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1. Introduction

Recently, Cohen-Grossberg neural networks (CGNNs) and fuzzy cellular neural networks (FC-
NNs) with their various models have attracted many scholars’ attention due to their potential
applications in classification, associative memory, parallel computation, image processing, and
pattern recognition, especially in white blood cell detection and in the solution of some opti-
mization problems, presented by [1–22]. It is well known that FCCNs [16–18] have been pro-
posed by T. Yang and L. Yang in 1996. Unlike the traditional CNNs structures, FCNNs have
fuzzy logic between their template input and output besides the sum of product operation. It is
worth noting that studies have indicated FCNNs’ potential applications in many fields such as
image and signal processing, pattern recognition, white blood cell detection, and so on. Some
results on stability have been derived from the FCNNs models without or with time delays;
see [16–21]. In [22], the authors obtained a new detection algorithm based on FCNNs for white
blood cell detection, with which one can detect almost all white blood cells and the contour of
each detected cell is nearly completed.
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It is also noted that CGNNs are presented by Cohen and Grossberg in 1983 [1]. This
model is a very common class of neural networks, which includes lots of famous neural net-
works such as Lotka-Volterra ecological system, Hopfield neural networks, and cellular neu-
ral networks, and so on. Up to now, some useful results were given to ensure the existence
and stability of the equilibrium point of CGNNs without or with time delays, presented by
[1–11, 13–15]. In [4], the boundedness and stability were analyzed for a class of CGNNs
with time-varying delays using the inequalities technique and Lyapunov method. In [2, 8],
by constructing suitable Lyaponuv functionals and using the linear matrix inequality (LMI)
technique, the authors investigated a class of delayed CGNNs and obtained several crite-
ria to guarantee the global asymptotic stability of the equilibrium point for this system. In
[3, 6, 7, 9, 13, 15], the global exponential stability is discussed for a class of delayed CGNNs via
nonsmooth analysis. In [14], the authors integrated fuzzy logic into the structure of CGNNs,
maintained local connectedness among cells which are called fuzzy Cohen-Grossberg neural
networks (FCGNNs), and studied impulsive effects on stability of FCGNNs with time-varying
delays.

Due to the presence of an amount of parallel pathways of a variety of axon sizes and
lengths, neural networks usually have spatial nature so it is desired to model them by intro-
ducing continuously distributed delays over a certain duration of time so that the distant past
has less influence compared with the recent behavior of the state [28]. Hence, some authors
have researched neural networks with distributed delays; see, for example, [5, 20]. In [20], sta-
bility was considered for a class of FCNNs with distributed delay. The condition for feedback
kernel is

∫τ
0k(s)ds = 1. In [5], following the idea of vector Lyapunov function,M-matrix theory,

and inequality technique, authors studied Cohen-Grossberg neural network model with both
time-varying and continuously distributed delays and obtained several sufficient conditions to
ensure the existence, uniqueness, and global exponential stability of equilibrium point for this
system. The delay kernel Kij : [0,+∞) → [0,+∞) is real-valued nonnegative continuous func-
tion and satisfies

∫+∞
0 eβsKij(s)ds = pij(β), where pij(β) is continuous function in [0, δ), δ > 0

and pij(0) = 1, i, j = 1, 2, . . . , n.
Moreover, studies on neural dynamical systems do not only involve a discussion of

stability properties, but also many other dynamic behaviors such as periodic oscillatory; see
[21, 23, 24] and references therein. Although many results were derived from testing the sta-
bility of CGNNs [1–14], to the best of our knowledge, FCGNNs with distributed delay and
variable coefficients are seldom considered. Motivated by the above discussions, the objective
of this paper is to study the periodic oscillatory solutions of fuzzy Cohen-Grossberg neural
networks with distributed delay and variable coefficients and to obtain several novel sufficient
conditions to ensure the existence, uniqueness, global attractivity, and global exponential sta-
bility of periodic solutions for the model with periodic external inputs. In this paper, we do not
use coincidence degree theory nor apply Lyapunov method but use inequality analysis and
matrix theory to discuss them.

The rest of the paper is organized as follows. In Section 2, we will describe the model and
introduce some necessary notations, definitions, and preliminaries which will be used later.
In Section 3, several sufficient conditions are derived from the existence, uniqueness, global
attractivity, and global exponential stability of periodic solutions. In Section 4, two examples
are given to show the effectiveness of the obtained results. Finally, we make the conclusion in
Section 5.
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2. Model description and preliminaries

In this paper, we will consider the following fuzzy Cohen-Grossberg neural networks with
periodic coefficients and distributed delays:

ẋi(t) = −ai
(
xi(t)

)
[

bi
(
xi(t)

) −
n∑

j=1

cij(t)fj
(
xj(t)

) −
n∑

j=1

dij(t)uj(t) −
n∧

j=1

αij(t)

×
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds −

n∨

j=1

βij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds

−
n∧

j=1

Gij(t)uj(t) −
n∨

j=1

Hij(t)uj(t) − Ii(t)
]

,

(2.1)

where i = 1, 2, . . . , n, n ≥ 2 is the number of neurons in the networks, xi(t) denotes the neuron
state vector; ai(·) is an amplification function, bi(·) denotes an appropriately behaved function,
fi is the activation function of the neurons, and αij(t), βij(t), Gij(t), Hij(t) are elements of
fuzzy feedback MIN template, fuzzy feedback MAX template, fuzzy feed-forward MIN tem-
plate, and fuzzy feed-forward MAX template at the time t, respectively. C = (cij(t))n×n and
D = (dij(t))n×n, cij(t), dij(t) are elements of feedback template and feed-forward template at
the time t, respectively; α = (αij(t))n×n and β = (βij(t))n×n, αij(t), βij(t) are elements of fuzzy
feedback MIN template and fuzzy feedback MAX template, respectively; G = (Gij(t))n×n and
H = (Hij(t))n×n, Gij(t), Hij(t) are elements of fuzzy feed-forward MIN template and fuzzy
feed-forward MAX template, respectively;

∧
and

∨
denote the fuzzy AND and fuzzy OR op-

erations, respectively; ui(t), Ii(t) denote input and bias of the ith neurons at the time t, respec-
tively; ki(s) ≥ 0 is the feedback kernel, defined on the interval [0, τ] when τ is a positive finite
number or [0,+∞) while τ is infinite.

Let C = C([−τ, 0];Rn) denote the Banach space of continuous mapping from [−τ, 0] to
Rn with the topology of uniform convergence. For a given s ∈ [0,∞) and a continuous function
x : [−τ,∞) → Rn, we define xs : [−τ, 0] → Rn by xs(θ) = x(s + θ) for θ ∈ [−τ, 0]. The initial
conditions of (2.1) are of the form xi(t) = φi(t), −τ ≤ t ≤ 0, where φi is bounded and continuous
on [−τ, 0]. For matrix P = (pij(t))n×n, let ρ(P) denote the spectral radius of P . A matrix or a
vector P ≥ 0 means that all the elements of P are greater than or equal to zero, similarly define
P > 0. For x(t) = (x1(t), x2(t), . . . , xn(t))

T define |x(t)| = ∑n
i=1|xi(t)|, ‖x(t)‖ = max1≤i≤n{‖xi(t)‖},

[x(t)]+ = (‖x1(t)‖, ‖x2(t)‖, . . . , ‖xn(t)‖)T ,where ‖xi(t)‖ = max−τ≤s≤0{|xi(t + s)|}, i = 1, 2, . . . , n.

Remark 2.1. C = C([−τ, 0];Rn) when τ is a positive finite number or C = C((−∞, 0];Rn) while
τ is infinite.

To obtain our results, we give the following assumptions.

(A1) The functions ai(·) (i = 1, 2, . . . , n) are continuously bounded, that is, there exist positive
constants a−i and a

+
i so that

0 < a−i ≤ ai(x) ≤ a+i , ∀x ∈ R, i = 1, 2, . . . , n. (2.2)

(A2) Each bi(·)with bi(0) = 0 is continuous and there exists a constant δi so that

bi(x) − bi(y)
x − y ≥ δi > 0, ∀x, y ∈ R, x /=y, i = 1, 2, . . . , n. (2.3)
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(A3) For activation function fi(x)with fi(0) = 0, there exist li > 0 so that

li = sup
x/=y

∣∣∣∣
fi(x) − fi(y)

x − y
∣∣∣∣, ∀x, y ∈ R, x /=y, i = 1, 2, . . . , n. (2.4)

(A4) The feedback kernels satisfy kj(s) ≥ 0 and
∫τ
0kj(s)ds = 1, j = 1, 2, . . . , n. Where τ is a

positive finite number or infinite.

In addition, we will use the following notations throughout this paper:

cij = max
t≥t0

∣∣cij(t)
∣∣, αij = max

t≥t0

∣∣αij(t)
∣∣, βij = max

t≥t0

∣∣βij(t)
∣∣,

Ĩi(t) =
n∑

j=1

dij(t)uj(t) +
n∧

j=1
Gij(t)uj(t) +

n∨

j=1
Hij(t)uj(t) + Ii(t), Ĩi = max

t≥t0

{∣∣Ĩi(t)
∣∣}.

(2.5)

Definition 2.2 (see [25]). Let R+ = [0,∞). Suppose that C is a Banach space and that 	 : R × C ×
R+ → C is a given mapping. Define Θ(u, t) : C → C, ∀u ∈ R, t ∈ R+ by Θ(u, t)x = 	(u, x, t).
A process on C is a mapping 	 : R × C × R+ → C satisfying the following properties: (i) 	 is
continuous; (ii) Θ(u, 0) = E is the identity; (iii) Θ(u + s, t)Θ(u, s) = Θ(u, s + t).

A process 	 is said to be an ω-periodic process if there is an ω > 0 such that Θ(u +ω, t) =
Θ(u, t), for all u ∈ R and t ∈ R+.

Remark 2.3. Suppose that F : R × C → Rn is completely continuous and let x(t0, ϕ) denote a
solution of the system

ẋ(t) = F
(
t, xt
)

(∗)

through (t0, ϕ) and assume x is uniquely defined for t ≥ t0 − τ . If 	(t0, ϕ, t) = xt0+t(t0, ϕ) for
(t0, ϕ, t) ∈ R × C × R+, then 	 is a process on C. If there is an ω > 0 such that F(t0 + ω,ϕ) =
F(t0, ϕ) for all (t0, ϕ) ∈ R × C, then the process generated by F(t, xt) is an ω-periodic process.
Furthermore, if Θ is defined as before, then Θ(t0, s) = T(t0 + s, t0), where T(t, t0) is the solution
operator of ẋ(t) = F(t, xt) satisfying T(t, t0)ϕ = xt(t0, ϕ).

Definition 2.4 (see [24]). A continuous map Υ : C → C is said to be point dissipative if there
exists a bounded set C0 ⊂ C such that C0 attracts each point of C.

Lemma 2.5 (see [25]). If an ω-periodic F(t, xt) generates an ω-periodic process 	 on C, Θ(u, t) is
a bounded map for each u, t and is point dissipative, then there exists a compact, connected, global
attractor. Also, there is an ω-periodic solution of F(t, xt).

For F(t, xt), Lemma 2.5 provides the existence of a periodic solution under the weak
assumption of point dissipative. Let system (2.1) be rewritten as the system (∗) and one can
obtain that system (2.1) can generate an ω-periodic process 	 on C (see [24, 25]). Under some
assumptions, one can view system (2.1) as a dissipative system and apply Lemma 2.5 to it.

Lemma 2.6 (see [26]). If ρ(A) < 1 for A ≥ 0, then (E −A)−1 ≥ 0, where E denotes the identity
matrix of size n, A denotes a square matrix of size n.
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Definition 2.7. For system (2.1), an ω-periodic solution x∗(t) = (x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

T is said
to be globally exponentially stable if there exist constants λ > 0 andM > 0 so that

∣∣x(t) − x∗(t)
∣∣ ≤M∥∥φ − x∗∥∥e−λ(t−t0), t ≥ t0, (2.6)

for the solution x(t) of system (2.1) with any initial value φ ∈ C. Moreover, λ is called globally
exponentially convergent rate.

Lemma 2.8 (see [18]). Suppose that x and x′ are two states of system (2.1), then one has
∣
∣
∣
∣∣

n∧

j=1

αijfj
(
xj
) −

n∧

j=1

αijfj
(
x′
j

)
∣
∣
∣
∣∣
≤

n∑

j=1

∣
∣αij
∣
∣
∣
∣fj
(
xj
) − fj

(
x′
j

)∣∣,

∣
∣
∣
∣∣

n∨

j=1

βijfj
(
xj
) −

n∨

j=1

βijfj
(
x′
j

)
∣
∣
∣
∣
∣
≤

n∑

j=1

∣
∣βij
∣
∣
∣
∣fj
(
xj
) − fj

(
x′
j

)∣∣.

(2.7)

3. Main results and proofs

In this section, by making use of some inequal analysis and matrix knowledge, we will derive
some sufficient conditions ensuring the existence, uniqueness, global attractivity and global
exponential stability of periodic solution of system (2.1). First and foremost, in order to ensure
the existence of periodic attractor, we should find out an invariant set where the expected
periodic attractor ∗ is located.

Theorem 3.1. Assume that assumptions (A1)–(A4) hold and

(A5) ρ(S) < 1, where S = (sij)n×n and sij = (lja+i /δia
−
i )(cij + αij + βij);

then the set Ω = {φ ∈ C; [φ]+ ≤ P = (E − S)−1Q} is a positively invariant set of system (2.1), where
vector Q = (Q1, Q2, . . . , Qn)

T , and Qi = (a+i Ĩi/δia
−
i ), E denotes the identity matrix of size n.

Proof. Associated with system (2.1), (A1)–(A4), and Lemma 2.8, we have

d
∣∣xi(t)

∣∣

dt
≤ −δia−i

∣∣xi(t)
∣∣ + a+i

{
n∑

j=1

cij lj
∣∣xj(t)

∣∣ +
n∑

j=1

(
αij lj + βij lj

)
∫ t

t−τ
kj(t − s)

∣∣xj(s)
∣∣ds

+

∣
∣∣∣∣

n∑

j=1

dij(t)uj(t) +
n∧

j=1

Gij(t)uj(t) +
n∨

j=1

Hij(t)uj(t) + Ii(t)

∣
∣∣∣∣

}

≤ −δia−i
∣∣xi(t)

∣∣ + a+i

{
n∑

j=1

cij lj
∣∣xj(t)

∣∣ +
n∑

j=1

(
αij lj + βij lj

)
∫ t

t−τ
kj(t − s)

∣∣xj(s)
∣∣ds + Ĩi

}

.

(3.1)

Applying the variation of constant formula for the above, we can derive that
∣∣xi(t)

∣∣ ≤ exp
[ − δia−i

(
t − t0

)]∣∣xi
(
t0
)∣∣

+ a+i

∫ t

t0

exp
[ − δia−i (t − s)

]
{

n∑

j=1

cij lj
∣∣xj(s)

∣∣ +
n∑

j=1

(
αij lj + βij lj

)

×
∫s

s−τ
kj(s − θ)

∣∣xj(θ)
∣∣dθ + Ĩi

}

ds, t ≥ t0.

(3.2)
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Together with ρ(S) < 1 and Lemma 2.6, one has (E − S)−1 ≥ 0. In view of Q > 0, then P =
(E − S)−1Q > 0. We will prove that if [φ]+ ≤ P , then

[
x(t)
]+ ≤ P, t ≥ t0. (3.3)

It suffices to show that for all λ > 1, if [φ]+ < λP , then

[
x(t)
]+
< λP, t ≥ t0. (3.4)

Using the method of contrary. If not, there exist some i ∈ {1, 2, . . . , n} and t1 ≥ t0 such that

∣∣xi
(
t1
)∣∣ = λPi,

∣∣xi(t)
∣∣ ≤ λPi, t ∈ [t0 − τ, t1

)
, (3.5)

[
x(t)
]+ ≤ λP, t ∈ [t0, t1

]
, (3.6)

where Pi is the ith component of vector P . Noticing that SP +Q = P or
∑n

j=1sijPj +Qi = Pi, then
according to (3.5) and (3.2), we have

λPi =
∣∣xi
(
t1
)∣∣ ≤ exp

[ − δia−i
(
t1 − t0

)]∥∥φi
∥
∥a+i

∫ t1

t0

exp
[ − δia−i

(
t1 − s

)]

×
{

n∑

j=1

cij lj
∥∥xj(s)

∥∥ +
n∑

j=1

(
αij lj + βij lj

)
∫ s

s−τ
kj(s − θ)dθ

∥∥xj(s)
∥∥ + Ĩi

}

ds

≤ exp
[ − δia−i

(
t1 − t0

)]∥∥φi
∥∥

+ a+i

∫ t1

t0

exp
[ − δia−i

(
t1 − s

)]
δia

−
i

{
n∑

j=1

(
cij + αij + βij

)
lj

δia
−
i

∥∥xj(s)
∥∥ +

Ĩi
δia

−
i

}

ds

≤ exp
[ − δia−i

(
t1 − t0

)]
λPi +

(
n∑

j=1

sijλPj +Qi

)∫ t1

t0

exp
[ − δia−i

(
t1 − s

)]
δia

−
i ds

= exp
[ − δia−i

(
t1 − t0

)]
[

λPi −
(

n∑

j=1

sijλPj +Qi

)]

+

(
n∑

j=1

sijλPj +Qi

)

.

(3.7)

In view of exp [−δia−i (t1 − t0)] < 1, we can easily conclude that λPi < λPi from (3.7), which is
a contradiction. Therefore, (3.4) holds. Let λ → 1, then we imply that (3.3) holds. The proof of
Theorem 3.1 is completed.

In order to investigate the global attractivity of the periodic solutions, it is necessary to
require global attractivity of the invariant set Ω.

Theorem 3.2. Under the assumptions of Theorem 3.1, the set Ω is a global attractivity set of system
(2.1).

Proof. Using similar discussion to Theorem 3.1, for any given initial value φ ∈ C, there exists
some constant λ > 1 such that if [φ]+ < λP , then

[
x(t)
]+
< λP, t ≥ t0. (3.8)
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If this is not true, there exists a nonnegative vector σ = (σ1, σ2, . . . , σn)
T such that

lim
t→∞

sup
[
x(t)
]+ = σ + P. (3.9)

By the definition of upper limit of x(t) and (3.8), for any sufficiently small value ε (0 < ε � 1),
there exists some t2 ≥ t0 such that

∣∣xi(t − τ)
∣∣ < Pi + (1 + ε)σi, t ≥ t2, i = 1, 2, . . . , n. (3.10)

By the continuity of function exp(·), set T > −ln ε/δia−i > 0, then we have

exp

[

−
∫ t

t−T
δia

−
i ds

]

< ε, or exp
( − Tδia−i

)
< ε, (3.11)

for all t > t2 + T .
According to (2.1) and (3.9)–(3.11), we have

∣∣xi(t)
∣∣ ≤ exp

[ − δia−i
(
t − t0

)]∣∣xi(t0)
∣∣ + a+i

∫ t

t0

exp
[ − δia−i (t − s)

]

×
{

n∑

j=1

cij lj
∣∣xj(s)

∣∣ +
n∑

j=1

(
αij lj + βij lj

)
∫ τ

0
kj(θ)

∣∣xj(s − θ)
∣∣dθ + Ĩi

}

ds

≤ exp
[ − δia−i

(
t − t0

)]∣∣xi
(
t0
)∣∣ + a+i

(∫ t−T

t0

+
∫ t

t−T

)

exp
[ − δia−i (t − s)

]

×
{

n∑

j=1

cij lj
∣∣xj(s)

∣∣ +
n∑

j=1

(
αij lj + βij lj

)∥∥xj(s − τ)
∥∥ + Ĩi

}

ds

≤ exp
[ − δia−i

(
t − t0

)]∣∣xi
(
t0
)∣∣ +

(
exp
( − δia−i T

) − exp
[ − δia−i

(
t − t0

)])

× a+i
δia

−
i

{
n∑

j=1

cij lj
(
Pj + σj

)
+

n∑

j=1

(
αij lj + βij lj

)(
Pj + (1 + ε)σj

)
+ Ĩi

}

+
(
1 − exp

(−δia−i T
)) a+i
δia

−
i

{
n∑

j=1

cij lj
(
Pj + σj

)
+

n∑

j=1

(
αij lj + βij lj

)(
Pj + (1 + ε)σj

)
+ Ĩi

}

≤ exp
[ − δia−i

(
t − t0

)]∣∣xi
(
t0
)∣∣ +

a+i
δia

−
i

×
{

n∑

j=1

cij lj
(
Pj + σj

)
+

n∑

j=1

(
αij lj + βij lj

)(
Pj + (1 + ε)σj

)
+ Ĩi

}

= exp
[ − δia−i

(
t − t0

)]∣∣xi(t0)
∣∣ +

n∑

j=1

sijPj +
n∑

j=1

sijσj +Qi

+ ε

{
a+i
δia

−
i

n∑

j=1

(
αij lj + βij lj

)
σj

}

≤ exp
[ − δia−i

(
t − t0

)]∥∥φi
∥∥ +

n∑

j=1

sijPj + (1 + ε)
n∑

j=1

sijσj +Qi.

(3.12)
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It follows from (3.9) and the properties of the upper limit of x(t) that there exists a sequence tk
so that tk ≥ t2 + T and

lim
tk→∞

∣
∣xi(tk)

∣
∣ = σi + Pi. (3.13)

Let tk → ∞, ε → 0, then we have

σi + Pi ≤
n∑

j=1

sijPj +
n∑

j=1

sijσj +Qi. (3.14)

Noting that Pi =
∑n

j=1sijPj +Qi, we can easily obtain that σi ≤
∑n

j=1sijσj , i = 1, 2, . . . , n, that is,
σ ≤ Sσ. By [27, Theorem 8.3.2], we have ρ(S) ≥ 1, which is a contradiction. Thus, σ ≡ 0, this
completes the proof of the theorem.

Theorem 3.2 implies that under the assumptions of Theorem 3.1, system (2.1) is a dissi-
pative system. Associated with Lemma 2.5 and Theorem 3.2, we can easily deduce the suffi-
cient conditions for the existence of global periodic attractor of system (2.1) as follows.

Theorem 3.3. Under the assumptions of Theorem 3.1, there exists a global attractor of system (2.1).
Moreover, it is ω-periodic and belongs to the positively invariant set Ω.

Proof. Obviously, system (2.1) can generate an ω-periodic process by Lemma 2.5 and Theorem
3.2. Moreover, together with the assumptions of Theorem 3.1, we can conclude that there exists
ω-periodic solution denoted by x∗(t).

Let x(t) be an arbitrary solution of model (2.1) and use the substitution y(t) = x(t)−x∗(t),
the neural network model (2.1) can be rewritten as

ẏi(t) = −ãi
(
yi(t)

)
[

b̃i
(
yi(t)

) −
n∑

j=1

cij(t)Fj
(
yj(t)

)

−
(

n∧

j=1

αij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds −

n∧

j=1

αij(t)
∫ t

t−τ
kj(t − s)fj

(
x∗
j (s)
)
ds

)

−
(

n∨

j=1

βij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds −

n∨

j=1

βij(t)
∫ t

t−τ
kj(t − s)fj

(
x∗
j (s)
)
ds

)]

,

(3.15)

where ãi(yi(t)) = ai(yi(t) + x∗
i (t)), b̃i(yi(t)) = bi(yi(t) + x∗

i (t)) − bi(x∗
i (t)), Fj(yj(t)) = fj(yj(t) +

x∗
j (t)) − fj(x∗

j (t)), i = 1, 2, . . . , n.
Associated with system (3.15), (A1–A4), and Lemma 2.8, we have

d
∣∣yi(t)

∣∣

dt
≤ −δia−i

∣∣yi(t)
∣∣ + a+i

{
n∑

j=1

cij lj
∣∣yj(t)

∣∣ +
n∑

j=1

(
αij lj + βij lj

)
∫ t

t−τ
kj(t − s)

∣∣yj(s)
∣∣ds

}

, (3.16)
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where i = 1, 2, . . . , n. Repeating the above arguments, it is easy to see that system (3.15) sat-
isfies all conditions of Theorem 3.2 with Q = {0}. Thus, limt→∞yi = 0, i = 1, 2, . . . , n, which
implies that the periodic solution x∗(t) is globally attracting. Thus, we complete the proof of
this theorem.

Remark 3.4. By Theorem 3.3, all other solutions of system (2.1) converge to theω-periodic solu-
tion as t→ ∞. Theorem 3.3 provides a guideline on the choice of interconnection matrices for a
neural network which is desired to have a unique global attractor. Moreover, if the parameters
cij(t), αij(t), βij(t), and Ii(t) are not periodic in time t, under the assumptions of (A1)–(A4)
and

∫+∞
t0
δia

−
i dt = +∞ for all i = 1, 2, . . . , n, Theorems 3.1 and 3.2 are also achievable.

Theorem 3.5. Under the assumptions of Theorem 3.1, the ω-periodic solution x∗(t) of system (2.1) is
globally exponentially stable if the following condition holds:

δia
−
i > a

+
i

n∑

j=1

(
cij + αij + βij

)
lj , i = 1, 2, . . . , n. (3.17)

Proof. According to Theorem 3.3, we only prove that (0, 0, . . . , 0)T of the system (3.15) is glob-
ally exponentially stable. Consider the function gi(ξ) given by

gi(ξ) = δia−i − ξ − a+i
[

n∑

j=1

cij lj +
n∑

j=1

(
αij + βij

)
lje

ξτ

]

, i = 1, 2, . . . , n. (3.18)

By (3.17), we have

gi(0) = δia−i − a+i
[

n∑

j=1

cij lj +
n∑

j=1

(
αij + βij

)
lj

]

> 0 (3.19)

and gi(ξ) is continuous, gi(ξ) → −∞ as ξ → +∞. Thus, there exists a ξi > 0 so that gi(ξi) = 0.
Without loss of generality, set ξi = min{ξ > 0 | gi(ξ) = 0}, so gi(ξ) > 0 when ξ ∈ (0, ξi). Now let
ξ̃ = min{ξi, i = 1, 2, . . . , n}, when ξ0 ∈ (0, ξ̃), we have gi(ξ0) > 0, i = 1, 2, . . . , n, that is,

δia
−
i − ξ0 − a+i

[
n∑

j=1

cij lj +
n∑

j=1

(
αij + βij

)
lje

ξ0τ

]

> 0, i = 1, 2, . . . , n. (3.20)

Let y(t) = (y1(t), y2(t), . . . , yn(t))
T be a solution of system (3.15) with any initial value φ ∈ C,

then we have

∣∣yi(t)
∣∣ ≤ exp

[ − δia−i
(
t − t0

)]∣∣yi(t0)
∣∣

+ a+i

∫ t

t0

exp
[ − δia−i (t − s)

]
{

n∑

j=1

cij lj
∣∣yj(s)

∣∣ +
n∑

j=1

(
αij lj + βij lj

)
∫ τ

0
kj(θ)

∣∣yj(s − θ)
∣∣dθ

}

ds,

(3.21)
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for t ≥ t0 and i = 1, 2, . . . , n. Set

wi(t) =

⎧
⎨

⎩

eξ0(t−t0)
∣∣yi(t)

∣
∣, t > t0,

∣
∣yi(t)

∣
∣, t0 − τ ≤ t ≤ t0.

(3.22)

Then, it follows from (3.21) and (3.22) that for t > t0 and i = 1, 2, . . . , n,

wi(t) ≤ exp
[ − (δia−i − ξ0

)(
t − t0

)]
wi

(
t0
)

+ a+i

∫ t

t0

exp
[ − (δia−i − ξ0

)
(t − s)]

{
n∑

j=1

[
cij lj +

(
αij lj + βij lj

)
eτξ0
]∥∥wj(s)

∥∥
}

ds,
(3.23)

for t ≥ t0, i = 1, 2, . . . , n.
For the initial value φ ∈ C, there must exist η > 0 and r ∈ {1, 2, . . . , n} so that ‖φr(0)‖ = η

and ‖φi(0)‖ ≤ η for i = 1, 2, . . . , n.
We will show that for any sufficiently small constant ε > 0,

wi(t) < η + ε, t ≥ t0, i = 1, 2, . . . , n. (3.24)

If it is not true, there must exist some t1 ≥ t0 and k ∈ {1, 2, . . . , n} so that

wk

(
t1
)
= η + ε, wi(t) ≤ η + ε, t ∈ [t0, t1

)
, i = 1, 2, . . . , n. (3.25)

By (3.23) and (3.20), we have

η + ε = wk

(
t1
) ≤ exp

[ − (δia−i − ξ0
)(
t1 − t0

)]
wk

(
t0
)

+ a+i

∫ t1

t0

exp
[ − (δia−i − ξ0

)(
t1 − s

)]
{

n∑

j=1

[
cij lj +

(
αij lj + βij lj

)
eτξ0
]∥∥wj(s)

∥∥
}

ds

≤ (η + ε)exp
[ − (δia−i − ξ0

)(
t1 − t0

)]
+ (η + ε)

a+i
δia

−
i − ξ0

n∑

j=1

[
cij lj +

(
αij lj + βij lj

)
eτξ0
]

× {1 − exp
[ − (δia−i − ξ0

)(
t1 − t0

)]}
< η + ε,

(3.26)

which is a contradiction. Thus (3.24) holds. Let ε → 0, we have

wi(t) ≤ η, t ≥ t0, i = 1, 2, . . . , n, (3.27)

that is,

wi(t) ≤
∥
∥φr(0)

∥
∥, t ≥ t0, i = 1, 2, . . . , n. (3.28)
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This implies that there exists Γ > 1 so that

∣
∣w(t)

∣
∣ ≤ Γ

∥∥φ(0)
∥
∥, t ≥ t0. (3.29)

From (3.22), there exists some constant ζ ≥ 1 so that

∣∣y(t)
∣∣ ≤ ζ∥∥φ(0)∥∥eξ0(t0−t), t ≥ t0, (3.30)

which implies that the solution (0, 0, . . . , 0)T of the system (3.15) is globally exponentially sta-
ble. The proof of Theorem 3.5 is completed.

Corollary 3.6. Let a0 = min1≤i≤n{a−i }, δ0 = min1≤i≤n{δi}. Under the assumptions of Theorem 3.1,
the ω-periodic solution x∗(t) of system (2.1) is globally exponentially stable if the following condition
holds:

a0δ0 > a
+
i

n∑

j=1

(
cij + αij + βij

)
lj , i = 1, 2, . . . , n. (3.31)

Proof. Let gi(ξ) = δ0a0 − ξ − a+i [
∑n

j=1cij lj +
∑n

j=1(αij + βij)lje
ξτ], i = 1, 2, . . . , n. It can be directly

obtained by repeating the argument of Theorem 3.5. Here we omit it.

Remark 3.7. ξ0 is called exponentially convergent rate which can be estimated by (3.20). Global
exponential stability means that system (2.1) can converge to the periodic solution associated
with the inputs when the external inputs are provided to the system, irrespective of the initial
values. The conditions of the above theorems and Corollary 3.6 are dependant on the spectral
radius which needs δia−i > 0 for i = 1, 2, . . . , n and t ≥ t0. They may be invalid when δia−i ≥ 0
and is not identically zero. Therefore, we present other criteria to overcome the limitation.

Now we consider the following system:

ẋi(t) = −a−
[

bi
(
xi(t)

) −
n∑

j=1

cij(t)fj
(
xj(t)

) −
n∑

j=1

dij(t)uj(t) −
n∧

j=1

αij(t)

×
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds −

n∨

j=1

βij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds

−
n∧

j=1

Gij(t)uj(t) −
n∨

j=1

Hij(t)uj(t) − Ii(t)
]

.

(3.32)

(A6) Function bi(xi(t)) is continuous and there exist continuous positive ω-periodic functions
b̃i(t) so that

bi(u) − bi(ũ)
u − ũ ≥ b̃i(t) ≥ 0, ∀u, ũ ∈ R, u/= ũ, i = 1, 2, . . . , n. (3.33)
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Set

zi(t, s) =
a+i exp

(∫ω
0 a

−
i b̃i(θ)dθ

)

exp
(∫ω

0 a
−
i b̃i(θ)dθ

) − 1
exp

(∫s

t

a−i b̃i(θ)dθ

)

,

vij = sup
t≥t0

∫ t+ω

t

zi(t, s)
[∣∣cij(s)

∣∣ +
∣∣αij(s)

∣∣ +
∣∣βij(s)

∣∣]ljds, i, j = 1, 2, . . . , n.

(3.34)

Theorem 3.8. Assume that
∫ω
0 a

−
i b̃i(θ)dθ > 0 for all i = 1, 2, . . . , n and (A1), (A3), (A4), (A6) hold and

(A7) ρ(V ) < 1, where V = (vij)n×n,

then system (3.32) has exactly one ω-periodic solution.

Proof. By (A7), E − V is an M-matrix [29]. Therefore, there exists a diagonal matrix Q̃ =
diag(q1, q2, . . . , qn) > 0 so that (E − V )Q̃ is strictly diagonally dominant with positive diago-
nal entries, that is,

n∑

j=1

vijq
−1
i qj < 1, i = 1, 2, . . . , n. (3.35)

Associated with systems (A1), (A3), (A4), (A6), and Lemma 2.8, we have

∣∣xi(t +ω)
∣∣ ≤ exp

(

−
∫ t+ω

t

a−i b̃i(s)ds

)
∣∣xi(t)

∣∣

+ a+i

∫ t+ω

t

exp

(∫s

t

a−i b̃i(θ)dθ

){
n∑

j=1

∣∣cij(s)
∣∣∣∣fj
(
xj(s)

)∣∣ +
n∑

j=1

(∣∣αij(s)
∣∣ +
∣∣βij(s)

∣∣)

×
∫s

s−τ
kj(s − θ)

∣∣fj
(
xj(θ)

)∣∣dθ +
∣∣Ĩi(s)

∣∣
}

ds.

(3.36)

If xi(t +ω) = xi(t), we have

∣∣xi(t)
∣∣ ≤ exp

(∫ω
0 a

−
i b̃i(s)ds

)
a+i

exp
(∫ω

0 a
−
i b̃i(s)ds

) − 1

×
∫ t+ω

t

exp

(∫s

t

a−i b̃i(θ)dθ

){
n∑

j=1

∣∣cij(s)
∣∣∣∣fj
(
xj(s)

)∣∣ +
n∑

j=1

(∣∣αij(s)
∣∣ +
∣∣βij(s)

∣∣)

×
∫ s

s−τ
kj(s − θ)

∣∣fj
(
xj(θ)

)∣∣dθ +
∣∣Ĩi(s)

∣∣
}

ds.

(3.37)

Let Λω = {ϕ;ϕ = (ϕ1, ϕ2, . . . , ϕn)
T}, ϕi is a continuous ω-periodic function on R. With the

norm ‖ϕ‖ = max1≤i≤n{q−1i supt∈R|ϕi(t)|}, then Λω is a Banach space. Define operator T : Λω →
Λω as follows:

T
(
ϕ1, ϕ2, . . . , ϕn

)
=
(
(Tϕ)1, (Tϕ)2, . . . , (Tϕ)n

)T
, (3.38)
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where

(Tϕ)i(t) =
∫ t+ω

t

zi(t, s)

[
n∑

j=1

cij(s)fj
(
ϕj(s)

)
+

n∧

j=1

αij(s)
∫ s

s−τ
kj(s − θ)fj

(
ϕj(θ)

)
dθ

+
n∨

j=1

βij(s)
∫s

s−τ
kj(s − θ)fj

(
ϕj(θ)

)
dθ + Ĩi(s)

]

ds,

(3.39)

for t ≥ t0 and i = 1, 2, . . . , n. Clearly, ϕ is an ω-periodic solution of system (3.32) if and only if ϕ
is the fixed point of operator T . For all ϕ, ψ ∈ Λω, we have
∥
∥Tϕ − Tψ∥∥

= max
1≤i≤n

{
q−1i sup

t∈R

∣∣(Tϕ
)
i(t) − (Tψ)i(t)

∣∣
}

≤ max
1≤i≤n

{

q−1i sup
t∈R

∫ t+ω

t

zi(t, s)

[
n∑

j=1

∣∣cij(s)
∣∣∣∣fj
(
ϕj
)
(s) − fj

(
ψj
)
(s)
∣∣

+

∣∣∣∣∣

n∧

j=1

αij(s)
∫ s

s−τ
kj(s − θ)fj

(
ϕj(θ)

)
dθ

−
n∧

j=1

αij(s)
∫s

s−τ
kj(s − θ)fj

(
ψj(θ)

)
dθ

∣∣∣∣∣

+

∣∣∣∣∣

n∨

j=1

βij(s)
∫s

s−τ
kj(s − θ)fj

(
ϕj(θ)

)
dθ

−
n∨

j=1

βij(s)
∫s

s−τ
kj(s − θ)fj

(
ψj(θ)

)
dθ

∣∣∣∣∣

]

ds

}

≤ max
1≤i≤n

{

q−1i sup
t∈R

∫ t+ω

t

zi(t, s)
n∑

j=1

(∣∣cij(s)
∣∣ +
∣∣αij(s)

∣∣ +
∣∣βij(s)

∣∣)ljdssup
t∈R

∣∣ϕj(s) − ψj(s)
∣∣
}

= max
1≤i≤n

{

q−1i
n∑

j=1

vijsup
t∈R

∣∣ϕj(s) − ψj(s)
∣∣
}

≤ max
1≤i≤n

{
n∑

j=1

q−1i qjvij

}

max
1≤j≤n

{

q−1j sup
t∈R

∣∣ϕj(s) − ψj(s)
∣∣
}

= max
1≤i≤n

{
n∑

j=1

q−1i qjvij

}

‖ϕ − ψ‖.

(3.40)

In view of (3.35), it is easily concluded that max1≤i≤n{
∑n

j=1q
−1
i qjvij} < 1. This implies that T is a

contraction operator. By the well-known contraction mapping principle, there exists a unique
fixed point ϕ∗ for T which is the unique ω-periodic solution of system (3.32). The proof of
Theorem 3.8 is completed.



14 Journal of Applied Mathematics

Obviously, Cohen-Grossberg-type neural networks, cellular neural networks, and so on
are special forms of system (2.1). It is not difficult to see that the conditions in our results are a
little generation and improvement of their theorems; see [21, 24].

Let ai(xi(t)) ≡ 1, bi(xi(t)) = bi(t)xi(t), i = 1, 2, . . . , n, system (2.1) reduces to the follow-
ing fuzzy cellular neural networks:

ẋi(t) = −bi(t)xi(t) +
n∑

j=1

cij(t)fj
(
xj(t)

)
+

n∑

j=1

dij(t)uj(t) +
n∧

j=1

αij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds

+
n∨

j=1

βij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds +

n∧

j=1

Gij(t)uj(t) +
n∨

j=1

Hij(t)uj(t) + Ii(t),

(3.41)

where bi(t) > 0, for all t ≥ t0, i = 1, 2, . . . , n. From (3.41), we can derive the following results.

Corollary 3.9. Assume that (A3) and (A4) hold. Moreover,

(A8) bi(t) ≥ bi > 0, for all t ∈ R, i = 1, 2, . . . , n;

(A9) ρ(S) < 1, where S = (sij)n×n and sij = (cij lj + αij lj + βij lj)/bi; set Q = (Q1, Q2, . . . , Qn)
T , and

Qi = Ĩi/bi,

then (i) the set Ω = {φ ∈ C; [φ]+ ≤ P = (E − S)−1Q} is a positively invariant set of system (3.41);
(ii) the set Ω is a globally attracting set of system (3.41); (iii) there exists a global attractor of system
(3.41), moreover, it is ω-periodic and belongs to the positively invariant set Ω.

The proof is completely similar to Theorems 3.1–3.3, here we omit it.

Corollary 3.10. Under the assumptions of Corollary 3.9, theω-periodic solution x∗(t) of system (3.41)
is globally exponentially stable if the following condition holds:

bi >
n∑

j=1

(
cij + αij + βij

)
lj , i = 1, 2, . . . , n. (3.42)

It easily follows from Theorem 3.5, so the proof is omitted.

4. Two examples

In this section, we give two examples to demonstrate the efficiencies of our criteria.

Example 4.1. In the following, we consider the periodic solutions of the two neurons fuzzy
networks with delay:

ẋi(t) = −di(t)xi(t) +
2∑

j=1

aij(t)fj
(
xj(t)

)
+

2∑

j=1

bij(t)uj(t) +
2∧

j=1

αij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds

+
2∨

j=1

βij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds +

2∧

j=1

Gij(t)uj(t) +
2∨

j=1

Hij(t)uj(t) + Ii(t),

(4.1)
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where di(t), aij(t), bij(t), αij(t), βij(t), Gij(t), Hij(t), and ui(t) (i, j = 1, 2) are continuously
periodic solutions with period 2π . Let

D(t) =

(
1 0

0 1

)

, A(t) =
(
aij(t)

)
=

(
0.21 sin t −0.2 cos t
−0.15 cos t 0.19 sin t

)

,

α(t) =
(
αij(t)

)
=

(
0.1 sin t −0.11 cos t
0.12 cos t 0.11 sin t

)

,

β(t) =
(
βij(t)

)
=

(
0.15 sin t 0.1 cos t

−0.1 cos t 0.12 sin t

)

,

(
bij(t)

)
=
(
Gij(t)

)
=
(
Hij(t)

)
=

(
0 0

0 0

)

, u(t) = 2I(t) =

(
sin t
cos t

)

,

fi
(
xi
)
= f(x) =

1
2
(|x + 1| − |x − 1|),

∫ τ

0
ki(s)ds = 1, i = 1, 2.

(4.2)

By simple computation, one can easily obtain

S =

(
0.46 0.41

0.37 0.42

)

, Q =

(
0.5
0.5

)

, P = (E − S)−1Q =

(
3.0650
2.8173

)

,

ξ(S)1 = 0.83, ξ(S)2 = 0.05,

(4.3)

where ξ(S)i (i = 1, 2) denotes the eigenvalues of matrix S. Therefore, ρ(S) < 1. By Corollary 3.9,
we know that the setΩ = {φ ∈ C; [φ]+ ≤ P = (E −S)−1Q} is a positively invariant set of system
(3.41), which is a globally attracting set of system (3.41), that is, there exists a global attractor
of system (3.41). Moreover, it is 2π-periodic and belongs to the positively invariant set Ω. In
addition, one can easily obtain

2∑

j=1

(
a1j + α1j + β1j

)
lj = 0.88 < 1 = d1,

2∑

j=1

(
a2j + α2j + β2j

)
lj = 0.99 < 1 = d2. (4.4)

According to Corollary 3.10, the 2π-periodic solution x∗(t) of system (3.41) is globally expo-
nentially stable.

Example 4.2. We consider the periodic solutions of the following fuzzy Cohen-Grossberg neural
networks with delay:

ẋi(t) = −ai
(
xi(t)

)
[

bi
(
xi(t)

) −
2∑

j=1

cij(t)fj
(
xj(t)

) −
2∑

j=1

dij(t)uj(t) −
2∧

j=1

αij(t)

×
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds −

2∨

j=1

βij(t)
∫ t

t−τ
kj(t − s)fj

(
xj(s)

)
ds

−
2∧

j=1

Gij(t)uj(t) −
2∨

j=1

Hij(t)uj(t) − Ii(t)
]

,

(4.5)
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where aij(t), bij(t), αij(t), βij(t), Gij(t), Hij(t), and ui(t) (i, j = 1, 2) are continuously periodic
solutions with period 2π . Let

A
(
x(t)
)
=

(
5 + sin(x1(t)) 0

0 4 − cos(x2(t))

)

, B
(
x(t)
)
=

(
4x1(t)
4x2(t)

)

,

I(t) =

(
0.66 sin t
0.75 cos t

)

,

C(t) =
(
cij(t)

)
=

(
0.35 sin t −0.25 cos t
0.33 sin t 0.34 cos t

)

,

(
dij(t)

)
=
(
Gij(t)

)
=
(
Hij(t)

)
=

(
0 0

0 0

)

,

α(t) =
(
αij(t)

)
=

(
0.44 sin t −0.38 cos t
0.32 cos t 0.28 sin t

)

,

β(t) =
(
βij(t)

)
=

(
0.29 sin t 0.43 cos t

−0.27 cos t 0.35 sin t

)

,

fi
(
xi
)
= f(x) = tanh(x),

∫ τ

0
ki(s)ds = 1, i = 1, 2.

(4.6)

By simple computation, we can obtain that a−1 = 4, a−2 = 3, a+1 = 6, a+2 = 5, l1 = l2 =
1, δ1 = δ2 = 4,

S =

(
0.4050 0.3975

0.3833 0.4042

)

, Q =

(
0.2475

0.3125

)

, P = (E − S)−1Q =

(
1.3440

1.3892

)

,

ξ(P)1 = 0.7949, ξ(P)2 = 0.0142,

(4.7)

where ξ(P)i (i = 1, 2) denotes the eigenvalues of matrix P . Therefore, ρ(P) < 1. By Theorem 3.1,
we know that the setΩ = {φ ∈ C; [φ]+ ≤ Q = (E−P)−1M} is a positively invariant set of system
(4.5). According to Theorems 3.2 and 3.3, one can derive that the set Ω is a globally attracting
set of system (4.5), that is, there exists a global attractor of system (4.5). Moreover, it is 2π-
periodic and belongs to the positively invariant set Ω. In addition, one can easily obtain

a+1

2∑

j=1

(
c1j + α1j + β1j

)
lj = 12.84 < δ1a−1 = 16,

a+2

2∑

j=1

(
c2j + α2j + β2j

)
lj = 9.45 < δ2a−2 = 12.

(4.8)

According to Theorem 3.5, the 2π-periodic solution x∗(t) of system (4.5) is globally exponen-
tially stable.

5. Conclusion

Periodic oscillation is an important dynamical behavior in the applications and theories of neu-
ral networks. We derived the novel criteria of fuzzy Cohen-Grossberg neural networks with



H. Xiang and J. Cao 17

variable coefficients and distributed delays under easily checkout conditions and the minimal
assumption for the feedback kernel. Our results extend some previous works and the way is
common and very concise. In the mean time, we believe that the method can be applied to re-
search other problems under some appropriate assumptions such as almost periodic solution,
synchronization of neural networks, and so on.
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