uncertainties. So we can write the perturbed system

y(t) −
N∑

i=1

(

Ai +
K∑

j=1

δijBij

)

y
(
t − ri

)
= 0. (3.32)

Definition 3.6. Let system (2.6) be strongly stable. The complex, real, and positive strong
stability radii of system (2.6) under perturbations of the form (3.31) are defined by

rδ
C
= inf

{‖δ‖∞ : δ =
(
δij
) ∈ C

NK, system (3.32) is not strongly stable
}
,

rδ
R
= inf

{‖δ‖∞ : δ =
(
δij
) ∈ R

NK, system (3.32) is not strongly stable
}
,

rδ+ = inf
{‖δ‖∞ : δ =

(
δij
) ∈ R

NK
+ , system (3.32) is not strongly stable

}
,

(3.33)

respectively, we set inf∅ = +∞, and ‖δ‖∞ = max{|δij | : i ∈ N, j ∈ K}, where K = {1, . . . , K}.

Lemma 3.7. Suppose system (2.6) is strongly stable, positive and Bij ∈ R
n×n
+ , i ∈ N, j ∈ K. Then

rδ
C
= rδ

R
= rδ+ . (3.34)

Proof. Because rδ
C
≤ rδ

R
≤ rδ+ , we only need to prove that rδ

C
≥ rδ+ . Indeed, for a destabilizing

disturbance δ = (δij)i∈N,j∈K, there exist a λ ∈ C \ C1, z ∈ (∂C1)
N and a nonzero vector x ∈ K

n

such that

N∑

i=1

zi

(

Ai +
K∑

j=1

δijBij

)

x = λx. (3.35)

This yields

N∑

i=1

(

Ai +
K∑

j=1

|δij |Bij

)

|x| ≥
∣∣∣∣∣

N∑

i=1

zi

(

Ai +
K∑

j=1

δijBij

)

x

∣∣∣∣∣
= |λ‖x|. (3.36)

By Theorem 2.1, we get

r

(
N∑

i=1

(

Ai +
K∑

j=1

∣∣δij
∣∣Bij

))

≥ 1. (3.37)

It means that |δ| = (|δij |)i∈N,j∈K is also a destabilizing disturbance. Thus, by the definition of
complex and real radii, rδ

C
≥ rδ+ . The proof is complete.
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Theorem 3.8. Suppose system (2.6) is strongly stable, positive and Bij ∈ R
n×n
+ , i ∈ N, j ∈ K. Then

rδ
C
= rδ

R
= rδ+ =

1

r
((
I −∑N

i=1Ai

)−1
B
) , (3.38)

where B =
∑

i,jBij .

Proof. By Lemma 3.7, we only need to prove that

rδ+ =
1

r
((
I −∑N

i=1Ai

)−1
B
) . (3.39)

To do it, taking arbitrary destabilizing disturbance δ = (δij)i∈N,j∈K ∈ R
NK
+ , by Lemma 3.3 and

Theorem 2.1, there exist a λ ≥ 1 and a nonzero vector x ∈ R
n
+ such that

(
N∑

i=1

(

Ai +
K∑

j=1

δijBij

))

x = λx, (3.40)

or equivalently,

∑

i,j

δijBijx =

(

λI −
N∑

i=1

Ai

)

x. (3.41)

This yields

(

λI −
N∑

i=1

Ai

)−1(∑

i,j

δijBij

)

x = x. (3.42)

Then, we have

‖δ‖∞
(

λI −
N∑

i=1

Ai

)−1
Bx ≥

(

λI −
N∑

i=1

Ai

)−1(∑

i,j

δijBij

)

x = x. (3.43)

Using Theorem 2.1 again, we obtain

r

((

λI −
N∑

i=1

Ai

)−1
B

)

≥ 1
‖δ‖∞ (3.44)

or equivalently,

‖δ‖∞ ≥ 1

r
((
λI −∑N

i=1Ai

)−1
B
) . (3.45)

Thus, from the definition of rδ+ , one has

rδ+ ≥ 1

r
((
I −∑N

i=1Ai

)−1
B
) . (3.46)
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On the other hand, setting λ = r((I −∑N
i=1Ai)

−1B) > 0. Then, by Theorem 2.1, there exists a
nonnegative vector x ∈ R

n
+ satisfying

((

I −
N∑

i=1

Ai

)−1
B

)

x = λx. (3.47)

This is equivalent to

Bx = λ

(

I −
N∑

i=1

Ai

)

x. (3.48)

Hence,

N∑

i=1

(
Ai +

1
λ
B

)
x = x. (3.49)

This means that δ = (1/λ) ∈ R
NK
+ is a destabilizing disturbance and thus, rδ+ ≤ 1/r((I −∑N

i=1Ai)
−1B). The proof is complete.

Now we consider the following example to illustrate the obtained results.

Example 3.9. Consider system

y(t) = A1y(t − r) +A2y(t − s), (3.50)

where

A1 =

⎛

⎜⎜
⎝

1
4

1
3

1
4

0

⎞

⎟⎟
⎠ , A2 =

⎛

⎜⎜
⎝

0
1
6

1
4

1
3

⎞

⎟⎟
⎠ . (3.51)

Then we have

r
(
A1 +A2

)
=

7 +
√
145

24
< 1. (3.52)

Thus system (3.50) is strongly stable.

Assume that the matrices A1, A2 are subjected to perturbations of the form A1 → A1 +
D1Δ1E1, A2 → A2 +D2Δ2E2, where

D1 = D2 =

(
1 0

1 0

)

, E1 =

(
1 1

0 0

)

, E2 =

(
1 0

1 0

)

. (3.53)

Then

G11(1, 1) =

⎛

⎜
⎝

29
3

0

0 0

⎞

⎟
⎠ , G22(1, 1) =

⎛

⎜
⎝

14
3

5

0 0

⎞

⎟
⎠ . (3.54)
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If R
2 is provided with the norm defined by ‖(x, y)‖ = |x| + |y|, then by Theorem 3.5, we have

rC = rR = r+ =
3
29

. (3.55)

Assume that the given two matrices A1, A2 are subjected to perturbations of the form A1 →
A1 + δ11B11 + δ12B12, A2 → A2 + δ21B21 + δ22B22, where

B11 =

⎛

⎜
⎝

1
2

1

0 1

⎞

⎟
⎠ , B12 =

⎛

⎜⎜
⎝

1
1
3

1
1
2

⎞

⎟⎟
⎠ , B21 =

⎛

⎜
⎝

0 1

1
3

1
4

⎞

⎟
⎠ , B22 =

⎛

⎜
⎝

1
2

1
3

1 1

⎞

⎟
⎠ . (3.56)

Then

(I −A1 −A2)
−1B =

⎛

⎜⎜
⎝

10
227
18

11
163
12

⎞

⎟⎟
⎠ . (3.57)

By Theorem 3.8, we get

rδ
C
= rδ

R
= rδ+ =

24

283 +
√
81753

. (3.58)
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